1
|
Wei Z, Knaus T, Damian M, Liu Y, Santana CS, Yan N, Rothenberg G, Mutti FG. Bio-electrocatalytic Alkene Reduction Using Ene-Reductases with Methyl Viologen as Electron Mediator. Chembiochem 2024; 25:e202400458. [PMID: 39037928 DOI: 10.1002/cbic.202400458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Asymmetric hydrogenation of alkene moieties is important for the synthesis of chiral molecules, but achieving high stereoselectivity remains a challenge. Biocatalysis using ene-reductases (EReds) offers a viable solution. However, the need for NAD(P)H cofactors limits large-scale applications. Here, we explored an electrochemical alternative for recycling flavin-containing EReds using methyl viologen as a mediator. For this, we built a bio-electrocatalytic setup with an H-type glass reactor cell, proton exchange membrane, and carbon cloth electrode. Experimental results confirm the mediator's electrochemical reduction and enzymatic consumption. Optimization showed increased product concentration at longer reaction times with better reproducibility within 4-6 h. We tested two enzymes, Pentaerythritol Tetranitrate Reductase (PETNR) and the Thermostable Old Yellow Enzyme (TOYE), using different alkene substrates. TOYE showed higher productivity for the reduction of 2-cyclohexen-1-one (1.20 mM h-1), 2-methyl-2-cyclohexen-1-one (1.40 mM h-1) and 2-methyl-2-pentanal (0.40 mM h-1), with enantiomeric excesses ranging from 11 % to 99 %. PETNR outperformed TOYE in terms of enantioselectivity for the reduction of 2-methyl-2-pentanal (ee 59 % ± 7 % (S)). Notably, TOYE achieved promising results also in reducing ketoisophorone, a challenging substrate, with similar enantiomeric excess compared to published values using NADH.
Collapse
Affiliation(s)
- Zheng Wei
- HIMS-Biocat, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Tanja Knaus
- HIMS-Biocat, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Matteo Damian
- HIMS-Biocat, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Yuxin Liu
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, 14476, Potsdam, Germany
| | - Cássia S Santana
- HIMS-Biocat, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Ning Yan
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Gadi Rothenberg
- HIMS-Biocat, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Francesco G Mutti
- HIMS-Biocat, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Aspacio D, Zhang Y, Cui Y, Luu E, King E, Black WB, Perea S, Zhu Q, Wu Y, Luo R, Siegel JB, Li H. Shifting redox reaction equilibria on demand using an orthogonal redox cofactor. Nat Chem Biol 2024; 20:1535-1546. [PMID: 39138383 DOI: 10.1038/s41589-024-01702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
Nature's two redox cofactors, nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), are held at different reduction potentials, driving catabolism and anabolism in opposite directions. In biomanufacturing, there is a need to flexibly control redox reaction direction decoupled from catabolism and anabolism. We established nicotinamide mononucleotide (NMN+) as a noncanonical cofactor orthogonal to NAD(P)+. Here we present the development of Nox Ortho, a reduced NMN+ (NMNH)-specific oxidase, that completes the toolkit to modulate NMNH:NMN+ ratio together with an NMN+-specific glucose dehydrogenase (GDH Ortho). The design principle discovered from Nox Ortho engineering and modeling is facilely translated onto six different enzymes to create NMN(H)-orthogonal biocatalysts with a consistent ~103-106-fold cofactor specificity switch from NAD(P)+ to NMN+. We assemble these enzymes to produce stereo-pure 2,3-butanediol in cell-free systems and in Escherichia coli, enabled by NMN(H)'s distinct redox ratio firmly set by its designated driving forces, decoupled from both NAD(H) and NADP(H).
