1
|
Bai B, Ye Y, Jiao F, Xiao J, Pan Y, Cai Z, Chen M, Pan X, Bao X. Surface Structure Dependent Activation of Hydrogen over Metal Oxides during Syngas Conversion. J Am Chem Soc 2024; 146:34909-34915. [PMID: 39620729 DOI: 10.1021/jacs.4c14395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Despite the extensive studies on the adsorption and activation of hydrogen over metal oxides, it remains a challenge to investigate the structure-dependent activation of hydrogen and its selectivity mechanism in hydrogenation reactions. Herein we take spinel and solid solution MnGaOx with a similar bulk chemical composition and study the hydrogen activation mechanism and reactivity in syngas conversion. The results show that MnGaOx-Solid Solution (MnGaOx-SS) is a typical Mn-doped hexagonal close-packed (HCP) Ga2O3 with a Ga-rich surface. Upon exposure to hydrogen, Ga-H and O-H species are simultaneously generated. Ga-H species are highly active but unselective in CO activation, forming CHxO, and ethylene hydrogenation, forming ethane. In contrast, MnGaOx-Spinel is a face-centered-cubic (FCC) spinel phase featuring a Mn-rich surface, thus effectively suppressing the formation of Ga-H species. Interestingly, only part of the O-H species are active for CO activation while the O-H species are inert for olefin hydrogenation over MnGaOx-Spinel. Therefore, MnGaOx-Spinel exhibits a higher activity and higher light-olefin selectivity than MnGaOx-SS in combination with SAPO-18 during syngas conversion. These fundamental understandings are essential to guide the design and further optimization of metal oxide catalysts for selectivity control in hydrogenations.
Collapse
Affiliation(s)
- Bing Bai
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihan Ye
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Jiao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Pan
- University of Science and Technology of China, Hefei, 230026, China
| | - Zehua Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mingshu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiulian Pan
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Xiong W, Ding J, Wang D, Huang W. Cu Facet-Dependent Elementary Surface Reaction Kinetics of CO 2 Hydrogenation to Methanol Catalyzed by ZrO 2/Cu Inverse Catalysts. J Phys Chem Lett 2023; 14:7229-7234. [PMID: 37552579 DOI: 10.1021/acs.jpclett.3c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
ZrO2-Cu-based catalysts are active in catalyzing the hydrogenation of CO2 to methanol. Herein, we report Cu facet effects on the catalytic performance of ZrO2/Cu inverse catalysts in CO2 hydrogenation to methanol using various Cu nanocrystals with well-defined Cu morphologies and facets. The ZrO2-Cu interface is the active site, in which the ZrO2-Cu{100} and ZrO2-Cu{110} interfaces exhibit similar apparent activation energies of ∼42.6 kJ/mol, smaller than that of the ZrO2-Cu{111} interface (∼64.5 kJ/mol). Temporal in situ diffuse reflectance infrared Fourier transform spectroscopy characterization results identify the bridge formate hydrogenation as the rate-determining elementary surface reaction under typical reaction temperatures, whose activation energy is similar at the ZrO2-Cu{100} (∼36.3 kJ/mol) and ZrO2-Cu{110} (∼40.5 kJ/mol) interfaces and larger at the ZrO2-Cu{111} interface (∼54.5 kJ/mol). This fundamental understanding suggests Cu facet engineering as a promising strategy to improve the catalytic performance of ZrO2/Cu inverse catalysts for CO2 hydrogenation to methanol.
Collapse
Affiliation(s)
- Wei Xiong
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jieqiong Ding
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dongdong Wang
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Weixin Huang
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
3
|
Dong C, Mu R, Li R, Wang J, Song T, Qu Z, Fu Q, Bao X. Disentangling Local Interfacial Confinement and Remote Spillover Effects in Oxide-Oxide Interactions. J Am Chem Soc 2023; 145:17056-17065. [PMID: 37493082 DOI: 10.1021/jacs.3c02483] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Supported oxides are widely used in many important catalytic reactions, in which the interaction between the oxide catalyst and oxide support is critical but still remains elusive. Here, we construct a chemically bonded oxide-oxide interface by chemical deposition of Co3O4 onto ZnO powder (Co3O4/ZnO), in which complete reduction of Co3O4 to Co0 has been strongly impeded. It was revealed that the local interfacial confinement effect between Co oxide and the ZnO support helps to maintain a metastable CoOx state in CO2 hydrogenation reaction, producing 93% CO. In contrast, a physically contacted oxide-oxide interface was formed by mechanically mixing Co3O4 and ZnO powders (Co3O4-ZnO), in which reduction of Co3O4 to Co0 was significantly promoted, demonstrating a quick increase of CO2 conversion to 45% and a high selectivity toward CH4 (92%) in the CO2 hydrogenation reaction. This interface effect is ascribed to unusual remote spillover of dissociated hydrogen species from ZnO nanoparticles to the neighboring Co oxide nanoparticles. This work clearly illustrates the equally important but opposite local and remote effects at the oxide-oxide interfaces. The distinct oxide-oxide interactions contribute to many diverse interface phenomena in oxide-oxide catalytic systems.
