1
|
Gong X, Feng X, Cao J, Wang Y, Zheng X, Yu W, Wang X, Shi S. Hydrogenation of levulinic acid to γ-valerolactone over hydrophobic Ru@HCP catalysts. Chem Commun (Camb) 2023. [PMID: 37999928 DOI: 10.1039/d3cc04405j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
This study introduces an efficient strategy for promoting the synthesis of γ-valerolactone (GVL) via levulinic acid (LA) hydrogenation. A series of hyper-crosslinked porous polymer (HCP) supported Ru catalysts with different monomers were prepared. The wettabilities were controlled by the surface functional groups. The hydrophobic catalysts showed much higher activity than the hydrophilic ones in the hydrogenation of LA to GVL, highly possible due to the substrate enrichment. Further insight showed that the reaction proceeded through the 4-HVA route. These results illustrated the importance of surface wettability in bio-based molecule upgrading, which is beneficial for catalyst design.
Collapse
Affiliation(s)
- Xinbin Gong
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China.
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Xiao Feng
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieqi Cao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinwei Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Zheng
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China.
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Weiqiang Yu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Xinhong Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Song Shi
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
2
|
Tang J, Bai JF, Zheng J, Li S, Jiang ZJ, Chen J, Gao K, Gao Z. B(C 6F 5) 3-Catalyzed Intramolecular Hydroalkoxylation Deuteration Reactions of Unactivated Alkynyl Alcohols. Org Lett 2023; 25:6891-6896. [PMID: 37735994 DOI: 10.1021/acs.orglett.3c02592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Using D2O as a deuterium source, a method for the deuteration of intra- and extra-cyclic methylene has been developed for cyclic ethers with moderate yield and excellent deuterium incorporation. This transformation features superb functional group tolerance in a wide range of alkynols. Notably, the critical factor to achieve high deuterium incorporation is determined by the hydrogen isotope exchange reaction of an unstable oxonium ion. This novel methodology provides an efficient and concise synthetic route to a number of valuable deuterated cyclic ethers that are often difficult to prepare with other methods.
Collapse
Affiliation(s)
- Jianbo Tang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jian-Fei Bai
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Jinfeng Zheng
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Shuangshuang Li
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Jia Chen
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhanghua Gao
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, People's Republic of China
| |
Collapse
|
3
|
Qu R, Junge K, Beller M. Hydrogenation of Carboxylic Acids, Esters, and Related Compounds over Heterogeneous Catalysts: A Step toward Sustainable and Carbon-Neutral Processes. Chem Rev 2023; 123:1103-1165. [PMID: 36602203 DOI: 10.1021/acs.chemrev.2c00550] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The catalytic hydrogenation of esters and carboxylic acids represents a fundamental and important class of organic transformations, which is widely applied in energy, environmental, agricultural, and pharmaceutical industries. Due to the low reactivity of the carbonyl group in carboxylic acids and esters, this type of reaction is, however, rather challenging. Hence, specifically active catalysts are required to achieve a satisfactory yield. Nevertheless, in recent years, remarkable progress has been made on the development of catalysts for this type of reaction, especially heterogeneous catalysts, which are generally dominating in industry. Here in this review, we discuss the recent breakthroughs as well as milestone achievements for the hydrogenation of industrially important carboxylic acids and esters utilizing heterogeneous catalysts. In addition, related catalytic hydrogenations that are considered of importance for the development of cleaner energy technologies and a circular chemical industry will be discussed in detail. Special attention is paid to the insights into the structure-activity relationship, which will help the readers to develop rational design strategies for the synthesis of more efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Ruiyang Qu
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
4
|
Antunes MM, Silva AF, Fernandes A, Ribeiro F, Neves P, Pillinger M, Valente AA. Micro/mesoporous LTL derived materials for catalytic transfer hydrogenation and acid reactions of bio-based levulinic acid and furanics. Front Chem 2022; 10:1006981. [PMID: 36247668 PMCID: PMC9558274 DOI: 10.3389/fchem.2022.1006981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
The biomass-derived platform chemicals furfural and 5-(hydroxymethyl)furfural (HMF) may be converted to α-angelica lactone (AnL) and levulinic acid (LA). Presently, LA (synthesized from carbohydrates) has several multinational market players. Attractive biobased oxygenated fuel additives, solvents, etc., may be produced from AnL and LA via acid and reduction chemistry, namely alkyl levulinates and γ-valerolactone (GVL). In this work, hierarchical hafnium-containing multifunctional Linde type L (LTL) related zeotypes were prepared via top-down strategies, for the chemical valorization of LA, AnL and HMF via integrated catalytic transfer hydrogenation (CTH) and acid reactions in alcohol medium. This is the first report of CTH applications (in general) of LTL related materials. The influence of the post-synthesis treatments/conditions (desilication, dealumination, solid-state impregnation of Hf or Zr) on the material properties and catalytic performances was studied. AnL and LA were converted to 2-butyl levulinate (2BL) and GVL in high total yields of up to ca. 100%, at 200°C, and GVL/2BL molar ratios up to 10. HMF conversion gave mainly the furanic ethers 5-(sec-butoxymethyl)furfural and 2,5-bis(sec-butoxymethyl)furan (up to 63% total yield, in 2-butanol at 200°C/24 h). Mechanistic, reaction kinetics and material characterization studies indicated that the catalytic results depend on a complex interplay of different factors (material properties, type of substrate). The recovered-reused solids performed steadily.
