1
|
Zheng Z, Shang X, Wang W, Yang X, Su X, Huang Y. Boosting C-O Bond Cleavage and Reverse Water-Gas Shift Activity via Enriched In-Plane Sulfur Vacancies in Single-Layer Molybdenum Disulfide. Angew Chem Int Ed Engl 2025:e202422953. [PMID: 39825821 DOI: 10.1002/anie.202422953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/20/2025]
Abstract
The reduction of CO2 to CO provides a promising approach to the production of valuable chemicals through CO2 utilization. However, challenges persist with the rapid deactivation and insufficient activity of catalysts. Herein, we developed a soft-hard dual-template method to synthesize layered MoS2 using inexpensive and scalable templates, enabling facile regulation of sulfur vacancies by controlling the number of layers. The concentration of in-plane vacancies keeps increasing with the reduction of MoS2 layer number, contributing to 100 % CO selectivity over single-layer MoS2 and a stable performance over 300-hour reaction at 600 °C. The space-time-yield of CO reached 35.7 gCO gcat -1 h-1, outperforming most current catalysts. Multiple characterizations and theoretical calculations revealed that in-plane sulfur vacancy sites endowed enhanced production of CO via direct dissociation of CO2, showing an intrinsic activity of above 5.8 times higher than that of edge sulfur vacancy sites. The rate-limiting step was shifted from C-O cleavage in edge to sulfur vacancy regeneration in plane with a lower energy barrier. Our findings exemplified the specified design and synthesis of MoS2 for high-temperature CO2 reduction through the effective manipulation of distinct vacancy sites, shedding light on their potential industrial application.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Shang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Weijue Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofeng Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiong Su
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yanqiang Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
2
|
Wang H, Shimogawa R, Zhang L, Ma L, Ehrlich SN, Marinkovic N, Li Y, Frenkel AI. Migration and aggregation of Pt atoms on metal oxide-supported ceria nanodomes control reverse water gas shift reaction activity. Commun Chem 2023; 6:264. [PMID: 38052925 DOI: 10.1038/s42004-023-01064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Single-atom catalysts (SACs) are particularly sensitive to external conditions, complicating the identification of catalytically active species and active sites under in situ or operando conditions. We developed a methodology for tracing the structural evolution of SACs to nanoparticles, identifying the active species and their link to the catalytic activity for the reverse water gas shift (RWGS) reaction. The new method is illustrated by studying structure-activity relationships in two materials containing Pt SACs on ceria nanodomes, supported on either ceria or titania. These materials exhibited distinctly different activities for CO production. Multimodal operando characterization attributed the enhanced activity of the titania-supported catalysts at temperatures below 320 ˚C to the formation of unique Pt sites at the ceria-titania interface capable of forming Pt nanoparticles, the active species for the RWGS reaction. Migration of Pt nanoparticles to titania support was found to be responsible for the deactivation of titania-supported catalysts at elevated temperatures. Tracking the migration of Pt atoms provides a new opportunity to investigate the activation and deactivation of Pt SACs for the RWGS reaction.
Collapse
Affiliation(s)
- Haodong Wang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Ryuichi Shimogawa
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
- Mitsubishi Chemical Corporation, Science & Innovation Center, 1000, Kamoshida-cho, Aoba-ku, Yokohama, 227-8502, Japan
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Steven N Ehrlich
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Nebojsa Marinkovic
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Yuanyuan Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| |
Collapse
|
3
|
Nie X, Wang Y, Mu J, Han J, Li H, Luo N, Huang Z, Guo Q, Li N, Zhang J, Li N, Wang F. Tuning Redistribution of CuO x Nanoparticles on TiO 2 Support. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48168-48178. [PMID: 37787471 DOI: 10.1021/acsami.3c10035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Nanoparticles exhibit unique catalytic performance, depending on their nanoscale size. However, controlling the particle size of the supported catalysts is still challenging. Here, we present a method for tunable redistribution of CuOx nanoparticles on rutile TiO2 support by physically adding pristine TiO2. The redistribution is driven by the work function difference (WFD) between the TiO2 support and the TiO2 additive, both of which exhibit distinct values, as determined through Kelvin probe force microscopy and electron binding energy analysis. Addition of TiO2 with lower work function (rutile) promotes electron transfer toward the CuOx/TiO2 composite, resulting in nanoparticle aggregation, while addition of TiO2 with higher work function (anatase) results in smaller CuOx on TiO2. The increase in particle size and electron density of CuOx, driven by the addition of rutile TiO2, promoted the complete conversion of nitrobenzene (100%) within 5 h. This is 2.7 times that of dispersed and degraded CuOx driven by mixing with anatase TiO2 (36.9%).
