1
|
Jeong HC, Lee HJ, Maruoka K. Chemoselective Cleavage and Transamidation of Tertiary p-Methoxybenzyl Amides under Metal-Free Photoredox Catalysis. Org Lett 2024; 26:9513-9518. [PMID: 39431889 DOI: 10.1021/acs.orglett.4c03485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
A metal-free and mild cleavage of tertiary p-methoxybenzyl amides (PMB tert-amide) under photoredox conditions is developed using Mes-Acr-Ph+BF4- and Selectfluor to activate the electron-rich benzylic C-H bond of the PMB moiety. The resulting acyl fluoride intermediate is versatile and facilitates a one-pot transamidation of the PMB tert-amide. The value of this protocol is highlighted by performing the chemoselective activation of the PMB tert-amide in bifunctional molecules containing more reactive functionalities than the amide.
Collapse
Affiliation(s)
- Hee-Chan Jeong
- School of Advanced Science and Technology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Hyo-Jun Lee
- School of Advanced Science and Technology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Malakhova EV, Kostromitin VS, Cheboksarov DY, Levin VV, Dilman AD. Sodium Hypophosphite as a Halogen Atom Transfer (XAT) Agent under Photocatalytic Conditions. J Org Chem 2024; 89:12812-12821. [PMID: 39120448 DOI: 10.1021/acs.joc.4c01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The ability of sodium hypophosphite to generate the phosphorus-centered radical, which can activate the carbon-halogen bond via the halogen atom transfer (XAT) is described. The hydroalkylation of nonactivated alkenes with methyl bromoacetate was performed using sodium hypophosphite as reducing agent under photocatalytic conditions. The key phosphorus centered radical is formed from the hypophosphite anion by hydrogen atom abstraction.
Collapse
Affiliation(s)
- Ekaterina V Malakhova
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
- Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Miusskaya sq. 9, Russian Federation
| | - Vladislav S Kostromitin
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
- Lomonosov Moscow State University, Department of Chemistry, 119991 Moscow, Leninskie Gory 1-3, Russian Federation
| | - Demian Y Cheboksarov
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
- Lomonosov Moscow State University, Department of Chemistry, 119991 Moscow, Leninskie Gory 1-3, Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
3
|
Gui QW, Ying S, Liu X, Wang J, Xiao X, Liu Z, Wang X, Shang Y, Li Q. BF 3·OEt 2-mediated transamidation of unprotected primary amides under solvent-free conditions. Org Biomol Chem 2024; 22:6605-6611. [PMID: 39087323 DOI: 10.1039/d4ob00875h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A BF3·OEt2-mediated transamidation between unactivated amides and amines is reported, enabling access to diverse secondary and tertiary amides under transition-metal-free and solvent-free conditions. The operationally simple procedure provides a novel manifold for converting amide-amide bonds with excellent chemoselectivity. In particular, a series of amides including challenging thioamides enable direct transamidation to products with modest to excellent yields. Meanwhile, additional experiments were conducted to elucidate the mechanism of this transformation, and a plausible mechanism was proposed based on the results and related literature.
Collapse
Affiliation(s)
- Qing-Wen Gui
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Shengneng Ying
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Xin Liu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Jianfang Wang
- College of Science, National University of Defense Technology, Changsha 410128, People's Republic of China
| | - Xuliang Xiao
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Zhuoliang Liu
- College of Science, National University of Defense Technology, Changsha 410128, People's Republic of China
| | - Xia Wang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Yanxue Shang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Qiang Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| |
Collapse
|
4
|
Song H, Xiao Y, Wei J, Liu Y, Yang L, Bai P, Yang F, Yu K, Xu C, Cai X. Low-valent-tungsten catalysis enables hydroboration of esters and nitriles. Chem Commun (Camb) 2024; 60:5026-5029. [PMID: 38629636 DOI: 10.1039/d4cc00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In the research presented herein, low-valent-tungsten-catalyzed hydroboration of esters and nitriles was investigated. Aromatic and aliphatic substrates were smoothly reduced to corresponding alcohol derivatives and N,N-diborylamines in the presence of W(CO)4(NCMe)2. Valuable derivatives were conveniently accessed by introducing a further functionalization process to crude hydroboration mixtures in one pot.