Collapse
Affiliation(s)
- Cui Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tongyuan Song
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenping Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Synergistic interplay of dual active sites on spinel ZnAl2O4 for syngas conversion. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Müller A, Comas-Vives A, Copéret C. Ga and Zn increase the oxygen affinity of Cu-based catalysts for the CO x hydrogenation according to ab initio atomistic thermodynamics. Chem Sci 2022; 13:13442-13458. [PMID: 36507169 PMCID: PMC9685501 DOI: 10.1039/d2sc03107h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022] Open
Abstract
The direct hydrogenation of CO or CO2 to methanol, a highly vivid research area in the context of sustainable development, is typically carried out with Cu-based catalysts. Specific elements (so-called promoters) improve the catalytic performance of these systems under a broad range of reaction conditions (from pure CO to pure CO2). Some of these promoters, such as Ga and Zn, can alloy with Cu and their role remains a matter of debate. In that context, we used periodic DFT calculations on slab models and ab initio thermodynamics to evaluate both metal alloying and surface formation by considering multiple surface facets, different promoter concentrations and spatial distributions as well as adsorption of several species (O*, H*, CO* and ) for different gas phase compositions. Both Ga and Zn form an fcc-alloy with Cu due to the stronger interaction of the promoters with Cu than with themselves. While the Cu-Ga-alloy is more stable than the Cu-Zn-alloy at low promoter concentrations (<25%), further increasing the promoter concentration reverses this trend, due to the unfavoured Ga-Ga-interactions. Under CO2 hydrogenation conditions, a substantial amount of O* can adsorb onto the alloy surfaces, resulting in partial dealloying and oxidation of the promoters. Therefore, the CO2 hydrogenation conditions are actually rather oxidising for both Ga and Zn despite the large amount of H2 present in the feedstock. Thus, the growth of a GaO x /ZnO x overlayer is thermodynamically preferred under reaction conditions, enhancing CO2 adsorption, and this effect is more pronounced for the Cu-Ga-system than for the Cu-Zn-system. In contrast, under CO hydrogenation conditions, fully reduced and alloyed surfaces partially covered with H* and CO* are expected, with mixed CO/CO2 hydrogenation conditions resulting in a mixture of reduced and oxidised states. This shows that the active atmosphere tunes the preferred state of the catalyst, influencing the catalytic activity and stability, indicating that the still widespread image of a static catalyst under reaction conditions is insufficient to understand the complex interplay of processes taking place on a catalyst surface under reaction conditions, and that dynamic effects must be considered.
Collapse
Affiliation(s)
- Andreas Müller
- Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland +41 44 633 93 94
| | - Aleix Comas-Vives
- Institute of Materials Chemistry, TU Wien 1060 Vienna Austria
- Departament de Química, Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès Catalonia Spain
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland +41 44 633 93 94
| |
Collapse
|
6
|
Song X, Yang C, Li X, Wang Z, Pei C, Zhao ZJ, Gong J. On the Role of Hydroxyl Groups on Cu/Al 2O 3 in CO 2 Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiwen Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Chengsheng Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xianghong Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Zhongyan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| |
Collapse
|
7
|
Bahruji H, Abdul Razak S, Mahadi AH, Prasetyoko D, Sholehah NA, Jiao Y. PdZn on ZSM-5 nanoparticles for CO2 hydrogenation to dimethyl ether: comparative in situ analysis with Pd/TiO2 and PdZn/TiO2. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Goud D, Churipard SR, Bagchi D, Singh AK, Riyaz M, Vinod CP, Peter SC. Strain-Enhanced Phase Transformation of Iron Oxide for Higher Alcohol Production from CO 2. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Devender Goud
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sathyapal R. Churipard
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Debabrata Bagchi
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Ashutosh Kumar Singh
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Mohd Riyaz
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - C. P. Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sebastian C. Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
9
|
Matveyeva AN, Omarov SO, Nashchekin AV, Popkov VI, Murzin DY. Catalyst supports based on ZnO-ZnAl 2O 4 nanocomposites with enhanced selectivity and coking resistance in isobutane dehydrogenation. Dalton Trans 2022; 51:12213-12224. [PMID: 35894679 DOI: 10.1039/d2dt02088b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Development of coking resistant supports and catalysts for hydrocarbons conversion is challenging, especially when using such acidic materials as alumina. Apparently, this problem can be mitigated by using spinels that are less acidic, being, however, thermally stable. In this study, a series of ZnO-ZnAl2O4 nanocomposites with different ZnO loading were prepared by urotropine-nitrate combustion synthesis to be used as supports for isobutane dehydrogenation catalysts. The nanocomposites were characterized by XRD, SEM, N2-physisorption analysis, EDS, H2-TPR, TPD of NH3 and tested in isobutane dehydrogenation. Spinels with small amounts of ZnO displayed higher acidity and specific surface areas than samples with a higher ZnO content (30-40 mol%). At the same time, the maximum activity and the lowest selectivity to by-products (CH4 and C3H6) after 10 min of the reaction were observed for the nanocomposite containing 20 mol% of ZnO. The obtained nanocomposites have demonstrated better resistance to coking compared to commercial alumina.