Collapse
Affiliation(s)
- Derek Aspacio
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Yulai Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Youtian Cui
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Emma Luu
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - William B Black
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Sean Perea
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Qiang Zhu
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
- Department of Material Science and Engineering, University of California, Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Yongxian Wu
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
- Department of Material Science and Engineering, University of California, Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Ray Luo
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
- Department of Material Science and Engineering, University of California, Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Justin B Siegel
- Genome Center, University of California, Davis, Davis, CA, USA
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Black WB, Perea S, Li H. Design, construction, and application of noncanonical redox cofactor infrastructures. Curr Opin Biotechnol 2023; 84:103019. [PMID: 37939631 DOI: 10.1016/j.copbio.2023.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Controlling the flow of carbon and reducing power in biological systems is a central theme in metabolic engineering. Often, trade-offs in pushing carbon flux through targeted pathways while operating in conditions agreeable to the host are required due to the central pools of the shared native redox cofactors NAD(P)/H. Noncanonical redox cofactors (NRCs) have emerged as promising tools to transform how engineers develop biotransformation systems. These new-to-Nature redox cofactors have been demonstrated to function orthogonally to the endogenous cofactors, support pathway thermodynamics optimization, and achieve product scopes previously difficult to reach due to endogenous pathway crosstalk. This review will discuss the development of NRC infrastructures, comprising NRC pools, cofactor reduction sources, and cofactor oxidation sinks, the (pool-source-sink) infrastructure.
Collapse
Affiliation(s)
- William B Black
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA 92697-3900, United States of America
| | - Sean Perea
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA 92697-3900, United States of America
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA 92697-3900, United States of America; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697-3900, United States of America; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697-3900, United States of America.
| |
Collapse
|
4
|
Zhong W, Li H, Wang Y. Design and Construction of Artificial Biological Systems for One-Carbon Utilization. BIODESIGN RESEARCH 2023; 5:0021. [PMID: 37915992 PMCID: PMC10616972 DOI: 10.34133/bdr.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
The third-generation (3G) biorefinery aims to use microbial cell factories or enzymatic systems to synthesize value-added chemicals from one-carbon (C1) sources, such as CO2, formate, and methanol, fueled by renewable energies like light and electricity. This promising technology represents an important step toward sustainable development, which can help address some of the most pressing environmental challenges faced by modern society. However, to establish processes competitive with the petroleum industry, it is crucial to determine the most viable pathways for C1 utilization and productivity and yield of the target products. In this review, we discuss the progresses that have been made in constructing artificial biological systems for 3G biorefineries in the last 10 years. Specifically, we highlight the representative works on the engineering of artificial autotrophic microorganisms, tandem enzymatic systems, and chemo-bio hybrid systems for C1 utilization. We also prospect the revolutionary impact of these developments on biotechnology. By harnessing the power of 3G biorefinery, scientists are establishing a new frontier that could potentially revolutionize our approach to industrial production and pave the way for a more sustainable future.
Collapse
Affiliation(s)
- Wei Zhong
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
| | - Hailong Li
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
- School of Materials Science and Engineering,
Zhejiang University, Zhejiang Province, Hangzhou 310000, PR China
| | - Yajie Wang
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
| |
Collapse
|
5
|
Aspacio D, Zhang Y, Cui Y, King E, Black WB, Perea S, Luu E, Siegel JB, Li H. Shifting Redox Reaction Equilibria on Demand Using an Orthogonal Redox Cofactor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555398. [PMID: 37693387 PMCID: PMC10491207 DOI: 10.1101/2023.08.29.555398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Natural metabolism relies on chemical compartmentalization of two redox cofactors, NAD+ and NADP+, to orchestrate life-essential redox reaction directions. However, in whole cells the reliance on these canonical cofactors limits flexible control of redox reaction direction as these reactions are permanently tied to catabolism or anabolism. In cell-free systems, NADP+ is too expensive in large scale. We have previously reported the use of nicotinamide mononucleotide, (NMN+) as a low-cost, noncanonical redox cofactor capable of specific electron delivery to diverse chemistries. Here, we present Nox Ortho, an NMNH-specific water-forming oxidase, that completes the toolkit to modulate NMNH/NMN+ ratio. This work uncovers an enzyme design principle that succeeds in parallel engineering of six butanediol dehydrogenases as NMN(H)-orthogonal biocatalysts consistently with a 103 - 106 -fold cofactor specificity switch from NAD(P)+ to NMN+. We combine these to produce chiral-pure 2,3-butanediol (Bdo) isomers without interference from NAD(H) or NADP(H) in vitro and in E. coli cells. We establish that NMN(H) can be held at a distinct redox ratio on demand, decoupled from both NAD(H) and NADP(H) redox ratios in vitro and in vivo.
