1
|
Jung H, Jamal A, Gereige I, Nguyen TT, Ager JW, Jung HT. Continuous Flow Photoelectrochemical Reactor with Gas Permeable Photocathode: Enhanced Photocurrent and Partial Current Density for CO 2 Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411348. [PMID: 39686693 DOI: 10.1002/advs.202411348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Indexed: 12/18/2024]
Abstract
Photoelectrochemical (PEC) CO2 reduction using a photocathode is an attractive method for making valuable chemical products due to its simplicity and lower overpotential requirements. However, previous PEC processes have often been diffusion-limited leading to low production rates of the CO2 reduction reaction, due to inefficient gas diffusion through the liquid electrolyte to the catalyst surface, particularly at high current densities. In this study, a gas-permeable photocathode in a continuous flow PEC reactor is incorporated, which facilitates the direct supply of CO2 gas to the photocathode-electrolyte interface, unlike dark reaction-based flow reactors. This concept is demonstrated using Ag-TiO2 on carbon paper, illuminated through a quartz window and flowing liquid electrolyte. CO2 supply is managed via pressure and flow control on the non-illuminated side of the carbon paper. The photocurrent density is significantly influenced by the flow rates and pressure of CO2 gas, and the electrolyte flow rates. Compared to the traditional H-cell, the continuous PEC flow reactor achieves ≈10-fold increase in CO faradaic efficiency, 30-fold increase in production rate and 16-fold increase in stability without catalyst modifications. This work provides essential insights into the design and application of continuous gas-liquid flow PEC reactor systems, highlighting their potential for other PEC reactions.
Collapse
Affiliation(s)
- Hyunju Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KAIST-UC Berkeley-Vietnam National University Climate Change Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Saudi Aramco-KAIST CO2 Management Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Aqil Jamal
- Research and Development Center, Saudi Aramco, Dhahran, 31311, Saudi Arabia
| | - Issam Gereige
- Research and Development Center, Saudi Aramco, Dhahran, 31311, Saudi Arabia
| | - Tan Tien Nguyen
- KAIST-UC Berkeley-Vietnam National University Climate Change Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- National Key Lab for Digital Control and System Engineering, Mechatronics Engineering Department, VNU-HCM-Hochiminh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, 72506, Viet Nam
| | - Joel W Ager
- KAIST-UC Berkeley-Vietnam National University Climate Change Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California Berkeley, CA, 94720, USA
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KAIST-UC Berkeley-Vietnam National University Climate Change Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Saudi Aramco-KAIST CO2 Management Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| |
Collapse
|
2
|
Yang Q, Zhang B, Chen D, Li Y, Feng C, Du W. Mechanochemistry Strategy in Metal/Fe 3O 4 with High Stability for Superior Chemoselective Catalysis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39563489 DOI: 10.1021/acsami.4c18059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
While noble metal nanoparticles (MNPs) exhibit remarkable performance in heterogeneous catalysis and their incorporation into crystalline materials can fully exploit the combined advantages of both, achieving introduction of nanoclusters during material crystallization, precisely controlling their interactions, and facilitating catalyst recovery remain significant challenges. In this study, Au NPs, Pt NPs, and Pd NPs are supported on magnetic Fe3O4, enabling the modulation of the electronic states of MNPs by adjusting the introduction method. Notably, the catalysts (Pt/Fe3O4, Au/Fe3O4, and Pd/Fe3O4) demonstrate excellent activity in chemoselective reactions: cinnamaldehyde (CAL) hydrogenation (turnover number: 20,135 h-1), nitrobenzene hydrogenation (with 99.9% selectivity for major nitrobenzene derivatives and robust stability at 19 cycles), and 3-nitrophenylacetylene (3-NPA) hydrogenation (yielding up to 98.4% 3-aminophenylacetylene (3-APA)), in stark contrast to the low activity of comparable catalysts. This paper proposes a novel and versatile solid-phase mechanochemistry strategy that achieves precise control over the microenvironment of MNPs while maintaining their inherent activity, thereby offering an effective approach to develop catalysts with high specificity and easy recovery capabilities.
Collapse
Affiliation(s)
- Qianyong Yang
- Jiujiang Innovation Center of Biosensor Technology and Application, School of Medical Sciences, Jiujiang University, Jiujiang, Jiangxi 332005, P. R. China
| | - Bingzhen Zhang
- School of Power and Mechanical Engineering, The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Dong Chen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430072, P. R. China
| | - Ying Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Cundong Feng
- Jiujiang Innovation Center of Biosensor Technology and Application, School of Medical Sciences, Jiujiang University, Jiujiang, Jiangxi 332005, P. R. China
| | - Weian Du
- Jiujiang Innovation Center of Biosensor Technology and Application, School of Medical Sciences, Jiujiang University, Jiujiang, Jiangxi 332005, P. R. China
| |
Collapse
|
3
|
Vishnuraj R, Unnathpadi R, Rangarajan M, Pullithadathil B. n-n type In 2O 3@-WO 3 heterojunction nanowires: enhanced NO 2 gas sensing characteristics for environmental monitoring. Mikrochim Acta 2024; 191:645. [PMID: 39365453 DOI: 10.1007/s00604-024-06693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/06/2024] [Indexed: 10/05/2024]
Abstract
Solvothermal synthesis of 1D n-In2O3@n-WO3 heterojunction nanowires (HNWs) and their NO2 gas sensing characteristics are reported. The n-In2O3@n-WO3 HNWs have been well-characterised using XRD, Raman spectroscopy, XPS, SEM and HRTEM analyses. The NO2 sensing performance of n-In2O3@n-WO3 HNWs showed superior performance compared with pristine WO3 NWs. Due to the distinctive configuration of WO3-In2O3 heterojunctions, the n-In2O3@n-WO3 HNWs demonstrated remarkable sensitivity reaching 182% in response towards 500 ppb of NO2 gas at operating temperature of 200°C which is nearly 3.5 times greater than the response observed with pristine WO3 (50%). Moreover, the n-In2O3@n-WO3 HNWs also exhibited fast response (8-13 s)/recovery (54-62 s) time characteristics. A plausible sensing mechanism has been discussed. The enhancement in sensor characteristics shows that n-In2O3@n-WO3 HNWs could serve as a promising material for high-performance NO2 gas sensors for real-time environmental monitoring applications. This work could provide new understandings of the sensing mechanism of n-In2O3@n-WO3-based heterojunction nanowires, which can be applied to the design of novel n-n type MOS heterojunction materials for the application of low-temperature real-time high-performance NO2 sensors.