Collapse
Affiliation(s)
- Heng Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China.
| | - Yuting Xiao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China.
| | - Jingjing Wei
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China.
| | - Yuzan Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China.
| | - Liqing Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China.
| | - Pengtao Bai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China.
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China.
| | - Kai Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Chen Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China.
| | - Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China.
| |
Collapse
|
5
|
Trachsel L, Konar D, Hillman JD, Davidson CLG, Sumerlin BS. Diversification of Acrylamide Polymers via Direct Transamidation of Unactivated Tertiary Amides. J Am Chem Soc 2024; 146:1627-1634. [PMID: 38189246 DOI: 10.1021/jacs.3c12174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Postpolymerization modification offers a versatile strategy for synthesizing complex macromolecules, yet modifying acrylamide polymers like poly(N,N-dimethylacrylamide) (PDMA) is notoriously challenging due to the inherent stability and low reactivity of amide bonds. In this study, we unveil a novel approach for the direct transamidation of PDMA, leveraging recent advances in the transamidation of unactivated tertiary amide substrates. By exploiting photoiniferter polymerization, we extended this direct transamidation approach to ultrahigh-molecular-weight (UHMW) PDMA, showcasing the unprecedented postpolymerization modification of synthetic polymers exceeding 106 g/mol. We also designed acrylamide copolymers comprising both the moderately reactive N-methyl-N-phenyl tertiary amides, along with the less reactive, fully alkyl-substituted N,N-dimethyl amides inherent to PDMA. This disparate reactivity enabled a sequential, chemoselective transamidation by initially targeting the more reactive pendant aryl amides with less nucleophilic aromatic amines, and second, transamidating the untouched N,N-dimethyl amide moieties with more nucleophilic aliphatic amines, yielding a uniquely diversified acrylamide copolymer. This work not only broadens the scope of postpolymerization modification strategies by pioneering direct transamidation of unactivated amides but also provides a robust platform for the design of intricate macromolecules, particularly in the realm of UHMW polymers.
Collapse
Affiliation(s)
- Lucca Trachsel
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - Debabrata Konar
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - Jason D Hillman
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - Cullen L G Davidson
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
6
|
Thakur DG, Rathod NB, Patel SD, Patel DM, Patel RN, Sonawane MA, Ghosh SC. Palladium-Catalyzed Chelation-Assisted Aldehyde C-H Bond Activation of Quinoline-8-carbaldehydes: Synthesis of Amides from Aldehydes with Anilines and Other Amines. J Org Chem 2024. [PMID: 38195393 DOI: 10.1021/acs.joc.3c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
A palladium-catalyzed chelation-assisted direct aldehyde C-H bond amidation of quinoline-8-carbaldehydes with an amine was developed under mild reaction conditions. A wide range of amides were obtained in good to excellent yields from aldehyde with a variety of aniline derivatives and aliphatic amines. Our methodology was successfully applied to synthesize known DNA intercalating agents and can be easily scaled up to a gram scale.