Collapse
Affiliation(s)
- Margarida M. Antunes
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- *Correspondence: Margarida M. Antunes, ; Anabela A. Valente,
| | - Andreia F. Silva
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Auguste Fernandes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa Ribeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Patrícia Neves
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Martyn Pillinger
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Anabela A. Valente
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- *Correspondence: Margarida M. Antunes, ; Anabela A. Valente,
| |
Collapse
|
5
|
Jurado-Vázquez T, Rosaldo E, Arévalo A, Garcia JJ. Levulinic acid hydrogenation with homogeneous Cu(I) catalyst. ChemCatChem 2022. [DOI: 10.1002/cctc.202200628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tamara Jurado-Vázquez
- UNAM Facultad de Quimica: Universidad Nacional Autonoma de Mexico Facultad de Quimica Quimica Inorganica MEXICO
| | - Efrén Rosaldo
- UNAM Facultad de Quimica: Universidad Nacional Autonoma de Mexico Facultad de Quimica Quimica Inorganica MEXICO
| | - Alma Arévalo
- UNAM Facultad de Quimica: Universidad Nacional Autonoma de Mexico Facultad de Quimica Quimica Inorganica MEXICO
| | - Juventino J Garcia
- Universidad Nacional Autonoma de Mexico Facultad de Quimica Circuito InteriorCiudad Universitaria 4510 Mexico City MEXICO
| |
Collapse
|
6
|
Deng CQ, Liu J, Luo JH, Gan LJ, Deng J, Fu Y. Proton-Promoted Nickel-Catalyzed Asymmetric Hydrogenation of Aliphatic Ketoacids. Angew Chem Int Ed Engl 2022; 61:e202115983. [PMID: 35099846 DOI: 10.1002/anie.202115983] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/26/2022]
Abstract
A robust and highly active homogeneous chiral nickel-phosphine complex for the asymmetric hydrogenation of aliphatic γ- and δ-ketoacids has been discovered. The hydrogenation could proceed smoothly in the presence of 0.0133 mol% catalyst loading (S/C=7500). The coordination chemistry and catalytic behavior of Ni(OTf)2 with (S,S)-Ph-BPE were explored by 1 H NMR and HRMS. The mechanistic studies revealed that a proton promoted the activation of the substrate C=O bond and controlled the stereoselectivity through hydrogen bonds. A series of chiral γ- and δ-alkyl substituted lactones were obtained in high yields with excellent enantioselectivities (up to 98 % yield and 99 % ee). In addition, this catalytic system also demonstrated that levulinic acid produced from a biomass feedstock was converted into chiral γ-valerolactone without loss of ee value.
Collapse
Affiliation(s)
- Chen-Qiang Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jia-Hao Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li-Jin Gan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
7
|
Deng C, Liu J, Luo J, Gan L, Deng J, Fu Y. Proton‐Promoted Nickel‐Catalyzed Asymmetric Hydrogenation of Aliphatic Ketoacids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chen‐Qiang Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Jiao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Jia‐Hao Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Li‐Jin Gan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Jin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
8
|
Bunrit A, Butburee T, Liu M, Huang Z, Meeporn K, Phawa C, Zhang J, Kuboon S, Liu H, Faungnawakij K, Wang F. Photo–Thermo-Dual Catalysis of Levulinic Acid and Levulinate Ester to γ-Valerolactone. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Anon Bunrit
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Energy College (EC), Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Teera Butburee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Meijiang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Energy College (EC), Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Zhipeng Huang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Energy College (EC), Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Keerati Meeporn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Chaiyasit Phawa
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Jian Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Energy College (EC), Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Sanchai Kuboon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Huifang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Energy College (EC), Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Energy College (EC), Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|