Collapse
Affiliation(s)
- Ramakrishnan Vishnuraj
- Nanosensors & Clean Energy Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, 641004, India
- Center of Excellence in Advanced Materials and Green Technologies, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
- Department of Chemical Engineering and Materials Science, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Rajesh Unnathpadi
- Nanosensors & Clean Energy Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, 641004, India
| | - Murali Rangarajan
- Center of Excellence in Advanced Materials and Green Technologies, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
- Department of Chemical Engineering and Materials Science, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
- Gurukripa Electrolyzers Private Limited, Coimbatore, 641046, India
| | - Biji Pullithadathil
- Nanosensors & Clean Energy Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, 641004, India.
| |
Collapse
|
4
|
Musharaf HM, Roshan U, Mudugamuwa A, Trinh QT, Zhang J, Nguyen NT. Computational Fluid-Structure Interaction in Microfluidics. MICROMACHINES 2024; 15:897. [PMID: 39064408 PMCID: PMC11278627 DOI: 10.3390/mi15070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Micro elastofluidics is a transformative branch of microfluidics, leveraging the fluid-structure interaction (FSI) at the microscale to enhance the functionality and efficiency of various microdevices. This review paper elucidates the critical role of advanced computational FSI methods in the field of micro elastofluidics. By focusing on the interplay between fluid mechanics and structural responses, these computational methods facilitate the intricate design and optimisation of microdevices such as microvalves, micropumps, and micromixers, which rely on the precise control of fluidic and structural dynamics. In addition, these computational tools extend to the development of biomedical devices, enabling precise particle manipulation and enhancing therapeutic outcomes in cardiovascular applications. Furthermore, this paper addresses the current challenges in computational FSI and highlights the necessity for further development of tools to tackle complex, time-dependent models under microfluidic environments and varying conditions. Our review highlights the expanding potential of FSI in micro elastofluidics, offering a roadmap for future research and development in this promising area.
Collapse
Affiliation(s)
- Hafiz Muhammad Musharaf
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Uditha Roshan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Amith Mudugamuwa
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| |
Collapse
|
5
|
Song W, He K, Li C, Yin R, Guo Y, Nie A, Li Y, Yang K, Zhou M, Lin X, Wang ZJ, Ren Q, Zhu S, Xu T, Liu S, Jin H, Lv JJ, Wang S, Yuan Y. Seeding Atomic Silver into Internal Lattice Sites of Transition Metal Oxide for Advanced Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312566. [PMID: 38630368 DOI: 10.1002/adma.202312566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/14/2024] [Indexed: 05/04/2024]
Abstract
Transition metal oxides (TMOs) are widely studied for loading of various catalysts due to their low cost and high structure flexibility. However, the prevailing close-packed nature of most TMOs crystals has restricted the available loading sites to surface only, while their internal bulk lattice remains unactuated due to the inaccessible narrow space that blocks out most key reactants and/or particulate catalysts. Herein, using tunnel-structured MnO2, this study demonstrates how TMO's internal lattice space can be activated as extra loading sites for atomic Ag in addition to the conventional surface-only loading, via which a dual-form Ag catalyst within MnO2 skeleton is established. In this design, not only faceted Ag nanoparticles are confined onto MnO2 surface by coherent lattice-sharing, Ag atomic strings are also seeded deep into the sub-nanoscale MnO2 tunnel lattice, enriching the catalytically active sites. Tested for electrochemical CO2 reduction reaction (eCO2RR), such dual-form catalyst exhibits a high Faradaic efficiency (94%), yield (67.3 mol g-1 h-1) and durability (≈48 h) for CO production, exceeding commercial Ag nanoparticles and most Ag-based electrocatalysts. Theoretical calculations further reveal the concurrent effect of such dual-form catalyst featuring facet-dependent eCO2RR for Ag nanoparticles and lattice-confined eCO2RR for Ag atomic strings, inspiring the future design of catalyst-substrate configuration.
Collapse
Affiliation(s)
- Wenjun Song
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Kun He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Chenghang Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Ruonan Yin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Yaqing Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Anmin Nie
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Yanshuai Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Keqin Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Mengting Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Xiaoruizhuo Lin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zheng-Jun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Qingqing Ren
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Shaojun Zhu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Ting Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Suya Liu
- Thermo Fisher Scientific, Jinke Road No. 2517, Shanghai, Nanoport, 200120, China
| | - Huile Jin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jing-Jing Lv
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Shun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Yifei Yuan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
6
|
Guan GW, Zheng ST, Ni S, Wang SS, Ma H, Liu XY, Peng X, Wang J, Yang QY. Cobalt-based Polymerized Porphyrinic Network for Visible-light-driven CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32271-32281. [PMID: 38868898 DOI: 10.1021/acsami.4c04487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Visible-light-driven conversion of carbon dioxide to valuable compounds and fuels is an important but challenging task due to the inherent stability of the CO2 molecules. Herein, we report a series of cobalt-based polymerized porphyrinic network (PPN) photocatalysts for CO2 reduction with high activity. The introduction of organic groups results in the addition of more conjugated electrons to the networks, thereby altering the molecular orbital levels within the networks. This integration of functional groups effectively adjusts the levels of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO). The PPN(Co)-NO2 exhibits outstanding performance, with a CO evolution rate of 12 268 μmol/g/h and 85.8% selectivity, surpassing most similar photocatalyst systems. The performance of PPN(Co)-NO2 is also excellent in terms of apparent quantum yield (AQY) for CO production (5.7% at 420 nm). Density functional theory (DFT) calculations, time-resolved photoluminescence (TRPL), and electrochemical tests reveal that the introduction of methyl and nitro groups leads to a narrower energy gap, facilitating a faster charge transfer. The coupling reaction in this study enables the formation of stable C-C bonds, enhancing the structural regulation, active site diversity, and stability of the catalysts for photocatalytic CO2 reduction. This work offers a facile strategy to develop reliable catalysts for efficient CO2 conversion.