Collapse
Affiliation(s)
- Dinesh Gopichand Thakur
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar , Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nileshkumar B Rathod
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar , Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sachinkumar D Patel
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar , Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dharmik M Patel
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar , Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raj N Patel
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar , Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh A Sonawane
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar , Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhash Chandra Ghosh
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar , Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Romeo I, Brizzi A, Pessina F, Ambrosio FA, Aiello F, Belardo C, Carullo G, Costa G, De Petrocellis L, Frosini M, Luongo L, Maramai S, Paolino M, Moriello AS, Mugnaini C, Scorzelli F, Maione S, Corelli F, Di Marzo V, Alcaro S, Artese A. In Silico-Guided Rational Drug Design and Synthesis of Novel 4-(Thiophen-2-yl)butanamides as Potent and Selective TRPV1 Agonists. J Med Chem 2023; 66:6994-7015. [PMID: 37192374 DOI: 10.1021/acs.jmedchem.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We describe an in silico-guided rational drug design and the synthesis of the suggested ligands, aimed at improving the TRPV1-ligand binding properties and the potency of N-(4-hydroxy-3-methoxybenzyl)-4-(thiophen-2-yl) butanamide I, a previously identified TRPV1 agonist. The docking experiments followed by molecular dynamics simulations and thermodynamic analysis led the drug design toward both the introduction of a lipophilic iodine and a flat pyridine/benzene at position 5 of the thiophene nucleus. Most of the synthesized compounds showed high TRPV1 efficacy and potency as well as selectivity. The molecular modeling analysis highlighted crucial hydrophobic interactions between Leu547 and the iodo-thiophene nucleus, as in amide 2a, or between Phe543 and the pyridinyl moiety, as in 3a. In the biological evaluation, both compounds showed protective properties against oxidative stress-induced ROS formation in human keratinocytes. Additionally, while 2a showed neuroprotective effects in both neurons and rat brain slices, 3a exhibited potent antinociceptive effect in vivo..
Collapse
Affiliation(s)
- Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Antonella Brizzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Federica Pessina
- Dipartimento di Medicina Molecolare e dello Sviluppo, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Francesca Aiello
- Dipartimento di Farmacia e Scienza della Salute e della Nutrizione, Università della Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Carmela Belardo
- Dipartimento di Medicina Sperimentale, Divisione di Farmacologia, Università degli Studi della Campania "L. Vanvitelli", |Via Costantinopoli 16, 80138 Napoli, Italy
| | - Gabriele Carullo
- Dipartimento di Scienze della Vita, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Napoli, Italy
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Livio Luongo
- Dipartimento di Medicina Sperimentale, Divisione di Farmacologia, Università degli Studi della Campania "L. Vanvitelli", |Via Costantinopoli 16, 80138 Napoli, Italy
| | - Samuele Maramai
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Napoli, Italy
- Epitech Group SpA, Via L. Einaudi 13, 35030 Saccolongo, Padova, Italy
| | - Claudia Mugnaini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Francesco Scorzelli
- Recipharm (Edmond Pharma), Strada Statale dei Giovi 131, 20037 Paderno Dugnano, Milano, Italy
| | - Sabatino Maione
- Dipartimento di Medicina Sperimentale, Divisione di Farmacologia, Università degli Studi della Campania "L. Vanvitelli", |Via Costantinopoli 16, 80138 Napoli, Italy
| | - Federico Corelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Napoli, Italy
- Heart and Lung Research Institute, Department of Medicine, Faculty of Medicine, and Institute of Nutrition and Functional Foods, NUTRISS Center, School of Nutrition, Faculty of Agriculture and Food Science, Université Laval, 2325 Rue de l'Université, Québec, Canada
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Yamasaki R, Okada Y, Iizumi H, Ito A, Fukuda K, Okamoto I. Structure and Additive-free Transamidation of Planar N-Cyano Amides. J Org Chem 2023; 88:5704-5712. [PMID: 37094254 DOI: 10.1021/acs.joc.3c00172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Although transamidation of amides generally requires metals, additives, or harsh conditions, we present here a facile transamidation of N-cyano amides with various amines at ambient temperature without any additive. N-cyano amides preferred the trans conformation and have a reduced double bond character revealed by crystal analysis. The DFT study indicates that the transamidation reaction proceeds through the direct attack of amine on the amide carbonyl since the LUMO (or LUMO+1) is located at the carbonyl moiety.
