1
|
Wang B, Liang RX, Shen ZL, Jia YX. Copper-catalyzed intramolecular dearomative aza-Wacker reaction of indole. Chem Commun (Camb) 2024; 60:3858-3861. [PMID: 38497365 DOI: 10.1039/d3cc06217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Herein, we describe a copper-catalyzed intramolecular dearomative amination of indoles via a formal aza-Wacker reaction. This protocol provides an efficient method to access aza-polycyclic indoline molecules bearing exocyclic CC bonds in moderate to excellent yields in the presence of molecular oxygen as an oxidant. It is worth noting that indolin-3-ones are achieved when employing C3-non-substituted indoles as substrates.
Collapse
Affiliation(s)
- Bi Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road #18, Hangzhou 310014, China.
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road #18, Hangzhou 310014, China.
| | - Zhen-Lu Shen
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road #18, Hangzhou 310014, China.
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road #18, Hangzhou 310014, China.
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, China
| |
Collapse
|
2
|
Li M, Li J, Zhang Z, Chen L, Ma N, Liu Q, Zhang X, Zhang G. Palladium-catalyzed intramolecular aza-Wacker-type cyclization of vinyl cyclopropanecarboxamides to access conformationally restricted aza[3.1.0]bicycles. RSC Adv 2023; 13:27158-27166. [PMID: 37701284 PMCID: PMC10493647 DOI: 10.1039/d3ra05440c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
A palladium(ii)-catalyzed intramolecular oxidative aza-Wacker-type reaction of vinyl cyclopropanecarboxamides to access a series of conformationally restricted highly substituted aza[3.1.0]bicycles is reported. The transformation proceeded through a typical aza-Wacker reaction mechanism to forge a new C-N bond with oxygen as the terminal oxidant. The desired fused heterocycles were obtained in moderate yields. The process is tolerant of a range of functional aryl groups under mild conditions.
Collapse
Affiliation(s)
- Mengjuan Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China +86-373-332-5250
| | - Jingya Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China +86-373-332-5250
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China +86-373-332-5250
| | - Liming Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China +86-373-332-5250
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China +86-373-332-5250
| | - Qingfeng Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China +86-373-332-5250
| | - Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China +86-373-332-5250
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China +86-373-332-5250
| |
Collapse
|
3
|
Zhang CC, Wu HL, Yu XC, Wang LT, Zhou Y, Sun YB, Wei WT. Photoinduced Copper-Catalyzed Aminoalkylation of Amino-Pendant Olefins. Org Lett 2023; 25:5862-5868. [PMID: 37534703 DOI: 10.1021/acs.orglett.3c02119] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The combination of photo and copper catalysts has emerged as a novel paradigm in organic catalysis, which provides access to the acceleration of chemical synthesis. Herein, we describe an aminoalkylation of amino-dependent olefins with maleimides through a cooperative photo/copper catalytic system. In this report, the strategy allows the generation of a broad complex of functionalized nitrogenous molecules including oxazolidinones, 2-pyrrolidones, imidazolidinones, thiazolidinones, pyridines, and piperidines in the absence of an external photosensitizer and base. The approach is achieved through a photoinduced Cu(I)/Cu(II)/Cu(III) complex species of nitrogen nucleophiles, intermolecular radical addition, and hydrogen atom transfer (HAT) processes. The plausible mechanism is investigated by a series of control experiments and theoretical tests, including radical scavenging experiments, deuterium labeling experiments, ultraviolet-visible absorption, and cyclic voltammetry (CV) tests.
Collapse
Affiliation(s)
- Can-Can Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Hong-Li Wu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Xuan-Chi Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Ling-Tao Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yu Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yong-Bin Sun
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang 310024, P. R. China
| |
Collapse
|
4
|
Jia X, Tian X, Zhuang D, Wan Z, Gu J, Li Z. Copper-Catalyzed Intermolecular Cross-dehydrogenative C-N Coupling at Room Temperature via Remote Activating Group Enabled Radical Relay Strategy. Org Lett 2023; 25:2012-2017. [PMID: 36944029 DOI: 10.1021/acs.orglett.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Employing N-fluorobenzenesulfonimide (NFSI) as a nitrogen-centered radical (NCR) precursor, an intermolecular C(sp2)-N coupling on heteroarenes or substituted benzenes with remote activated aniline derivatives via copper catalyzed N-N radical relay strategy at room temperature is developed. Good to excellent yields are acquired, and no ligand or additive is required. Reaction scope investigation and preliminary mechanistic studies demonstrate that the remote activating strategy and delicate control on the reactivities of active NCR species are essential to guarantee satisfactory chemo- and site-selectivity.
