1
|
Ren Y, Cheng Z, Cheng L, Liu Y, Li M, Yuan T, Shen Z. Theoretical calculation on degradation mechanism of novel copolyesters under CALB enzyme. J Environ Sci (China) 2025; 149:242-253. [PMID: 39181639 DOI: 10.1016/j.jes.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/13/2023] [Accepted: 12/23/2023] [Indexed: 08/27/2024]
Abstract
Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions. Notably, the first step of the hydrolysis is identified as the rate-determining step. Moreover, by introducing single-point mutations to expand the substrate entrance tunnel, the catalytic distance of the first acylation step decreases. Additionally, energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme's active site. This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme's active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB.
Collapse
Affiliation(s)
- Yuanyang Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiwen Cheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Luwei Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yawei Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China.
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Wang Y, Liu Y. Computational Insights into the Non-Heme Diiron Alkane Monooxygenase Enzyme AlkB: Electronic Structures, Dioxygen Activation, and Hydroxylation Mechanism of Liquid Alkanes. Inorg Chem 2024; 63:17056-17066. [PMID: 39238331 DOI: 10.1021/acs.inorgchem.4c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Alkane monooxygenase (AlkB) is a membrane-spanning metalloenzyme that catalyzes the terminal hydroxylation of straight-chain alkanes involved in the microbially mediated degradation of liquid alkanes. According to the cryoEM structures, AlkB features a unique multihistidine ligand coordination environment with a long Fe-Fe distance in its active center. Up to now, how AlkB employs the diiron center to activate dioxygen and which species is responsible for triggering the hydroxylation are still elusive. In this work, we constructed computational models and performed quantum mechanics/molecular mechanics (QM/MM) calculations to illuminate the electronic characteristics of the diiron active center and how AlkB carries out the terminal hydroxylation. Our calculations revealed that the spin-spin interaction between two irons is rather weak. The dioxygen may ligate to either the Fe1 or Fe2 atom and prefers to act as a linker to increase the spin-spin interaction of two irons, facilitating the dioxygen cleavage to generate the highly reactive Fe(IV)═O. Thus, AlkB employs Fe(IV)═O to trigger the hydrogen abstraction. In addition, the previously suggested mechanism that AlkB uses both the dioxygen and Fe-coordinated water to perform hydroxylation was calculated to be unlikely. Besides, our results indicate that AlkB cannot use the Fe-coordinated dioxygen to directly trigger hydrogen abstraction.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
3
|
Kaur R, Frederickson A, Wetmore SD. Elucidation of the catalytic mechanism of a single-metal dependent homing endonuclease using QM and QM/MM approaches: the case study of I- PpoI. Phys Chem Chem Phys 2024; 26:8919-8931. [PMID: 38426850 DOI: 10.1039/d3cp06201e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Homing endonucleases (HEs) are highly specific DNA cleaving enzymes, with I-PpoI having been suggested to use a single metal to accelerate phosphodiester bond cleavage. Although an I-PpoI mechanism has been proposed based on experimental structural data, no consensus has been reached regarding the roles of the metal or key active site amino acids. This study uses QM cluster and QM/MM calculations to provide atomic-level details of the I-PpoI catalytic mechanism. Minimal QM cluster and large-scale QM/MM models demonstrate that the experimentally-proposed pathway involving direct Mg2+ coordination to the substrate coupled with leaving group protonation through a metal-activated water is not feasible due to an inconducive I-PpoI active site alignment. Despite QM cluster models of varying size uncovering a pathway involving leaving group protonation by a metal-activated water, indirect (water-mediated) metal coordination to the substrate is required to afford this pathway, which renders this mechanism energetically infeasible. Instead, QM cluster models reveal that the preferred pathway involves direct Mg2+-O3' coordination to stabilize the charged substrate and assist leaving group departure, while H98 activates the water nucleophile. These calculations also underscore that both catalytic residues that directly interact with the substrate and secondary amino acids that position or stabilize these residues are required for efficient catalysis. QM/MM calculations on the solvated enzyme-DNA complex verify the preferred mechanism, which is fully consistent with experimental kinetic, structural, and mutational data. The fundamental understanding of the I-PpoI mechanism of action, gained from the present work can be used to further explore potential uses of this enzyme in biotechnology and medicine, and direct future computational investigations of other members of the understudied HE family.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
| | - Angela Frederickson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
| |
Collapse
|
4
|
Andino MS, Mora JR, Paz JL, Márquez EA, Perez-Castillo Y, Agüero-Chapin G. Elucidating the Racemization Mechanism of Aliphatic and Aromatic Amino Acids by In Silico Tools. Int J Mol Sci 2023; 24:11877. [PMID: 37569252 PMCID: PMC10418343 DOI: 10.3390/ijms241511877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The racemization of biomolecules in the active site can reduce the biological activity of drugs, and the mechanism involved in this process is still not fully comprehended. The present study investigates the impact of aromaticity on racemization using advanced theoretical techniques based on density functional theory. Calculations were performed at the ωb97xd/6-311++g(d,p) level of theory. A compelling explanation for the observed aromatic stabilization via resonance is put forward, involving a carbanion intermediate. The analysis, employing Hammett's parameters, convincingly supports the presence of a negative charge within the transition state of aromatic compounds. Moreover, the combined utilization of natural bond orbital (NBO) analysis and intrinsic reaction coordinate (IRC) calculations confirms the pronounced stabilization of electron distribution within the carbanion intermediate. To enhance our understanding of the racemization process, a thorough examination of the evolution of NBO charges and Wiberg bond indices (WBIs) at all points along the IRC profile is performed. This approach offers valuable insights into the synchronicity parameters governing the racemization reactions.