Collapse
Affiliation(s)
- Xuezhong Nie
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Junju Mu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Jianyu Han
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huixiang Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Nengchao Luo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Zhipeng Huang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Guo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Ning Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Jian Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Ning Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| |
Collapse
|
4
|
He Y, Huang D. Single-Atom Platinum Catalyst for Efficient CO 2 Conversion via Reverse Water Gas Shift Reaction. Molecules 2023; 28:6630. [PMID: 37764406 PMCID: PMC10534439 DOI: 10.3390/molecules28186630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The need to tackle CO2 emissions arising from the continuously rising combustion of fossil fuels has sparked considerable interest in investigating the reverse water gas shift (RWGS) reaction. This reaction holds great promise as an alternative technique for the conversion and utilization of CO2. In this study, a scalable method was employed to synthesize a single-atom Pt catalyst, uniformly dispersed on SiC, where up to 6.4 wt% Pt1 was loaded onto a support based on ligand modification and UV photoreduction. This Pt1/SiC catalyst exhibited a high selectivity (100%) towards the RWGS reaction; 54% CO2 conversion was observed at 900 °C with a H2/CO2 feed-in ratio of 1:1, significantly higher than the conventional Pt nanoparticle counterparts. Moreover, Pt1/SiC displayed a robust stability during the long-term test. The activation energy with as-synthesized Pt1/SiC was further calculated to be 61.6 ± 6.4 kJ/mol, which is much lower than the 91.6 ± 15.9 kJ/mol of the Pt nanoparticle counterpart and other Pt-based catalysts reported so far. This work offers new insights into the utilization of diverse single-atom catalysts for the RWGS reaction and other crucial catalytic processes, paving the way for the further exploration and application of SACs in various industrial endeavors.
Collapse
Affiliation(s)
- Yulian He
- University of Michigan and Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Dahong Huang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Chen L, Allec SI, Nguyen MT, Kovarik L, Hoffman AS, Hong J, Meira D, Shi H, Bare SR, Glezakou VA, Rousseau R, Szanyi J. Dynamic Evolution of Palladium Single Atoms on Anatase Titania Support Determines the Reverse Water-Gas Shift Activity. J Am Chem Soc 2023; 145:10847-10860. [PMID: 37145876 DOI: 10.1021/jacs.3c02326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Research interest in single-atom catalysts (SACs) has been continuously increasing. However, the lack of understanding of the dynamic behaviors of SACs during applications hinders catalyst development and mechanistic understanding. Herein, we report on the evolution of active sites over Pd/TiO2-anatase SAC (Pd1/TiO2) in the reverse water-gas shift (rWGS) reaction. Combining kinetics, in situ characterization, and theory, we show that at T ≥ 350 °C, the reduction of TiO2 by H2 alters the coordination environment of Pd, creating Pd sites with partially cleaved Pd-O interfacial bonds and a unique electronic structure that exhibit high intrinsic rWGS activity through the carboxyl pathway. The activation by H2 is accompanied by the partial sintering of single Pd atoms (Pd1) into disordered, flat, ∼1 nm diameter clusters (Pdn). The highly active Pd sites in the new coordination environment under H2 are eliminated by oxidation, which, when performed at a high temperature, also redisperses Pdn and facilitates the reduction of TiO2. In contrast, Pd1 sinters into crystalline, ∼5 nm particles (PdNP) during CO treatment, deactivating Pd1/TiO2. During the rWGS reaction, the two Pd evolution pathways coexist. The activation by H2 dominates, leading to the increasing rate with time-on-stream, and steady-state Pd active sites similar to the ones formed under H2. This work demonstrates how the coordination environment and nuclearity of metal sites on a SAC evolve during catalysis and pretreatments and how their activity is modulated by these behaviors. These insights on SAC dynamics and the structure-function relationship are valuable to mechanistic understanding and catalyst design.