Collapse
Affiliation(s)
- Guo-Wei Guan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Su-Tao Zheng
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuang Ni
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shan-Shan Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Heping Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiang-Yu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaomeng Peng
- Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei, Anhui 230088, China
| | - Jian Wang
- Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei, Anhui 230088, China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
7
|
Ye T, Wang Y, Yao X, Li H, Xiao T, Ba K, Tang Y, Zheng C, Yang X, Sun Z. Synthesis of Rhenium-Doped Copper Twin Boundary for High-Turnover-Frequency Electrochemical Nitrogen Reduction. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38706440 DOI: 10.1021/acsami.4c02259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The precise design and synthesis of active sites to improve catalyst's performance has emerged as a promising tactic for electrochemistry. However, it is challenging to combine different types of active sites and manipulate them simultaneously at atomic resolution. Here, we present a strategy to synthesize Re atom-doped Cu twin boundaries (TBs), through pulsed electrodeposition and boundary segregation. The Re-doped Cu TBs demonstrate a highly efficient nitrogen reduction reaction (NRR) performance. Re-doped Cu TBs showed a turnover frequency of ∼5889 s-1, ∼800 times higher than the pure Cu TB active centers (∼7 s-1). In addition to the "acceptance-donation" activation of N2 molecules, theoretical calculations also reveal that the Re-Re dimer on TB can boost the NRR and impede the hydrogen evolution reaction synchronously, rendering Re-doped Cu TB catalysts with high NRR activity and selectivity.
Collapse
Affiliation(s)
- Tong Ye
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
- School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, P. R. China
| | - Yajie Wang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, P. R. China
| | - Xiang Yao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hongbin Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Taishi Xiao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Kun Ba
- School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, P. R. China
| | - Yi Tang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Changlin Zheng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, P. R. China
| | - Xiaoyong Yang
- School of National Defense Science and Technology, State Key Laboratory for Environment Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala 75120, Sweden
| | - Zhengzong Sun
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
- School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
| |
Collapse
|
8
|
Wu Y, Xu K, Tian J, Shang L, Tan KB, Sun H, Sun K, Rao X, Zhan G. Construction of Ni/In 2O 3 Integrated Nanocatalysts Based on MIL-68(In) Precursors for Efficient CO 2 Hydrogenation to Methanol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16186-16202. [PMID: 38516696 DOI: 10.1021/acsami.3c19311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The efficient and economic conversion of CO2 and renewable H2 into methanol has received intensive attention due to growing concern for anthropogenic CO2 emissions, particularly from fossil fuel combustion. Herein, we have developed a novel method for preparing Ni/In2O3 nanocatalysts by using porous MIL-68(In) and nickel(II) acetylacetonate (Ni(acac)2) as the dual precursors of In2O3 and Ni components, respectively. Combined with in-depth characterization analysis, it was revealed that the utilization of MIL-68(In) as precursors favored the good distribution of Ni nanoparticles (∼6.2 nm) on the porous In2O3 support and inhibited the metal sintering at high temperatures. The varied catalyst fabrication parameters were explored, indicating that the designed Ni/In2O3 catalyst (Ni content of 5 wt %) exhibited better catalytic performance than the compared catalyst prepared using In(OH)3 as a precursor of In2O3. The obtained Ni/In2O3 catalyst also showed excellent durability in long-term tests (120 h). However, a high Ni loading (31 wt %) would result in the formation of the Ni-In alloy phase during the CO2 hydrogenation which favored CO formation with selectivity as high as 69%. This phenomenon is more obvious if Ni and In2O3 had a strong interaction, depending on the catalyst fabrication methods. In addition, with the aid of in situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory (DFT) calculations, the Ni/In2O3 catalyst predominantly follows the formate pathway in the CO2 hydrogenation to methanol, with HCOO* and *H3CO as the major intermediates, while the small size of Ni particles is beneficial to the formation of formate species based on DFT calculation. This study suggests that the Ni/In2O3 nanocatalyst fabricated using metal-organic frameworks as precursors can effectively promote CO2 thermal hydrogenation to methanol.
Collapse
Affiliation(s)
- Yiling Wu
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Kaiji Xu
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Jian Tian
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Longmei Shang
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Kok Bing Tan
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Hao Sun
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin Five Village, Nanjing 210042, Jiangsu, P. R. China
| | - Kang Sun
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin Five Village, Nanjing 210042, Jiangsu, P. R. China
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Guowu Zhan
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| |
Collapse
|
9
|
Dela Cruz JMCM, Balog Á, Tóth PS, Bencsik G, Samu GF, Janáky C. Au-decorated Sb 2Se 3 photocathodes for solar-driven CO 2 reduction. EES CATALYSIS 2024; 2:664-674. [PMID: 38464594 PMCID: PMC10918757 DOI: 10.1039/d3ey00222e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/05/2024] [Indexed: 03/12/2024]
Abstract
Photoelectrodes with FTO/Au/Sb2Se3/TiO2/Au architecture were studied in photoelectrochemical CO2 reduction reaction (PEC CO2RR). The preparation is based on a simple spin coating technique, where nanorod-like structures were obtained for Sb2Se3, as confirmed by SEM images. A thin conformal layer of TiO2 was coated on the Sb2Se3 nanorods via ALD, which acted as both an electron transfer layer and a protective coating. Au nanoparticles were deposited as co-catalysts via photo-assisted electrodeposition at different applied potentials to control their growth and morphology. The use of such architectures has not been explored in CO2RR yet. The photoelectrochemical performance for CO2RR was investigated with different Au catalyst loadings. A photocurrent density of ∼7.5 mA cm-2 at -0.57 V vs. RHE for syngas generation was achieved, with an average Faradaic efficiency of 25 ± 6% for CO and 63 ± 12% for H2. The presented results point toward the use of Sb2Se3-based photoelectrodes in solar CO2 conversion applications.