Collapse
Affiliation(s)
- Ryu Yamasaki
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yuko Okada
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Hiromi Iizumi
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Ai Ito
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Kazuo Fukuda
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Iwao Okamoto
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
9
|
Lv C, Zhao R, Wang X, Liu D, Muschin T, Sun Z, Bai C, Bao A, Bao YS. Copper-Catalyzed Transamidation of Unactivated Secondary Amides via C-H and C-N Bond Simultaneous Activations. J Org Chem 2023; 88:2140-2157. [PMID: 36701175 DOI: 10.1021/acs.joc.2c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Here, we demonstrate that α-C-H and C-N bonds of unactivated secondary amides can be activated simultaneously by the copper catalyst to synthesize α-ketoamides or α-ketoesters in one step, which is a challenging and underdeveloped transformation. Using copper as a catalyst and air as an oxidant, the reaction is compatible with a broad range of acetoamides, amines, and alcohols. The preliminary mechanism studies and density functional theory calculation indicated that the reaction process may undergo first radical α-oxygenation and then transamidation with the help of the resonant six-membered N,O-chelation and molecular oxygen plays a role as an initiator to trigger the transamidation process. The combination of chelation assistance and dioxygen selective oxygenation strategy would substantially extend the modern mild synthetic amide cleavage toolbox, and we envision that this broadly applicable method will be of great interest in the biopharmaceutical industry, synthetic chemistry, and agrochemical industry.
Collapse
Affiliation(s)
- Cong Lv
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Ruisheng Zhao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Xiuying Wang
- Inner Mongolia Autonomous Region Animal Epidemic Prevention Center, Hohhot 010020, China
| | - Dan Liu
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Tegshi Muschin
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Zhaorigetu Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Chaolumen Bai
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Agula Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Yong-Sheng Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| |
Collapse
|
10
|
Esmaeilzadeh A, Heshmatpour F. Design, Synthesis and Characterization of Strontium and Cerium-Co-Doped TiO 2-HAp as an Efficient Nanocomposite: Investigation of Its Photocatalytic and Catalytic Applications. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2164017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alireza Esmaeilzadeh
- Department of Inorganic Chemistry, Faculty of Chemistry, Khajeh Nasir al-Din Tusi University of Technology, Tehran, Iran
| | - Felora Heshmatpour
- Department of Inorganic Chemistry, Faculty of Chemistry, Khajeh Nasir al-Din Tusi University of Technology, Tehran, Iran
| |
Collapse
|
11
|
Feng M, Zhang H, Maulide N. Challenges and Breakthroughs in Selective Amide Activation. Angew Chem Int Ed Engl 2022; 61:e202212213. [PMID: 36124856 PMCID: PMC10092240 DOI: 10.1002/anie.202212213] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/09/2022]
Abstract
In contrast to ketones and carboxylic esters, amides are classically seen as comparatively unreactive members of the carbonyl family, owing to their unique structural and electronic features. However, recent decades have seen the emergence of research programmes focused on the selective activation of amides under mild conditions. In the past four years, this area has continued to rapidly develop, with new advances coming in at a fast pace. Several novel activation strategies have been demonstrated as effective tools for selective amide activation, enabling transformations that are at once synthetically useful and mechanistically intriguing. This Minireview comprises recent advances in the field, highlighting new trends and breakthroughs in what could be called a new age of amide activation.
Collapse
Affiliation(s)
- Minghao Feng
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Haoqi Zhang
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| | - Nuno Maulide
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| |
Collapse
|
12
|
Feng M, Zhang H, Maulide N. Challenges and Breakthroughs in Selective Amide Activation. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202212213. [PMID: 38504998 PMCID: PMC10947092 DOI: 10.1002/ange.202212213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/09/2022]
Abstract
In contrast to ketones and carboxylic esters, amides are classically seen as comparatively unreactive members of the carbonyl family, owing to their unique structural and electronic features. However, recent decades have seen the emergence of research programmes focused on the selective activation of amides under mild conditions. In the past four years, this area has continued to rapidly develop, with new advances coming in at a fast pace. Several novel activation strategies have been demonstrated as effective tools for selective amide activation, enabling transformations that are at once synthetically useful and mechanistically intriguing. This Minireview comprises recent advances in the field, highlighting new trends and breakthroughs in what could be called a new age of amide activation.