Collapse
Affiliation(s)
- Linxiao Chen
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sarah I Allec
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Manh-Thuong Nguyen
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Libor Kovarik
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Debora Meira
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Honghong Shi
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Roger Rousseau
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - János Szanyi
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
6
|
Miao W, Hao R, Wang J, Wang Z, Lin W, Liu H, Feng Z, Lyu Y, Li Q, Jia D, Ouyang R, Cheng J, Nie A, Wu J. Architecture Design and Catalytic Activity: Non-Noble Bimetallic CoFe/fe 3 O 4 Core-Shell Structures for CO 2 Hydrogenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205087. [PMID: 36529701 PMCID: PMC9929264 DOI: 10.1002/advs.202205087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/28/2022] [Indexed: 05/04/2023]
Abstract
Non-noble metal catalysts now play a key role in promoting efficiently and economically catalytic reduction of CO2 into clean energy, which is an important strategy to ameliorate global warming and resource shortage issues. Here, a non-noble bimetallic catalyst of CoFe/Fe3 O4 nanoparticles is successfully designed with a core-shell structure that is well dispersed on the defect-rich carbon substrate for the hydrogenation of CO2 under mild conditions. The catalysts exhibit a high CO2 conversion activity with the rate of 30% and CO selectivity of 99%, and extremely robust stability without performance decay over 90 h in the reverse water gas shift reaction process. Notably, it is found that the reversible exsolution/dissolution of cobalt in the Fe3 O4 shell will lead to a dynamic and reversible deactivation/regeneration of the catalysts, accompanying by shell thickness breathing during the repeated cycles, via atomic structure study of the catalysts at different reaction stages. Combined with density functional theory calculations, the catalytic activity reversible regeneration mechanism is proposed. This work reveals the structure-property relationship for rational structure design of the advanced non-noble metallic catalyst materials with much improved performance.
Collapse
Affiliation(s)
- Wenkang Miao
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Ronghui Hao
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Jingzhou Wang
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Zihan Wang
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Wenxin Lin
- School of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Heguang Liu
- School of Materials Science and EngineeringXi'an University of TechnologyXi'an710048China
| | - Zhenjie Feng
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Yingchun Lyu
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Qianqian Li
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Dongling Jia
- Collaborative Research CenterShanghai University of Medicine and Health SciencesShanghai201318China
| | - Runhai Ouyang
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Jipeng Cheng
- School of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Anmin Nie
- Center for High Pressure ScienceState Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdao066004China
| | - Jinsong Wu
- Nanostructure Research CenterWuhan University of TechnologyWuhan430070China
| |
Collapse
|
7
|
Wang H, Bootharaju MS, Kim JH, Wang Y, Wang K, Zhao M, Zhang R, Xu J, Hyeon T, Wang X, Song S, Zhang H. Synergistic Interactions of Neighboring Platinum and Iron Atoms Enhance Reverse Water-Gas Shift Reaction Performance. J Am Chem Soc 2023; 145:2264-2270. [PMID: 36689604 DOI: 10.1021/jacs.2c10435] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The limitations of conventional strategies in finely controlling the composition and structure demand new promotional effects for upgrading the reverse water-gas shift (RWGS) catalysts for enhanced fuel production. We report the design and synthesis of a hetero-dual-site catalyst for boosting RWGS performance by controllably loading Fe atoms at the neighboring Pt atom on the surface of commercial CeO2. The Fe-Pt/CeO2 exhibits a remarkably high catalytic performance (TOFPt: 43,519 h-1) for CO2 to CO conversion with ∼100% CO selectivity at a relatively low temperature of 350 °C. Furthermore, the catalyst retains over 80% activity after 200 h of continuous operation. The experimental and computational investigations reveal a "two-way synergistic effect", where Fe atoms can not only serve as promotors to alter the charge density of Pt atoms but also be activated by the excess active hydrogen species generated by Pt atoms, enhancing catalytic activity and stability.