Collapse
Affiliation(s)
- John Mark Christian M Dela Cruz
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged Aradi Square 1 Szeged H-6720 Hungary
| | - Ádám Balog
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged Aradi Square 1 Szeged H-6720 Hungary
| | - Péter S Tóth
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged Aradi Square 1 Szeged H-6720 Hungary
| | - Gábor Bencsik
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged Aradi Square 1 Szeged H-6720 Hungary
| | - Gergely F Samu
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged Aradi Square 1 Szeged H-6720 Hungary
- ELI ALPS, ELI-HU Non-Profit Ltd. Wolfgang Sandner Street 3 Szeged H-6728 Hungary
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged Aradi Square 1 Szeged H-6720 Hungary
- ELI ALPS, ELI-HU Non-Profit Ltd. Wolfgang Sandner Street 3 Szeged H-6728 Hungary
| |
Collapse
|
10
|
Wang Q, Liu B, Wang S, Zhang P, Wang T, Gong J. Highly selective photoelectrochemical CO 2 reduction by crystal phase-modulated nanocrystals without parasitic absorption. Proc Natl Acad Sci U S A 2024; 121:e2316724121. [PMID: 38232284 PMCID: PMC10823234 DOI: 10.1073/pnas.2316724121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
Photoelectrochemical (PEC) carbon dioxide (CO2) reduction (CO2R) holds the potential to reduce the costs of solar fuel production by integrating CO2 utilization and light harvesting within one integrated device. However, the CO2R selectivity on the photocathode is limited by the lack of catalytic active sites and competition with the hydrogen evolution reaction. On the other hand, serious parasitic light absorption occurs on the front-side-illuminated photocathode due to the poor light transmittance of CO2R cocatalyst films, resulting in extremely low photocurrent density at the CO2R equilibrium potential. This paper describes the design and fabrication of a photocathode consisting of crystal phase-modulated Ag nanocrystal cocatalysts integrated on illumination-reaction decoupled heterojunction silicon (Si) substrate for the selective and efficient conversion of CO2. Ag nanocrystals containing unconventional hexagonal close-packed phases accelerate the charge transfer process in CO2R reaction, exhibiting excellent catalytic performance. Heterojunction Si substrate decouples light absorption from the CO2R catalyst layer, preventing the parasitic light absorption. The obtained photocathode exhibits a carbon monoxide (CO) Faradaic efficiency (FE) higher than 90% in a wide potential range, with the maximum FE reaching up to 97.4% at -0.2 V vs. reversible hydrogen electrode. At the CO2/CO equilibrium potential, a CO partial photocurrent density of -2.7 mA cm-2 with a CO FE of 96.5% is achieved in 0.1 M KHCO3 electrolyte on this photocathode, surpassing the expensive benchmark Au-based PEC CO2R system.
Collapse
Affiliation(s)
- Qingzhen Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Bin Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Shujie Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Peng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin300192, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| | - Tuo Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin300192, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin300192, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| |
Collapse
|
11
|
Mohite SV, Kim S, Bae J, J Jeong H, Kim TW, Choi J, Kim Y. Defects Healing of the ZnO Surface by Filling with Au Atom Catalysts for Efficient Photocatalytic H 2 Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304393. [PMID: 37712098 DOI: 10.1002/smll.202304393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Healed defects on photocatalysts surface and their interaction with plasmonic nanoparticles (NPs) have attracted attention in H2 production process. In this study, surface oxygen vacancy (Vo ) defects are created on ZnO (Vo -ZnO) NPs by directly pyrolyzing zeolitic imidazolate framework. The surface defects on Vo -ZnO provide active sites for the diffusion of single Au atoms and as nucleation sites for the formation of Au NPs by the in situ photodeposition process. The electronically healed surface defects by single Au atoms help in the formation of a heterojunction between the ZnO and plasmonic Au NPs. The formed Au/Vo -Au:ZnO-4 heterojunction prolongs photoelectron lifetimes and increases donor charge density. Therefore, the optimized photocatalysts of Au/Vo -Au:ZnO-4 has 21.28 times higher H2 production rate than the pristine Vo -ZnO under UV-visible light in 0.35 m Na2 SO4 and 0.25 m Na2 SO3 . However in 0.35 m Na2 S and 0.25 m Na2 SO3 , the H2 production rate is 25.84 mmole h-1 g-1 . Furthermore, Au/Vo -Au:ZnO-4 shows visible light activity by generating hot carries via induced surface plasmonic effects. It has 48.58 times higher H2 production rate than pristine Vo -ZnO. Therefore, this study infers new insight for defect healing mediated preparation of Au/Vo -Au:ZnO heterojunction for efficient photocatalytic H2 production.
Collapse
Affiliation(s)
- Santosh V Mohite
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
| | - Shinik Kim
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jiyoung Bae
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
| | - Hee J Jeong
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
| | - Tae Woong Kim
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
| | - Jihoon Choi
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Yeonho Kim
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
| |
Collapse
|
12
|
Paul R, Das R, Das N, Chakraborty S, Pao CW, Thang Trinh Q, Kalhara Gunasooriya GTK, Mondal J, Peter SC. Tweaking Photo CO 2 Reduction by Altering Lewis Acidic Sites in Metalated-Porous Organic Polymer for Adjustable H 2 /CO Ratio in Syngas Production. Angew Chem Int Ed Engl 2023; 62:e202311304. [PMID: 37872849 DOI: 10.1002/anie.202311304] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Herein, we have specifically designed two metalated porous organic polymers (Zn-POP and Co-POP) for syngas (CO+H2 ) production from gaseous CO2 . The variable H2 /CO ratio of syngas with the highest efficiency was produced in water medium (without an organic hole scavenger and photosensitizer) by utilizing the basic principle of Lewis acid/base chemistry. Also, we observed the formation of entirely different major products during photocatalytic CO2 reduction and water splitting with the help of the two catalysts, where CO (145.65 μmol g-1 h-1 ) and H2 (434.7 μmol g-1 h-1 ) production were preferentially obtained over Co-POP & Zn-POP, respectively. The higher electron density/better Lewis basic nature of Co-POP was investigated further using XPS, XANES, and NH3 -TPD studies, which considerably improve CO2 activation capacity. Moreover, the structure-activity relationship was confirmed via in situ DRIFTS and DFT studies, which demonstrated the formation of COOH* intermediate along with the thermodynamic feasibility of CO2 reduction over Co-POP while water splitting occurred preferentially over Zn-POP.