Collapse
Affiliation(s)
- Derek Aspacio
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Yulai Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Youtian Cui
- Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - William B. Black
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Sean Perea
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Emma Luu
- Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Justin B. Siegel
- Genome Center, University of California, Davis, Davis, California 95616, United States
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-3900, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697-3900, United States
- Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| |
Collapse
|
6
|
Cofactor and Process Engineering for Nicotinamide Recycling and Retention in Intensified Biocatalysis. Catalysts 2022. [DOI: 10.3390/catal12111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
There is currently considerable interest in the intensification of biocatalytic processes to reduce the cost of goods for biocatalytically produced chemicals, including pharmaceuticals and advanced pharmaceutical intermediates. Continuous-flow biocatalysis shows considerable promise as a method for process intensification; however, the reliance of some reactions on the use of diffusible cofactors (such as the nicotinamide cofactors) has proven to be a technical barrier for key enzyme classes. This minireview covers attempts to overcome this limitation, including the cofactor recapture and recycling retention of chemically modified cofactors. For the latter, we also consider the state of science for cofactor modification, a field reinvigorated by the current interest in continuous-flow biocatalysis.
Collapse
|
7
|
Zhang L, King E, Black WB, Heckmann CM, Wolder A, Cui Y, Nicklen F, Siegel JB, Luo R, Paul CE, Li H. Directed evolution of phosphite dehydrogenase to cycle noncanonical redox cofactors via universal growth selection platform. Nat Commun 2022; 13:5021. [PMID: 36028482 PMCID: PMC9418148 DOI: 10.1038/s41467-022-32727-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/13/2022] [Indexed: 11/09/2022] Open
Abstract
Noncanonical redox cofactors are attractive low-cost alternatives to nicotinamide adenine dinucleotide (phosphate) (NAD(P)+) in biotransformation. However, engineering enzymes to utilize them is challenging. Here, we present a high-throughput directed evolution platform which couples cell growth to the in vivo cycling of a noncanonical cofactor, nicotinamide mononucleotide (NMN+). We achieve this by engineering the life-essential glutathione reductase in Escherichia coli to exclusively rely on the reduced NMN+ (NMNH). Using this system, we develop a phosphite dehydrogenase (PTDH) to cycle NMN+ with ~147-fold improved catalytic efficiency, which translates to an industrially viable total turnover number of ~45,000 in cell-free biotransformation without requiring high cofactor concentrations. Moreover, the PTDH variants also exhibit improved activity with another structurally deviant noncanonical cofactor, 1-benzylnicotinamide (BNA+), showcasing their broad applications. Structural modeling prediction reveals a general design principle where the mutations and the smaller, noncanonical cofactors together mimic the steric interactions of the larger, natural cofactors NAD(P)+.
Collapse
Affiliation(s)
- Linyue Zhang
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Edward King
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - William B Black
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Christian M Heckmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, Netherlands
| | - Allison Wolder
- Biocatalysis, Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, Netherlands
| | - Youtian Cui
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Francis Nicklen
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Justin B Siegel
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, 2700 Stockton Boulevard, Suite 2102, Sacramento, CA, 95817, USA
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Ray Luo
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
- Department Materials Science and Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, Netherlands
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
8
|
Ma Y, Zhang N, Vernet G, Kara S. Design of fusion enzymes for biocatalytic applications in aqueous and non-aqueous media. Front Bioeng Biotechnol 2022; 10:944226. [PMID: 35935496 PMCID: PMC9354712 DOI: 10.3389/fbioe.2022.944226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022] Open
Abstract
Biocatalytic cascades play a fundamental role in sustainable chemical synthesis. Fusion enzymes are one of the powerful toolboxes to enable the tailored combination of multiple enzymes for efficient cooperative cascades. Especially, this approach offers a substantial potential for the practical application of cofactor-dependent oxidoreductases by forming cofactor self-sufficient cascades. Adequate cofactor recycling while keeping the oxidized/reduced cofactor in a confined microenvironment benefits from the fusion fashion and makes the use of oxidoreductases in harsh non-aqueous media practical. In this mini-review, we have summarized the application of various fusion enzymes in aqueous and non-aqueous media with a focus on the discussion of linker design within oxidoreductases. The design and properties of the reported linkers have been reviewed in detail. Besides, the substrate loadings in these studies have been listed to showcase one of the key limitations (low solubility of hydrophobic substrates) of aqueous biocatalysis when it comes to efficiency and economic feasibility. Therefore, a straightforward strategy of applying non-aqueous media has been briefly discussed while the potential of using the fusion oxidoreductase of interest in organic media was highlighted.
