1
|
Chi R, Xu GY, Liu ZA, Li DC, Duan WZ, Dou JM, Yao QX, Wang HW, Lu Y. Rh III-Catalyzed Direct Heteroarylation of Unactivated C(sp 3)-H with N-Heteroaryl Boronates. J Org Chem 2024; 89:6749-6758. [PMID: 38688007 DOI: 10.1021/acs.joc.3c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Disclosed herein is a rhodium(III)-catalyzed direct heteroarylation reaction between unactivated aliphatic C(sp3)-H bonds in 2-alkylpyridines and heteroaryl organoboron reagents. This catalytic protocol is compatible with various heterocyclic boronates containing ortho- and meta-pyridine, pyrazoles, furan, and quinoline with strong coordination capability. The achievement of this methodology provides an efficient route to build new C(sp3)-heteroaryl bonds.
Collapse
Affiliation(s)
- Rong Chi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Guang-Yu Xu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Zhen-Ang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Da-Cheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Wen-Zeng Duan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Qing-Xia Yao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Huai-Wei Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yi Lu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Zhang T, Zhang C, Lu X, Peng C, Zhang Y, Zhu X, Zhong G, Zhang J. Synthesis of silyl indenes by ruthenium-catalyzed aldehyde- and acylsilane-enabled C-H alkylation/cyclization. Org Biomol Chem 2024; 22:466-471. [PMID: 38099332 DOI: 10.1039/d3ob01699d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
A ruthenium-catalyzed C-H alkylation/cyclization sequence is presented to prepare silyl indenes with atom and step-economy. This domino reaction is triggered by acyl silane-directed C-H activation, and an aldehyde controlled the following enol cyclization/condensation other than β-H elimination. The protocol tolerates a broad substitution pattern, and the further synthetic elaboration of silyl indenes allows access to a diverse range of interesting indene and indanone derivatives.
Collapse
Affiliation(s)
- Tao Zhang
- School of Engineering, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing 210009, Jiangsu, China.
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Cheng Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Xiunan Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Chengxing Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Yawei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Xiong Zhu
- School of Engineering, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing 210009, Jiangsu, China.
| | - Guofu Zhong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo 315200, Zhejiang, China.
| | - Jian Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| |
Collapse
|
3
|
Hatt JE, Shepich JH, Clemons MN, Bornowski EC, Wolfe JP. Palladium-Catalyzed Synthesis of 1-Alkylidene-2-dialkylaminomethyl Cyclobutane Derivatives via Pd-Catalyzed Alkene Difunctionalization Reactions: Influence of Nucleophile and Water on the Reaction Mechanism. Org Lett 2023; 25:3245-3248. [PMID: 37126729 PMCID: PMC10428518 DOI: 10.1021/acs.orglett.3c00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Pd-catalyzed coupling of 1,5-diene-2-yl triflates with amine nucleophiles affords exomethylenecyclobutanes bearing dialkylaminomethyl groups at C2. The strained carbocyclic products are obtained in moderate to excellent yields, with regioselectivities of up to >95:5 for four-membered ring formation. The mechanism of these reactions, which provides products resulting from anti-addition to alkenes, differs from related reactions involving malonate nucleophiles that provide syn-addition products.
Collapse
Affiliation(s)
- Jessica E. Hatt
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| | - James H. Shepich
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| | - Mackenzie N. Clemons
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| | - Evan C. Bornowski
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| | - John P. Wolfe
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| |
Collapse
|
4
|
Chen LL, Li F, Yang Q, Ye YF, Yang WW, Wang YB. Base-Promoted Decarboxylative Annulation of Methyl 2-(2-Bromophenyl)acetates and Ynones to Access Benzoxepines. J Org Chem 2023. [PMID: 36799925 DOI: 10.1021/acs.joc.2c02870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A simple and efficient base-mediated decarboxylative annulation of ynones with methyl 2-(2-bromophenyl)acetates has been developed. A broad range of benzoxepines were prepared with a broad substrate scope and high regioselectivity in moderate to excellent yields under transition-metal-free conditions. This method proceeds through a tandem [2 + 4] annulation, ring-opening decarboxylative reaction, and the intramolecular nucleophilic aromatic substitution reaction. Additionally, the key intermediates were successfully obtained and characterized unambiguously by single-crystal X-ray crystallography, which could favorably support a decarboxylative annulation mechanism. Furthermore, gram-scale reaction and synthetic applications for the further functionalization are also studied.
Collapse
Affiliation(s)
- Lu-Lu Chen
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Feng Li
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Qing Yang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Ya-Fang Ye
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Wan-Wan Yang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yan-Bo Wang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
5
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Han Z, Sang Y, Zhao Y, Feng Y, Yu X, Lu X. Rigid Enhanced Electrochemiluminescence of 1,2,3-Triaryl Indenes as an Ultrasensitive Sensor for D 2O in H 2O. Anal Chem 2022; 94:13607-13615. [PMID: 36125245 DOI: 10.1021/acs.analchem.2c03438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intriguing aggregation-induced emission has recently been applied in the electrochemiluminescence, called aggregation-induced electrochemiluminescence (AIE-ECL), which is conducive to solving the water insolubility and aggregation-caused quenching for most organic luminescence probes. However, AIE-ECL still has the problems of low luminous efficiency and limited practical application. In this work, we disclosed the AIE-ECL properties of 1,2,3-triaryl-substituted indenes containing rigid structures. Experimental and theoretical investigations demonstrated that such a rigid structure could significantly enhance the aromaticity and stability and thereby the luminescence performance of these indenes. Moreover, according to the finding of hydrogen/deuterium exchange for active hydrogen in indene under electrical excitation, ultrasensitive detection for D2O in H2O was realized by such an indene-based AIE-ECL system. Our research not only provided an attractive strategy to enhance the luminescence property for an AIE-active luminophore but also established a superior sensor toward D2O.
Collapse
Affiliation(s)
- Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yuyang Sang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yaqi Zhao
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yanjun Feng
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xinyao Yu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|