Collapse
Affiliation(s)
- Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Risov Das
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre forAdvanced Scientific Research, Jakkur, Bangalore-560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | - Nitumani Das
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subhajit Chakraborty
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre forAdvanced Scientific Research, Jakkur, Bangalore-560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Centre, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Quang Thang Trinh
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, 4111, Australia
| | | | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sebastian C Peter
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre forAdvanced Scientific Research, Jakkur, Bangalore-560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| |
Collapse
|
13
|
Liu G, Trinh QT, Wang H, Wu S, Arce-Ramos JM, Sullivan MB, Kraft M, Ager JW, Zhang J, Xu R. Selective and Stable CO 2 Electroreduction to CH 4 via Electronic Metal-Support Interaction upon Decomposition/Redeposition of MOF. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301379. [PMID: 37300346 DOI: 10.1002/smll.202301379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/12/2023]
Abstract
The CO2 electroreduction to fuels is a feasible approach to provide renewable energy sources. Therefore, it is necessary to conduct experimental and theoretical investigations on various catalyst design strategies, such as electronic metal-support interaction, to improve the catalytic selectivity. Here a solvent-free synthesis method is reported to prepare a copper (Cu)-based metal-organic framework (MOF) as the precursor. Upon electrochemical CO2 reduction in aqueous electrolyte, it undergoes in situ decomposition/redeposition processes to form abundant interfaces between Cu nanoparticles and amorphous carbon supports. This Cu/C catalyst favors the selective and stable production of CH4 with a Faradaic efficiency of ≈55% at -1.4 V versus reversible hydrogen electrode (RHE) for 12.5 h. The density functional theory calculation reveals the crucial role of interfacial sites between Cu and amorphous carbon support in stabilizing the key intermediates for CO2 reduction to CH4 . The adsorption of COOH* and CHO* at the Cu/C interface is up to 0.86 eV stronger than that on Cu(111), thus promoting the formation of CH4 . Therefore, it is envisioned that the strategy of regulating electronic metal-support interaction can improve the selectivity and stability of catalyst toward a specific product upon electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Guanyu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
| | - Quang Thang Trinh
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, Queensland, 4111, Australia
| | - Haojing Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Shuyang Wu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
| | - Juan Manuel Arce-Ramos
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
| | - Michael B Sullivan
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
| | - Markus Kraft
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Joel W Ager
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Berkeley Educational Alliance for Research in Singapore (BEARS), 1 Create Way, Singapore, 138602, Singapore
| | - Jia Zhang
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
| | - Rong Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
| |
Collapse
|
14
|
Mora-Hernandez JM, Alfonso Herrera LA, Garay-Rodriguez LF, Torres-Martínez LM, Hernandez-Perez I. An enhanced photo(electro)catalytic CO 2 reduction onto advanced BiOX (X = Cl, Br, I) semiconductors and the BiOI-PdCu composite. Heliyon 2023; 9:e20605. [PMID: 37842589 PMCID: PMC10568340 DOI: 10.1016/j.heliyon.2023.e20605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/01/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
The photoelectrocatalytic reduction of CO2 (CO2RR) onto bismuth oxyhalides (BiOX, X = Cl, Br, I) was studied through physicochemical and photoelectrochemical measurements. The successful synthesis of the BiOX compounds was carried out through a solvothermal methodology and confirmed by XRD measurements. The morphology was analyzed by SEM; meanwhile, area and pore size were determined through BET area measurements. BiOI and BiOCl present a lower particle size (3.15 and 2.71 μm, respectively); however, the sponge-like morphology presented by BiOI results in an increase in the BET area, which can enhance the catalytic activity of this semiconductor. In addition, DRS measurements allowed us to determine bandgap values of 1.9, 2.4, and 3.6 eV for BiOI, BiOBr, and BiOCl, respectively. Such results predict better visible light harvesting for BiOI. Photoelectrochemical measurements indicated that BiOX shows p-type semiconductor behavior, being the holes the majority charge carriers, making BiOI the most active material to carry out photoelectrocatalytic CO2RR. In the second stage, three different composites, BiOI-Pd, BiOI-Cu, and BiOI-PdCu, (BiOI-M; M = Pd, Cu, PdCu), were fabricated to study the influence of active metal nanoparticles (NP's) in the BiOI CO2RR activity. XRD measurements confirmed the interaction between BiOI and the metallic NP's, the three composites overpassed by 20% the BET area of pristine BiOI. Photoelectrochemical measurements indicate that all BiOI-metal composites are suitable materials to perform CO2 reduction in neutral media efficiently; however, the BiOI-PdCu composites surpassed the faradaic current of BiOI-Pd and BiOI-Cu at 0.85 V vs. RHE (3.15, 2.06 and 2.15 mA cm-2, respectively). BiOI-PdCu presented photoactivity to carry out the CO2 reduction evolving formic acid and acetic acid as the main products under visible-light irradiation.
Collapse
Affiliation(s)
- J. Manuel Mora-Hernandez
- CONAHCYT - Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Luis A. Alfonso Herrera
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Luis F. Garay-Rodriguez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Leticia M. Torres-Martínez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Miguel de Cervantes No. 120. Complejo Ind. Chihuahua, Chihuahua, Chih, C.P. 31136, Mexico
| | - Irina Hernandez-Perez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| |
Collapse
|
15
|
Kang M, Chai K, Lee S, Oh JH, Bae JS, Payne GF. Revealing Redox Behavior of Molybdenum Disulfide and Its Application as Rechargeable Antioxidant Reservoir. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41362-41372. [PMID: 37610347 DOI: 10.1021/acsami.3c08659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Molybdenum disulfide (MoS2) is a representative two-dimensional transition metal dichalcogenide and has a unique electronic structure and associated physicochemical properties. The redox property of MoS2 has recently attracted significant attention from various fields, such as biomedical applications. Intriguingly, MoS2 functions as an antioxidant in certain applications and as a pro-oxidant in others. We use the mediated electrochemical probing method to understand the redox behavior of MoS2. This method reveals that MoS2 (i) has a reversible and fast redox activity at a mild potential (between -0.20 and +0.25 V vs Ag/AgCl), (ii) functions as an antioxidant for molecules that have different redox mechanisms (electron or hydrogen atom transfer), and (iii) is electrochemically or molecularly rechargeable. Finally, we show that MoS2 reduces oxidized molecules more efficiently than the potent natural antioxidant, curcumin. This study enhances our understanding of MoS2 and shows its potential as an advanced antioxidant reservoir.