Collapse
Affiliation(s)
- Anna N Matveyeva
- Laboratory of Materials and Processes for Hydrogen Energy, Ioffe Institute, Politekhnicheskaya ul. 28, St Petersburg 194021, Russia.
| | - Shamil O Omarov
- Laboratory of Materials and Processes for Hydrogen Energy, Ioffe Institute, Politekhnicheskaya ul. 28, St Petersburg 194021, Russia.
| | - Alexey V Nashchekin
- Federal Joint Research Center "Material science and characterization in advanced technology", Ioffe Institute, Politekhnicheskaya ul. 26, St Petersburg 194021, Russia
| | - Vadim I Popkov
- Laboratory of Materials and Processes for Hydrogen Energy, Ioffe Institute, Politekhnicheskaya ul. 28, St Petersburg 194021, Russia.
| | - Dmitry Yu Murzin
- Laboratory of Industrial Chemistry and Reaction Engineering, Åbo Akademi University, Henriksgatan 2, Turku/Åbo 20500, Finland.
| |
Collapse
|
10
|
Wang L, Zhang T, Yang J, Gong N, Ma Q, Wu Y, Tan Y. Direct Conversion Syngas to Isobutanol over Ce/ZC Catalyst: Effect of Ce Promoter on the Catalytic Performance. ChemCatChem 2022. [DOI: 10.1002/cctc.202101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Liyan Wang
- Institute of Coal Chemistry CAS: Chinese Academy of Sciences Institute of Coal Chemistry State Key Laboratory of Coal Conversion CHINA
| | - Tao Zhang
- Institute of Coal Chemistry CAS: Chinese Academy of Sciences Institute of Coal Chemistry State Key Laboratory of Coal Conversion CHINA
| | - Jiaqian Yang
- Institute of Coal Chemistry CAS: Chinese Academy of Sciences Institute of Coal Chemistry State Key Laboratory of Coal Conversion CHINA
| | - Nana Gong
- Institute of Coal Chemistry CAS: Chinese Academy of Sciences Institute of Coal Chemistry State Key Laboratory of Coal Conversion CHINA
| | - Qingxiang Ma
- Institute of Coal Chemistry CAS: Chinese Academy of Sciences Institute of Coal Chemistry State Key Laboratory of Coal Conversion CHINA
| | - Yingquan Wu
- Institute of Coal Chemistry CAS: Chinese Academy of Sciences Institute of Coal Chemistry State Key Laboratory of Coal Conversion CHINA
| | - Yisheng Tan
- Institute of Coal Chemistry Chinese Academy of Science state key laboratory of coal conversion, institute of coal chemistry taoyuan south road 030000 taiyuan CHINA
| |
Collapse
|
11
|
Hinuma Y, Mine S, Toyao T, Kamachi T, Shimizu KI. Factors determining surface oxygen vacancy formation energy in ternary spinel structure oxides with zinc. Phys Chem Chem Phys 2021; 23:23768-23777. [PMID: 34643190 DOI: 10.1039/d1cp03657b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spinel oxides are an important class of materials for heterogeneous catalysis including photocatalysis and electrocatalysis. The surface O vacancy formation energy (EOvac) is a critical quantity for catalyst performance because the surface of metal oxide catalysts often acts as a reaction site, for example, in the Mars-van Krevelen mechanism. However, experimental evaluation of EOvac is very challenging. We obtained the EOvac for (100), (110), and (111) surfaces of normal zinc-based spinel oxides ZnAl2O4, ZnGa2O4, ZnIn2O4, ZnV2O4, ZnCr2O4, ZnMn2O4, ZnFe2O4, and ZnCo2O4. The most stable surface is (100) for all compounds. The smallest EOvac for a surface is the largest in the (100) surface except for ZnCo2O4. For (100) and (110) surfaces, there is a good correlation, over all spinels, between the smallest EOvac for the surface and bulk formation energy, while the ionization potential correlates well in (111) surfaces. Machine learning over EOvac of all surface sites in all orientations and for all compounds to find the important factors, or descriptors, that decide the EOvac revealed that bulk and surface-dependent descriptors are the most important, namely the bulk formation energy, a Boolean descriptor of whether the surface is (111) or not, and the ionization potential, followed by geometrical descriptors that are different in each O site.
Collapse
Affiliation(s)
- Yoyo Hinuma
- Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda 563-8577, Japan. .,Center for Frontier Science, Chiba University, 1-33 Yayoicho, Inage, Chiba 263-8522, Japan
| | - Shinya Mine
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita, Sapporo, Hokkaido 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita, Sapporo, Hokkaido 001-0021, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Nishigyo, Kyoto 615-8520, Japan
| | - Takashi Kamachi
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Nishigyo, Kyoto 615-8520, Japan.,Department of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, 3-30-1Wajiro-Higashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita, Sapporo, Hokkaido 001-0021, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Nishigyo, Kyoto 615-8520, Japan
| |
Collapse
|