Collapse
Affiliation(s)
- Mateo S. Andino
- Department of Chemical Engineering, Universidad San Francisco de Quito USFQ, Diego de Robles s/n y Av. Interoceánica, Quito 170157, Ecuador;
| | - José R. Mora
- Department of Chemical Engineering, Universidad San Francisco de Quito USFQ, Diego de Robles s/n y Av. Interoceánica, Quito 170157, Ecuador;
| | - José L. Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - Edgar A. Márquez
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Exactas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Yunierkis Perez-Castillo
- Bio-Chemoinformatics Research Group and Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito 170504, Ecuador;
| | - Guillermin Agüero-Chapin
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Kaur R, Nikkel DJ, Aboelnga MM, Wetmore SD. The Impact of DFT Functional, Cluster Model Size, and Implicit Solvation on the Structural Description of Single-Metal-Mediated DNA Phosphodiester Bond Cleavage: The Case Study of APE1. J Phys Chem B 2022; 126:10672-10683. [PMID: 36485014 DOI: 10.1021/acs.jpcb.2c06756] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphodiester bond hydrolysis in nucleic acids is a ubiquitous reaction that can be facilitated by enzymes called nucleases, which often use metal ions to achieve catalytic function. While a two-metal-mediated pathway has been well established for many enzymes, there is growing support that some enzymes require only one metal for the catalytic step. Using human apurinic/apyrimidinic endonuclease (APE1) as a prototypical example and cluster models, this study clarifies the impact of DFT functional, cluster model size, and implicit solvation on single-metal-mediated phosphodiester bond cleavage and provides insight into how to efficiently model this chemistry. Initially, a model containing 69 atoms built from a high-resolution X-ray crystal structure is used to explore the reaction pathway mapped by a range of DFT functionals and basis sets, which provides support for the use of standard functionals (M06-2X and B3LYP-D3) to study this reaction. Subsequently, systematically increasing the model size to 185 atoms by including additional amino acids and altering residue truncation points highlights that small models containing only a few amino acids or β carbon truncation points introduce model strains and lead to incorrect metal coordination. Indeed, a model that contains all key residues (general base and acid, residues that stabilize the substrate, and amino acids that maintain the metal coordination) is required for an accurate structural depiction of the one-metal-mediated phosphodiester bond hydrolysis by APE1, which results in 185 atoms. The additional inclusion of the broader enzyme environment through continuum solvation models has negligible effects. The insights gained in the present work can be used to direct future computational studies of other one-metal-dependent nucleases to provide a greater understanding of how nature achieves this difficult chemistry.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Mohamed M Aboelnga
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.,Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
6
|
Xu J, Zhang Y, Han J, Su A, Qiao H, Zhang C, Tang J, Shen X, Sun B, Yu W, Zhai S, Wang X, Wu Y, Su W, Duan H. Providing direction for mechanistic inferences in radical cascade cyclization using Transformer model. Org Chem Front 2022. [DOI: 10.1039/d2qo00188h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Even in modern organic chemistry, predicting or proposing a reaction mechanism and speculating on reaction intermediates remains challenging. For example, it is challenging to predict the regioselectivity of radical attraction...
Collapse
|
7
|
Magalhães RP, Fernandes HS, Sousa SF. The critical role of Asp206 stabilizing residues on the catalytic mechanism of the Ideonella sakaiensis PETase. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02271g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We described the catalytic mechanism of IsPETase, a polyethylene-terephthalate degrading enzyme. The reaction was found to progress in four steps, divided in two events: formation of the first transition intermediate and hydrolysis of the adduct.
Collapse
Affiliation(s)
- Rita P. Magalhães
- UCIBIO – Applied Molecular Biosciences Unit, BioSIM – Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Henrique S. Fernandes
- UCIBIO – Applied Molecular Biosciences Unit, BioSIM – Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Sérgio F. Sousa
- UCIBIO – Applied Molecular Biosciences Unit, BioSIM – Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|