Collapse
Affiliation(s)
- Mijeong Kang
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kyunghwan Chai
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Seunghun Lee
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Ju Hyun Oh
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Jong-Seong Bae
- Busan Center, Korea Basic Science Institute, Busan 46742, Republic of Korea
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
16
|
Wang X, Ma S, Liu B, Wang S, Huang W. Imperfect makes perfect: defect engineering of photoelectrodes towards efficient photoelectrochemical water splitting. Chem Commun (Camb) 2023; 59:10044-10066. [PMID: 37551587 DOI: 10.1039/d3cc02843g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Photoelectrochemical (PEC) water splitting for hydrogen evolution has been considered as a promising technology to solve the energy and environmental issues. However, the solar-to-hydrogen (STH) conversion efficiencies of current PEC systems are far from meeting the commercial demand (10%) due to the lack of efficient photoelectrode materials. The recent rapid development of defect engineering of photoelectrodes has significantly improved the PEC performance, which is expected to break through the bottleneck of low STH efficiency. In this review, the category and the construction methods of different defects in photoelectrode materials are summarized. Based on the in-depth summary and analysis of existing reports, the PEC performance enhancement mechanism of defect engineering is critically discussed in terms of light absorption, carrier separation and transport, and surface redox reactions. Finally, the application prospects and challenges of defect engineering for PEC water splitting are presented, and the future research directions in this field are also proposed.
Collapse
Affiliation(s)
- Xin Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Siqing Ma
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Boyan Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Songcan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| |
Collapse
|
17
|
Wang Q, Liu J, Li Q, Yang J. Stability of Photocathodes: A Review on Principles, Design, and Strategies. CHEMSUSCHEM 2023; 16:e202202186. [PMID: 36789473 DOI: 10.1002/cssc.202202186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 05/06/2023]
Abstract
Photoelectrochemical devices based on semiconductor photoelectrode can directly convert and store solar energy into chemical fuels. Although the efficient photoelectrodes with commercially valuable solar-to-fuel energy conversion efficiency have been reported over past decades, one of the most enormous challenges is the stability of the photoelectrode due to corrosion during operation. Thus, it is of paramount importance for developing a stable photoelectrode to deploy solar-fuel production. This Review commences with a fundamental understanding of thermodynamics for photoelectrochemical reactions and the fundamentals of photocathodes. Then, the commercial application of photoelectrochemical technology is prospected. We specifically focus on recent strategies for designing photocathodes with long-term stability, including energy band alignment, hole transport/storage/blocking layer, spatial decoupling, grafting molecular catalysts, protective/passivation layer, surface element reconstruction, and solvent effects. Based on the insights gained from these effective strategies, we propose an outlook of key aspects that address the challenges for development of stable photoelectrodes in future work.
Collapse
Affiliation(s)
- Qinglong Wang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Jinfeng Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Qiuye Li
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Jianjun Yang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
18
|
Jeyaraja S, Palanivel S, Sathyanathan S, Munusamy C. Photocatalytic degradation of reactive dyes using natural photo-smart pigment-A novel approach for waste water re-usability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69639-69650. [PMID: 37140866 DOI: 10.1007/s11356-023-27360-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
The present study is aimed at an efficient photocatalytic degradation of industrially important reactive dyes using phycocyanin extract as a photocatalyst. The percentage of dye degradation was evidenced by a UV-visible spectrophotometer and FT-IR analysis. The degraded water was checked for its complete degradation by varying pH from 3 to 12. Furthermore, the degraded water was also analyzed for water quality parameters and was found to meet industrial wastewater standards. The calculated irrigation parameters like magnesium hazard ratio, soluble sodium percentage, and Kelly's ratio of degraded water were within the permissible limits, which enables its reusability in irrigation, aquaculture, as industrial coolants, and domestic applications. The calculated correlation matrix shows that the metal influences various macro-, micro-, and non-essential elements. These results suggest that the non-essential element lead can be effectively reduced by increasing all the other micronutrients and macronutrients under study except sodium metal.
Collapse
Affiliation(s)
- Sharmila Jeyaraja
- Department of Chemistry, St. Joseph's College of Engineering, Sholinganallur, Chennai, 600 119, Tamil Nadu, India
| | - Saravanan Palanivel
- Department of Chemistry, St. Joseph's College of Engineering, Sholinganallur, Chennai, 600 119, Tamil Nadu, India
| | - Suresh Sathyanathan
- Department of Physics, St. Joseph's College of Engineering, Sholinganallur, Chennai, 600 119, Tamil Nadu, India
| | - Chamundeeswari Munusamy
- Department of Biotechnology, St. Joseph's College of Engineering, Sholinganallur, Chennai, 600 119, Tamil Nadu, India.
| |
Collapse
|
19
|
Andrei V, Roh I, Yang P. Nanowire photochemical diodes for artificial photosynthesis. SCIENCE ADVANCES 2023; 9:eade9044. [PMID: 36763656 PMCID: PMC9917021 DOI: 10.1126/sciadv.ade9044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Artificial photosynthesis can provide a solution to our current energy needs by converting small molecules such as water or carbon dioxide into useful fuels. This can be accomplished using photochemical diodes, which interface two complementary light absorbers with suitable electrocatalysts. Nanowire semiconductors provide unique advantages in terms of light absorption and catalytic activity, yet great control is required to integrate them for overall fuel production. In this review, we journey across the progress in nanowire photoelectrochemistry (PEC) over the past two decades, revealing design principles to build these nanowire photochemical diodes. To this end, we discuss the latest progress in terms of nanowire photoelectrodes, focusing on the interplay between performance, photovoltage, electronic band structure, and catalysis. Emphasis is placed on the overall system integration and semiconductor-catalyst interface, which applies to inorganic, organic, or biologic catalysts. Last, we highlight further directions that may improve the scope of nanowire PEC systems.