Collapse
Affiliation(s)
- Huilin Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ke Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Meng Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Rui Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jing Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.,Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Nejadsalim A, Bashiri N, Godini HR, Oliveira RL, Tufail Shah A, Bekheet MF, Thomas A, Schomäcker R, Gurlo A, Görke O. Core-Sheath Pt-CeO 2/Mesoporous SiO 2 Electrospun Nanofibers as Catalysts for the Reverse Water Gas Shift Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:485. [PMID: 36770446 PMCID: PMC9921642 DOI: 10.3390/nano13030485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
One-dimensional (1D) core-sheath nanofibers, platinum (Pt)-loaded ceria (CeO2) sheath on mesoporous silica (SiO2) core were fabricated, characterized, and used as catalysts for the reverse water gas shift reaction (RWGS). CeO2 nanofibers (NFs) were first prepared by electrospinning (ES), and then Pt nanoparticles were loaded on the CeO2 NFs using two different deposition methods: wet impregnation and solvothermal. A mesoporous SiO2 sheath layer was then deposited by sol-gel process. The phase composition, structural, and morphological properties of synthesized materials were investigated by scanning electron microscope (SEM), scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), nitrogen adsorption/desorption method, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis, and CO2 temperature programmed desorption (CO2-TPD). The results of these characterization techniques revealed that the core-sheath NFs with a core diameter between 100 and 300 nm and a sheath thickness of about 40-100 nm with a Pt loading of around 0.5 wt.% were successfully obtained. The impregnated catalyst, Pt-CeO2 NF@mesoporous SiO2, showed the best catalytic performance with a CO2 conversion of 8.9% at 350 °C, as compared to the sample prepared by the Solvothermal method. More than 99% selectivity of CO was achieved for all core-sheath NF-catalysts.
Collapse
Affiliation(s)
- Aidin Nejadsalim
- Chair of Advanced Ceramic Materials, Institute of Material Science and Technology, Faculty III Process Sciences, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Najmeh Bashiri
- Functional Materials, Institute of Chemistry, Faculty II Mathematics and Natural Sciences, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
- Chemical Engineering/Multiphase Reaction Technology, Institute of Chemistry, Faculty II Mathematics and Natural Sciences, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Hamid Reza Godini
- Inorganic Membranes and Membrane Reactors, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rafael L. Oliveira
- Low Temperature and Structure Research Institute of the Polish Academy of Science, Okólna 2, 50-422 Wroclaw, Poland
| | - Asma Tufail Shah
- Chair of Advanced Ceramic Materials, Institute of Material Science and Technology, Faculty III Process Sciences, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Defence Road, Off-Raiwand Road, Lahore 54000, Pakistan
| | - Maged F. Bekheet
- Chair of Advanced Ceramic Materials, Institute of Material Science and Technology, Faculty III Process Sciences, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Arne Thomas
- Functional Materials, Institute of Chemistry, Faculty II Mathematics and Natural Sciences, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
| | - Reinhard Schomäcker
- Chemical Engineering/Multiphase Reaction Technology, Institute of Chemistry, Faculty II Mathematics and Natural Sciences, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Aleksander Gurlo
- Chair of Advanced Ceramic Materials, Institute of Material Science and Technology, Faculty III Process Sciences, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Oliver Görke
- Chair of Advanced Ceramic Materials, Institute of Material Science and Technology, Faculty III Process Sciences, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|