Collapse
Affiliation(s)
- Xiaoqi Jia
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Xiangmin Tian
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Dailin Zhuang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Zhenyang Wan
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jiahao Gu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
5
|
Matsuoka J, Fujimoto Y, Miyawaki A, Yamamoto Y. Phosphazene Base-Catalyzed Intramolecular Hydroamidation of Alkenes with Amides. Org Lett 2022; 24:9447-9451. [PMID: 36534049 DOI: 10.1021/acs.orglett.2c03870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A method for the synthesis of cyclic amides via phosphazene base-catalyzed intramolecular hydroamidation of amide alkenes was developed. The reaction using a catalytic amount of P4-base had a good functional group tolerance and a broad substrate scope and could also be used to synthesize lactam, cyclic urea, and oxazolidinone compounds. This catalytic system was expanded to a one-pot intramolecular hydroamidation and intermolecular hydroalkylation. Deuterium labeling and radical trapping experiments provided mechanistic insights into the catalytic cycle of the hydroamidation reaction.
Collapse
Affiliation(s)
- Junpei Matsuoka
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe 610-0395, Japan
| | - Yumika Fujimoto
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe 610-0395, Japan
| | - Akari Miyawaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe 610-0395, Japan
| | - Yasutomo Yamamoto
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe 610-0395, Japan
| |
Collapse
|
6
|
Pan YZ, Xia Q, Zhu JX, Wang YC, Liang Y, Wang H, Tang HT, Pan YM. Electrochemically Mediated Carboxylative Cyclization of Allylic/Homoallylic Amines with CO 2 at Ambient Pressure. Org Lett 2022; 24:8239-8243. [DOI: 10.1021/acs.orglett.2c03377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong-Zhou Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Qiang Xia
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People’s Republic of China
| | - Jin-Xiu Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Ying-Chun Wang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Ying Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People’s Republic of China
| | - Hengshan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| |
Collapse
|
7
|
Wang F, Chen J, Jia X, Zhuang D, Wan Z, Ma L, Li Z. Direct Benzylic C(sp 3)-O Coupling with Alcohol via Site-Selective C(sp 3)-H Cleavage at Room Temperature through a Remote Directing Group-Enabled Radical Relay Strategy. J Org Chem 2022; 87:10698-10709. [PMID: 35930467 DOI: 10.1021/acs.joc.2c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Employing a low loading of the terminal oxidant, a remote directing group-enabled radical relay strategy for benzylic direct C(sp3)-H alkoxylation with alcohols at room temperature is developed. Satisfactory site-selectivity, chemoselectivity, and reaction scope are achieved under simple and mild conditions, and no ligand or additive is required. Mechanistic studies, ready conversions of the directing group, and other benzylic functionalizations currently under development in our laboratory further indicate the promising potentials of this remote directing group-enabled radical relay strategy.
Collapse
Affiliation(s)
- Fang Wang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 61006, P. R. China
| | - Jiaming Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 61006, P. R. China
| | - Xiaoqi Jia
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 61006, P. R. China
| | - Dailin Zhuang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 61006, P. R. China
| | - Zhenyang Wan
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 61006, P. R. China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 61006, P. R. China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 61006, P. R. China
| |
Collapse
|
8
|
Acceptorless dehydrogenative amination of alkenes for the synthesis of N-heterocycles. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Chen J, Wang F, Huang Y, Jia X, Zhuang D, Wan Z, Li Z. Remote carbamate-directed site-selective benzylic C–H oxygenation via synergistic copper/TEMPO catalysis at room temperature. Org Chem Front 2022. [DOI: 10.1039/d2qo00435f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A benzylic C(sp3)–H oxygenation with water at room temperature through a ligand- and additive-free synergistic copper/TEMPO-catalysed radical relay pathway and a remote directing strategy is described.
Collapse
Affiliation(s)
- Jiaming Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Fang Wang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Huang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Engineering Experimental Teaching Centre, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoqi Jia
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Dailin Zhuang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenyang Wan
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|