Collapse
Affiliation(s)
- Yu Ma
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Ningning Zhang
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Guillem Vernet
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Selin Kara
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
- *Correspondence: Selin Kara,
| |
Collapse
|
9
|
Kumar Roy T, Sreedharan R, Ghosh P, Gandhi T, Maiti D. Ene-Reductase: A Multifaceted Biocatalyst in Organic Synthesis. Chemistry 2022; 28:e202103949. [PMID: 35133702 DOI: 10.1002/chem.202103949] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Biocatalysis integrate microbiologists, enzymologists, and organic chemists to access the repertoire of pharmaceutical and agrochemicals with high chemoselectivity, regioselectivity, and enantioselectivity. The saturation of carbon-carbon double bonds by biocatalysts challenges the conventional chemical methodology as it bypasses the use of precious metals (in combination with chiral ligands and molecular hydrogen) or organocatalysts. In this line, Ene-reductases (ERs) from the Old Yellow Enzymes (OYEs) family are found to be a prominent asymmetric biocatalyst that is increasingly used in academia and industries towards unparalleled stereoselective trans-hydrogenations of activated C=C bonds. ERs gained prominence as they were used as individual catalysts, multi-enzyme cascades, and in conjugation with chemical reagents (chemoenzymatic approach). Besides, ERs' participation in the photoelectrochemical and radical-mediated process helps to unlock many scopes outside traditional biocatalysis. These up-and-coming methodologies entice the enzymologists and chemists to explore, expand and harness the chemistries displayed by ERs for industrial settings. Herein, we reviewed the last five year's exploration of organic transformations using ERs.
Collapse
Affiliation(s)
- Triptesh Kumar Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Pintu Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Debabrata Maiti
- Chemistry Department and Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
10
|
Reeve HA, Nicholson J, Altaf F, Lonsdale TH, Preissler J, Lauterbach L, Lenz O, Leimkühler S, Hollmann F, Paul CE, Vincent KA. A hydrogen-driven biocatalytic approach to recycling synthetic analogues of NAD(P)H. Chem Commun (Camb) 2022; 58:10540-10543. [DOI: 10.1039/d2cc02411j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soluble hydrogenase enables atom efficient, H2-driven, recycling of synthetic nicotinamide cofactors.
Collapse
Affiliation(s)
- Holly A. Reeve
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Jake Nicholson
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Farieha Altaf
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Thomas H. Lonsdale
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Janina Preissler
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Lars Lauterbach
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
- RWTH Aachen University iAMB – Institute of Applied Microbiology Worringer Weg 1, 52074 Aachen, Germany
| | - Oliver Lenz
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Caroline E. Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Kylie A. Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
11
|
Zachos I, Güner S, Essert A, Lommes P, Sieber V. Boosting artificial nicotinamide cofactor systems. Chem Commun (Camb) 2022; 58:11945-11948. [DOI: 10.1039/d2cc03423a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing inexpensive nicotinamide cofactor biomimetics to replace the expensive NAD(P)/H cofactors is an ongoing research activity.
Collapse
Affiliation(s)
- Ioannis Zachos
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| | - Samed Güner
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| | - Arabella Essert
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| | - Peta Lommes
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
- Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
- SynBioFoundry@TUM, Petersgasse 5, 94315 Straubing, Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia, Queensland 4072, Australia
| |
Collapse
|