Collapse
Affiliation(s)
- Virgil Andrei
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Inwhan Roh
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoScience Institute, Berkeley, CA 94720, USA
| |
Collapse
|
20
|
Zhao B, Huang X, Ding Y, Bi Y. Bias-Free Solar-Driven Syngas Production: A Fe 2 O 3 Photoanode Featuring Single-Atom Cobalt Integrated with a Silver-Palladium Cathode. Angew Chem Int Ed Engl 2023; 62:e202213067. [PMID: 36346191 DOI: 10.1002/anie.202213067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/11/2022]
Abstract
Photoelectrochemical syngas production from aqueous CO2 is a promising technique for carbon capture and utilization. Herein, we demonstrate the efficient and tunable syngas production by integrating a single-atom cobalt-catalyst-decorated α-Fe2 O3 photoanode with a bimetallic Ag/Pd alloy cathode. A record syngas production activity of 81.9 μmol cm-2 h-1 (CO/H2 ratio: ≈1 : 1) was achieved under artificial sunlight (AM 1.5 G) with an excellent durability. Systematic studies reveal that the Co single atoms effectively extract the holes from Fe2 O3 photoanodes and serve as active sites for promoting oxygen evolution. Simultaneously, the Pd and Ag atoms in bimetallic cathodes selectively adsorb CO2 and protons for facilitating CO production. Further incorporation with a photovoltaic, to allow solar light (>600 nm) to be utilized, yields a bias-free CO2 reduction device with solar-to-CO and solar-to-H2 conversion efficiencies up to 1.33 and 1.36 %, respectively.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou, 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaojuan Huang
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou, 730000, P. R. China
| | - Yong Ding
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yingpu Bi
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou, 730000, P. R. China
| |
Collapse
|
21
|
Chen B, Zhang Q, Zhao P, Cen M, Song Y, Zhao W, Peng W, Li Y, Zhang F, Fan X. Coupled Co-Doped MoS 2 and CoS 2 as the Dual-Active Site Catalyst for Chemoselective Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1317-1325. [PMID: 36542820 DOI: 10.1021/acsami.2c19069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Catalytic hydrogenation plays an important role in the industrial production of fine chemicals. Herein, we report a Co-doped MoS2 and CoS2 composite with a coupling interface and successfully apply it for the chemoselective hydrogenation of p-chloronitrobenzene to p-chloroaniline. The target catalyst 0.5CoMoS has ∼100% conversion and ∼100% selectivity. Experiments and theoretical calculations reveal that CoS2 is more favorable for adsorbing and activating H2 and provides active hydrogen (Ha) to Co-doped MoS2 by the coupling interface. By matching the production and consumption rates of Ha, the maximization of the reaction yield was achieved. This work may promote the study of MoS2-based catalysts for chemoselective hydrogenation.
Collapse
Affiliation(s)
- Bin Chen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Qicheng Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Pengwei Zhao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Mingjun Cen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Yue Song
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Weipeng Zhao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin300192, China
- Institute of Shaoxing, Tianjin University, Zhejiang312300, China
| |
Collapse
|
22
|
Integrating Au@TiOx and Co sites in a tandem photocatalyst for efficient C-C coupling synthesis of ethane. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Back-illuminated photoelectrochemical flow cell for efficient CO2 reduction. Nat Commun 2022; 13:7111. [DOI: 10.1038/s41467-022-34926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
Abstract
AbstractPhotoelectrochemical CO2 reduction reaction flow cells are promising devices to meet the requirements to produce solar fuels at the industrial scale. Photoelectrodes with wide bandgaps do not allow for efficient CO2 reduction at high current densities, while the integration of opaque photoelectrodes with narrow bandgaps in flow cell configurations still remains a challenge. This paper describes the design and fabrication of a back-illuminated Si photoanode promoted PEC flow cell for CO2 reduction reaction. The illumination area and catalytic sites of the Si photoelectrode are decoupled, owing to the effective passivation of defect states that allows for the long minority carrier diffusion length, that surpasses the thickness of the Si substrate. Hence, a solar-to-fuel conversion efficiency of CO of 2.42% and a Faradaic efficiency of 90% using Ag catalysts are achieved. For CO2 to C2+ products, the Faradaic efficiency of 53% and solar-to-fuel of 0.29% are achieved using Cu catalyst in flow cell.
Collapse
|
24
|
Li CF, Guo RT, Wu T, Pan WG. Progress and perspectives on 1D nanostructured catalysts applied in photo(electro)catalytic reduction of CO 2. NANOSCALE 2022; 14:16033-16064. [PMID: 36300511 DOI: 10.1039/d2nr04063h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reducing CO2 into value-added chemicals and fuels by artificial photosynthesis (photocatalysis and photoelectrocatalysis) is one of the considerable solutions to global environmental and energy issues. One-dimensional (1D) nanostructured catalysts (nanowires, nanorods, nanotubes and so on.) have attracted extensive attention due to their superior light-harvesting ability, co-catalyst loading capacity, and high carrier separation rate. This review analyzed the basic principle of the photo(electro)catalytic CO2 reduction reaction (CO2 RR) briefly. The preparation methods and properties of 1D nanostructured catalysts are introduced. Next, the applications of 1D nanostructured catalysts in the field of photo(electro)catalytic CO2 RR are introduced in detail. In particular, we introduced the design of composite catalysts with 1D nanostructures, for example loading 0D, 1D, 2D, and 3D materials on a 1D nanostructured semiconductor to construct a heterojunction to optimize the photo-response range, carrier separation and transport efficiency, CO2 adsorption and activation capacity, and stability of the catalyst. Finally, the development prospects of 1D nanostructured catalysts are discussed and summarized. This review can provide guidance for the rational design of advanced catalysts for photo(electro)catalytic CO2 RR.
