1
|
Zhao R, Li B, Chen S, Zhang B, Chen J, Sun J, Ma X. Intertwined role of mechanism identification by DFT-XAFS and engineering considerations in the evolution of P adsorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174159. [PMID: 38909797 DOI: 10.1016/j.scitotenv.2024.174159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Adsorption method exhibits promising potential in effectively removal of phosphate from wastewater, yet it faces tremendous challenges in practical application. Limited comprehension of adsorption mechanisms and the lack of evaluation method for scaling up application are the two main obstacles. To fully realize the practical application of P adsorbents, we reviewed advanced tools, including density functional theory (DFT) and/or X-ray absorption fine structure (XAFS) to elucidate mechanisms, underscored the significance of thermodynamics and kinetics in engineering design, and proposed strategies for regenerating and reusing P adsorbents. Specifically, we delved into the utilization of DFT and XAFS to gain insights into adsorption mechanisms, focusing on active site verification and molecular interaction configurations. Additionally, we explored precise calculation methods for adsorption thermodynamics and adsorption kinetics, encompassing thermodynamic equilibrium constants, reactor selection, and the regeneration, recovery, and disposal of P adsorbents. Our comprehensive review aims to serve as a guiding light in advancing the development of highly efficient P adsorbents for engineering applications.
Collapse
Affiliation(s)
- Ruining Zhao
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Benhang Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Siyuan Chen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Boxuan Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiale Chen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiahe Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
2
|
Bérard R, Sassoye C, Terrisse H, Bertoncini P, Humbert B, Cassaignon S, Le Caër S. Effect of Crystalline Phase and Facet Nature on the Adsorption of Phosphate Species onto TiO 2 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16258-16271. [PMID: 39039729 DOI: 10.1021/acs.langmuir.4c01447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The current use of TiO2 nanoparticles raises questions about their impact on our health. Cells interact with these nanoparticles via the phospholipid membrane and, in particular, the phosphate head. This highlights the significance of understanding the interaction between phosphates and nanoparticles possessing distinct crystalline structures, specifically anatase and rutile. It is crucial to determine whether this adsorption varies based on the exposed facet(s). Consequently, various nanoparticles of anatase and rutile TiO2, characterized by well-defined morphologies, were synthesized. In the case of the anatase samples, bipyramids, needles, and cubes were obtained. For the rutile samples, all exhibited a needle-like shape, featuring {110} facets along the long direction of the needles and facets {111} on the upper and lower parts. Phosphate adsorption experiments carried out at pH 2 revealed that the maximum adsorption was relatively consistent across all samples, averaging around 1.5 phosphate·nm-2 in all cases. Experiments using infrared spectroscopy on dried TiO2 powders showed that phosphates were chemisorbed on the surfaces and that the mode of adsorption depended on the crystalline phase and the nature of the facet: the anatase phase favors bidentate adsorption more than the rutile crystalline phase.
Collapse
Affiliation(s)
- Rémi Bérard
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette Cedex, France
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Capucine Sassoye
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Hélène Terrisse
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, UMR 6502, 2 rue de la Houssinière, 44000 Nantes, France
| | - Patricia Bertoncini
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, UMR 6502, 2 rue de la Houssinière, 44000 Nantes, France
| | - Bernard Humbert
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, UMR 6502, 2 rue de la Houssinière, 44000 Nantes, France
| | - Sophie Cassaignon
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Sophie Le Caër
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette Cedex, France
| |
Collapse
|
3
|
Wang ZW, Xiao MY, Tang JF, Li MQ, Yin XY, Wang T, Zhu YZ, Pang DW, Wang HF. Surface engineering of Al 2O 3 nanotubes by ureasolysis method for activating persulfate degradation of antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131844. [PMID: 37327612 DOI: 10.1016/j.jhazmat.2023.131844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Though ecofriendly, pure Al2O3 has never been used for activation of peroxodisulfate (PDS) to degrade pollutants. We report the fabrication of Al2O3 nanotubes by ureasolysis method for efficient activating PDS degradation of antibiotics. The fast ureasolysis in aqueous AlCl3 solution produces NH4Al(OH)2CO3 nanotubes, which are calcined to porous Al2O3 nanotubes, and the release of ammonia and carbon dioxide engineers the surface features of large surface area, numerous acidic-basic sites and suitable Zeta potentials. The synergy of these features facilitates the adsorption of the typical antibiotics ciprofloxacin and PDS activation, which is proved by experiment results and density functional theory simulation. The proposed Al2O3 nanotubes can catalyze 92-96% degradation of 10 ppm ciprofloxacin within 40 min, with chemical oxygen demand removal of 65-66% in aqueous, and 40-47% in whole including aqueous and catalysts. Ciprofloxacin at high concentration, other fluoroquinolones and tetracycline can also be effectively degraded. These data demonstrate the Al2O3 nanotubes prepared by the nature-inspired ureasolysis method has unique features and great potentials for antibiotics degradation.
Collapse
Affiliation(s)
- Zheng-Wu Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mei-Yun Xiao
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun-Feng Tang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ming-Qian Li
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xia-Yin Yin
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Zhou Zhu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China; State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
| | - Dai-Wen Pang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
| | - He-Fang Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China.
| |
Collapse
|
4
|
Wu G, Liu G, Li X, Peng Z, Zhou Q, Qi T. Enhanced phosphate removal with fine activated alumina synthesized from a sodium aluminate solution: performance and mechanism. RSC Adv 2022; 12:4562-4571. [PMID: 35425491 PMCID: PMC8981406 DOI: 10.1039/d1ra08474g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Fine activated alumina (FAA) acting as an adsorbent for phosphate was synthesized from an industrial sodium aluminate solution based on phase evolution from Al(OH)3 and NH4Al(OH)2CO3. This material was obtained in the form of γ-Al2O3 with an open mesoporous structure and a specific surface area of 648.02 m2 g-1. The phosphate adsorption capacity of the FAA gradually increased with increases in phosphate concentration or contact time. The maximum adsorption capacity was 261.66 mg g-1 when phosphate was present as H2PO4 - at a pH of 5.0. A removal efficiency of over 96% was achieved in a 50 mg L-1 phosphate solution. The adsorption of phosphate anions could be explained using non-linear Langmuir or Freundlich isotherm models and a pseudo-second-order kinetic model. Tetra-coordinate AlO4 sites acting as Lewis acids resulted in some chemisorption, while (O) n Al(OH)2 + (n = 4, 5, 6) Brønsted acid groups generated by the protonation of AlO4 or AlO6 sites in the FAA led to physisorption. Analyses of aluminum-oxygen coordination units using Fourier transform infrared and X-ray photoelectron spectroscopy demonstrated that physisorption was predominant. Minimal chemisorption was also verified by the significant desorption rate observed in dilute NaOH solutions and the high performance of the regenerated FAA. The high specific surface area, many open mesopores and numerous highly active tetra-coordinate AlO4 sites on the FAA all synergistically contributed to its exceptional adsorption capacity.
Collapse
Affiliation(s)
- Guoyu Wu
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
- Changchun Gold Research Institute Co., Ltd Changchun 130012 Jilin China
| | - Guihua Liu
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
| | - Xiaobin Li
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
| | - Zhihong Peng
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
| | - Qiusheng Zhou
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
| | - Tiangui Qi
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
| |
Collapse
|
5
|
Pigeon T, Chizallet C, Raybaud P. Revisiting γ-alumina surface models through the topotactic transformation of boehmite surfaces. J Catal 2022. [DOI: 10.1016/j.jcat.2021.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|