Collapse
Affiliation(s)
- Minghao Feng
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Haoqi Zhang
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| | - Nuno Maulide
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| |
Collapse
|
13
|
Chouhan KK, Chowdhury D, Mukherjee A. Transamidation of aromatic amines with formamides using cyclic dihydrogen tetrametaphosphate. Org Biomol Chem 2022; 20:7929-7935. [PMID: 36155708 DOI: 10.1039/d2ob00882c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amide fragments are found to be one of the key constituents in a wide range of natural products and pharmacologically active compounds. Herein, we report a simple and efficient procedure for transamidation with a cyclic dihydrogen tetrametaphosphate. The protocol is simple, does not require any additives, and encompasses a broad substrate scope. To comprehend the mechanism of the present methodology, detailed spectroscopic and kinetic studies were undertaken.
Collapse
Affiliation(s)
- Kishor Kumar Chouhan
- Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India.
| | - Deep Chowdhury
- Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India.
| | - Arup Mukherjee
- Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India.
| |
Collapse
|
14
|
Kumar V, Dhawan S, Bala R, Mohite SB, Singh P, Karpoormath R. Cu-catalysed transamidation of unactivated aliphatic amides. Org Biomol Chem 2022; 20:6931-6940. [PMID: 35983826 DOI: 10.1039/d2ob01152b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct transamidation is gaining prominence as a ground-breaking technique that generates a wide variety of amides without the requirement of acid-amine coupling or other intermediate steps. However, transamidation of unactivated aliphatic amides, on the other hand, has been a long-standing issue in comparison to transamidation of activated amides. Herein, we report a transamidation approach of an unactivated aliphatic amide using a copper catalyst and chlorotrimethylsilane as an additive. In addition, we used transamidation as a tool for selective N-C(O) cleavage and O-C(O) formation to synthesise 2-substituted benzoxazoles and benzothiazoles. The reactions were carried out without using any solvents and offered wide substitution scope.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| | - Renu Bala
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| | - Sachin Balaso Mohite
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal (Westville campus), Private Bag X01, Scottsville, Durban, South Africa.
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| |
Collapse
|
15
|
Rajan IAPS, Subramani M, Pushparathinam G, Rajendran S. Environmentally Benign Transamidation Protocol for Weakly Nucleophilic Aromatic Amines with N‐Acyl‐2‐piperidinones: Catalyst, Additive, Base and Solvent‐Free Condition. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Saravanakumar Rajendran
- Vellore Institute of Technology, Chennai Chemistry Division Vandalur-Kelambakkam Road 6200127 Chennai INDIA
| |
Collapse
|
16
|
Zuo D, Wang Q, Liu L, Huang T, Szostak M, Chen T. Highly Chemoselective Transamidation of Unactivated Tertiary Amides by Electrophilic N-C(O) Activation by Amide-to-Acyl Iodide Re-routing. Angew Chem Int Ed Engl 2022; 61:e202202794. [PMID: 35355386 DOI: 10.1002/anie.202202794] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/20/2022]
Abstract
The challenging transamidation of unactivated tertiary amides has been accomplished via cooperative acid/iodide catalysis. Most crucially, the method provides a novel manifold to re-route the reactivity of unactivated N,N-dialkyl amides through reactive acyl iodide intermediates, thus reverting the classical order of reactivity of carboxylic acid derivatives. This method provides a direct route to amide-to-amide bond interconversion with excellent chemoselectivity using equivalent amounts of amines. The combination of acid and iodide has been identified as the essential factor to activate the amide C-N bond through electrophilic catalytic activation, enabling the production of new desired transamidated products with wide substrate scope of both unactivated amides and amines, including late-stage functionalization of complex APIs (>80 examples). We anticipate that this powerful activation mode of unactivated amide bonds will find broad-ranging applications in chemical synthesis.