Collapse
Affiliation(s)
- Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai 200090, People's Republic of China
| | - Tong Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai 200090, People's Republic of China
| |
Collapse
|
25
|
Wang Q, Zhang Y, Liu Y, Wang K, Qiu W, Chen L, Li J, Li W. Core–Shell In/Cu 2O Nanowires Schottky Junction for Enhanced Photoelectrochemical CO 2 Reduction under Visible Light. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qingmei Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yanfang Zhang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Keke Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Weixin Qiu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Long Chen
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jie Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Wenzhang Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, 410083, China
| |
Collapse
|
26
|
Zhang T, Zhang Z, Luo D, Xie T, Zheng WT, Hu Z, Yang RT. Photothermal Synergism on Pd/TiO 2 Catalysts with Varied TiO 2 Crystalline Phases for NO x Removal via H 2-SCR: A Transient DRIFTS Study. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Zhang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhenyu Zhang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Decun Luo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Tao Xie
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wen-Tao Zheng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Zhun Hu
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ralph T. Yang
- Department of Chemical Engineering, University of Michigan, 3074 H.H. Dow, 2300 Hayward Street, Ann Arbor, Michigan 48109-2136, United States
| |
Collapse
|
27
|
Nguyen P, Dao TBN, Tran TT, Tran NAT, Nguyen TA, Phan TDL, Nguyen LP, Dang VQ, Nguyen TM, Dang NN. Electrocatalytic CO 2 Reduction by [Re(CO) 3Cl(3-(pyridin-2-yl)-5-phenyl-1,2,4-triazole)] and [Re(CO) 3Cl(3-(2-pyridyl)-1,2,4-triazole)]. ACS OMEGA 2022; 7:34089-34097. [PMID: 36188295 PMCID: PMC9520745 DOI: 10.1021/acsomega.2c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The exploration of novel electrocatalysts for CO2 reduction is necessary to overcome global warming and the depletion of fossil fuels. In the current study, the electrocatalytic CO2 reduction of [Re(CO)3Cl(N-N)], where N-N represents 3-(2-pyridyl)-1,2,4-triazole (Hpy), 3-(pyridin-2-yl)-5-phenyl-l,2,4-triazole (Hph), and 2,2'-bipyridine-4,4' dicarboxylic acidic (bpy-COOH) ligands, was investigated. In CO2-saturated electrolytes, cyclic voltammograms showed an enhancement of the current at the second reduction wave for all complexes. In the presence of triethanolamine (TEOA), the currents of Re(Hpy), Re(Hph), and Re(bpy-COOH) enhanced significantly by approximately 4-, 2-, and 5-fold at peak potentials of -1.60, -150, and -1.69 VAg/Ag+, respectively (in comparison to without TEOA). The reduction potential of Re(Hph) was less negative than those of Re(Hpy) and Re(COOH), which was suggested to cause its least efficiency for CO2 reduction. Chronoamperometry measurements showed the stability of the cathodic current at the second reduction wave for at least 300 s, and Re(COOH) was the most stable in the CO2-catalyzed reduction. The appearance and disappearance of the absorption band in the UV/vis spectra indicated the reaction of the catalyst with molecular CO2 and its conversion to new species, which were proposed to be Re-DMF + and Re-TEOA and were supposed to react with CO2 molecules. The CO2 molecules were claimed to be captured and inserted into the oxygen bond of Re-TEOA, resulting in the enhancement of the CO2 reduction efficiency. The results indicate a new way of using these complexes in electrocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Phuong
N. Nguyen
- Institute
of Applied Materials Science, Vietnam Academy of Science and Technology
(VAST), 29TL Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate
University of Science and Technology, VAST, 18 Hoang Quoc Viet Street, Cau
Giay, Ha Noi 100000, Vietnam
| | - Thi-Bich-Ngoc Dao
- Future
Materials & Devices Lab., Institute of Fundamental and Applied
Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- The
Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang 550000, Vietnam
| | - Trang T. Tran
- Institute
of Applied Materials Science, Vietnam Academy of Science and Technology
(VAST), 29TL Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Department
Materials Science and Technology, University
of Science, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
| | - Ngoc-Anh T. Tran
- Institute
of Applied Materials Science, Vietnam Academy of Science and Technology
(VAST), 29TL Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Department
Materials Science and Technology, University
of Science, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
| | - Tu A. Nguyen
- Institute
of Applied Materials Science, Vietnam Academy of Science and Technology
(VAST), 29TL Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Department
Materials Science and Technology, University
of Science, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
| | - Thao-Dang L. Phan
- Institute
of Applied Materials Science, Vietnam Academy of Science and Technology
(VAST), 29TL Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Department
Materials Science and Technology, University
of Science, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
| | - Loc P. Nguyen
- Institute
of Applied Materials Science, Vietnam Academy of Science and Technology
(VAST), 29TL Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Department
Materials Science and Technology, University
of Science, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
| | - Vinh Q. Dang
- Department
Materials Science and Technology, University
of Science, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Tuan M. Nguyen
- Institute
of Applied Materials Science, Vietnam Academy of Science and Technology
(VAST), 29TL Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate
University of Science and Technology, VAST, 18 Hoang Quoc Viet Street, Cau
Giay, Ha Noi 100000, Vietnam
| | - Nam N. Dang
- Future
Materials & Devices Lab., Institute of Fundamental and Applied
Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- The
Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang 550000, Vietnam
| |
Collapse
|
28
|
Tang B, Xiao FX. An Overview of Solar-Driven Photoelectrochemical CO 2 Conversion to Chemical Fuels. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Tang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, People’s Republic of China
| |
Collapse
|
29
|
Dong WJ, Zhou P, Xiao Y, Navid IA, Lee JL, Mi Z. Silver Halide Catalysts on GaN Nanowires/Si Heterojunction Photocathodes for CO2 Reduction to Syngas at High Current Density. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wan Jae Dong
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Peng Zhou
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Yixin Xiao
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Ishtiaque Ahmed Navid
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Jong-Lam Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Zetian Mi
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
30
|
Zhang T, Han X, Nguyen NT, Yang L, Zhou X. TiO2-based photocatalysts for CO2 reduction and solar fuel generation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64045-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|