Collapse
Affiliation(s)
- Dongxu Zuo
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Qun Wang
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Long Liu
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Tianzeng Huang
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Tieqiao Chen
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| |
Collapse
|
17
|
Zuo D, Wang Q, Liu L, Huang T, Szostak M, Chen T. Highly Chemoselective Transamidation of Unactivated Tertiary Amides by Electrophilic N–C(O) Activation via Amide‐to‐Acyl Iodide Re‐Routing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dongxu Zuo
- Hainan University College of Chemical Engineering and Technology CHINA
| | - Qun Wang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Long Liu
- Hainan University College of Chemical Engineering and Technology CHINA
| | - Tianzeng Huang
- Hainan University College of Chemical Engineering and Technology CHINA
| | - Michal Szostak
- Rutgers University Newark Department of Chemistry UNITED STATES
| | - Tieqiao Chen
- Hainan University College of Chemical Engineering and Technology No. 58, Renmin Avenue, Meilan District 570228 Haikou CHINA
| |
Collapse
|
18
|
Zhang HY, Tao XW, Yi LN, Zhao ZG, Yang Q. Transamidation and Decarbonylation of N-Phthaloyl-Amino Acid Amides Enabled by Palladium-Catalyzed Selective C-N Bond Cleavage. J Org Chem 2021; 87:231-242. [PMID: 34941259 DOI: 10.1021/acs.joc.1c02245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amides are important functional synthons that have been widely used in the construction of peptides, natural products, and drugs. The C-N bond cleavage provides the direct method for amide conversion. However, amides, especially secondary amides, tend to be chemically inert due to the resonance of the amide bond. Here, we describe an efficient Pd-catalyzed transamidation and decarbonylation of multiamide structure molecules through C-N bond cleavage with excellent chemoselectivity. The transamidation of secondary amides and the decarbonylation of phthalimide provide meaningful tools for the modification of amino acid derivatives. Moreover, further transformations of azidation and C(sp3)-H monoarylation emphasized the potential utility of this selective C-N bond cleavage method.
Collapse
Affiliation(s)
- Hao-Yu Zhang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xuan-Wen Tao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Li-Na Yi
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Zhi-Gang Zhao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qiang Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
19
|
Yang Y, Liu J, Kamounah FS, Ciancaleoni G, Lee JW. A CO 2-Catalyzed Transamidation Reaction. J Org Chem 2021; 86:16867-16881. [PMID: 34723529 DOI: 10.1021/acs.joc.1c02077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transamidation reactions are often mediated by reactive substrates in the presence of overstoichiometric activating reagents and/or transition metal catalysts. Here we report the use of CO2 as a traceless catalyst: in the presence of catalytic amounts of CO2, transamidation reactions were accelerated with primary, secondary, and tertiary amide donors. Various amine nucleophiles including amino acid derivatives were tolerated, showcasing the utility of transamidation in peptide modification and polymer degradation (e.g., Nylon-6,6). In particular, N,O-dimethylhydroxyl amides (Weinreb amides) displayed a distinct reactivity in the CO2-catalyzed transamidation versus a N2 atmosphere. Comparative Hammett studies and kinetic analysis were conducted to elucidate the catalytic activation mechanism of molecular CO2, which was supported by DFT calculations. We attributed the positive effect of CO2 in the transamidation reaction to the stabilization of tetrahedral intermediates by covalent binding to the electrophilic CO2.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Jian Liu
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Gianluca Ciancaleoni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.,CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Ji-Woong Lee
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark.,Nanoscience Center, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| |
Collapse
|