1
|
Skoda D, Zhu R, Hanulikova B, Styskalik A, Vykoukal V, Machac P, Simonikova L, Kuritka I, Poleunis C, Debecker DP, Román-Leshkov Y. Propylene Metathesis over Molybdenum Silicate Microspheres with Dispersed Active Sites. ACS Catal 2023; 13:12970-12982. [PMID: 37822857 PMCID: PMC10563125 DOI: 10.1021/acscatal.3c02045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/31/2023] [Indexed: 10/13/2023]
Abstract
In this work, we demonstrate that amorphous and porous molybdenum silicate microspheres are highly active catalysts for heterogeneous propylene metathesis. Homogeneous molybdenum silicate microspheres and aluminum-doped molybdenum silicate microspheres were synthesized via a nonaqueous condensation of a hybrid molybdenum biphenyldicarboxylate-based precursor solution with (3-aminopropyl)triethoxysilane. The as-prepared hybrid metallosilicate products were calcined at 500 °C to obtain amorphous and porous molybdenum silicate and aluminum-doped molybdenum silicate microspheres with highly dispersed molybdate species inserted into the silicate matrix. These catalysts contain mainly highly dispersed MoOx species, which possess high catalytic activity in heterogeneous propylene metathesis to ethylene and butene. Compared to conventional silica-supported MoOx catalysts prepared via incipient wetness impregnation (MoIWI), the microspheres with low Mo content (1.5-3.6 wt %) exhibited nearly 2 orders of magnitude higher steady-state propylene metathesis rates at 200 °C, approaching site time yields of 0.11 s-1.
Collapse
Affiliation(s)
- David Skoda
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, tr. Tomase Bati 5678, Zlin CZ-76001, Czech Republic
| | - Ran Zhu
- Department
of Chemical Engineering, Massachusetts Institute
of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Barbora Hanulikova
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, tr. Tomase Bati 5678, Zlin CZ-76001, Czech Republic
| | - Ales Styskalik
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlarska
2, Brno CZ-61137, Czech Republic
| | - Vit Vykoukal
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlarska
2, Brno CZ-61137, Czech Republic
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, Brno CZ 62500, Czech Republic
| | - Petr Machac
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlarska
2, Brno CZ-61137, Czech Republic
| | - Lucie Simonikova
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlarska
2, Brno CZ-61137, Czech Republic
| | - Ivo Kuritka
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, tr. Tomase Bati 5678, Zlin CZ-76001, Czech Republic
| | - Claude Poleunis
- Institute
of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Damien P. Debecker
- Institute
of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Yuriy Román-Leshkov
- Department
of Chemical Engineering, Massachusetts Institute
of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Gani TZH, Berkson ZJ, Zhu R, Kang JH, Di Iorio JR, Chan KW, Consoli DF, Shaikh SK, Copéret C, Román-Leshkov Y. Promoting active site renewal in heterogeneous olefin metathesis catalysts. Nature 2023; 617:524-528. [PMID: 37198312 DOI: 10.1038/s41586-023-05897-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/28/2023] [Indexed: 05/19/2023]
Abstract
As an atom-efficient strategy for the large-scale interconversion of olefins, heterogeneously catalysed olefin metathesis sees commercial applications in the petrochemical, polymer and speciality chemical industries1. Notably, the thermoneutral and highly selective cross-metathesis of ethylene and 2-butenes1 offers an appealing route for the on-purpose production of propylene to address the C3 shortfall caused by using shale gas as a feedstock in steam crackers2,3. However, key mechanistic details have remained ambiguous for decades, hindering process development and adversely affecting economic viability4 relative to other propylene production technologies2,5. Here, from rigorous kinetic measurements and spectroscopic studies of propylene metathesis over model and industrial WOx/SiO2 catalysts, we identify a hitherto unknown dynamic site renewal and decay cycle, mediated by proton transfers involving proximal Brønsted acidic OH groups, which operates concurrently with the classical Chauvin cycle. We show how this cycle can be manipulated using small quantities of promoter olefins to drastically increase steady-state propylene metathesis rates by up to 30-fold at 250 °C with negligible promoter consumption. The increase in activity and considerable reduction of operating temperature requirements were also observed on MoOx/SiO2 catalysts, showing that this strategy is possibly applicable to other reactions and can address major roadblocks associated with industrial metathesis processes.
Collapse
Affiliation(s)
- Terry Z H Gani
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Zachariah J Berkson
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Ran Zhu
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jong Hun Kang
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - John R Di Iorio
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Ka Wing Chan
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Daniel F Consoli
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Sohel K Shaikh
- Research & Development Center, Saudi Aramco, Dhahran, Saudi Arabia
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| |
Collapse
|
3
|
Shayesteh Zadeh A, Khan SA, Vandervelden C, Peters B. Site-Averaged Ab Initio Kinetics: Importance Learning for Multistep Reactions on Amorphous Supports. J Chem Theory Comput 2023; 19:2873-2886. [PMID: 37093705 DOI: 10.1021/acs.jctc.3c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Single-atom centers on amorphous supports include catalysts for polymerization, partial oxidation, metathesis, hydrogenolysis, and more. The disordered environment makes each site different, and the kinetics exponentially magnifies these differences to make ab initio site-averaged kinetics calculations extremely difficult. This work extends the importance learning algorithm for efficient and precise site-averaged kinetics estimates to ab initio calculations and multistep reaction mechanisms. Specifically, we calculate site-averaged proton transfer relaxation rates on an ensemble of cluster models representing Brønsted acid sites on silica-alumina. We include direct and water-assisted proton transfer pathways and simultaneously estimate the water adsorption and activation enthalpies for forward and backward proton transfers. We use density functional theory (DFT) to obtain a site-averaged rate, somewhat like a turnover frequency, for the proton transfer relaxation rate. Finally, we show that importance learning can provide orders-of-magnitude acceleration over standard sampling methods for site-averaged rate calculations in cases where the rate is dominated by a few highly active sites.
Collapse
Affiliation(s)
- Armin Shayesteh Zadeh
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Salman A Khan
- Delaware Energy Institute (DEI), University of Delaware, Newark, Delaware 19711, United States
| | | | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Yang K, Jiang J. Rational Design of Metal-Alkoxide-Functionalized Metal-Organic Frameworks for Synergistic Dual Activation of CH 4 and CO 2 toward Acetic Acid Synthesis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52979-52992. [PMID: 36380575 DOI: 10.1021/acsami.2c16323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The concurrent conversion of CH4 and CO2 into acetic acid is an ideal route to migrate the two greenhouse gases and manufacture a high-value-added C2 product with an atom economy of 100% but remains challenging due to the chemical inertness of both gases. By leveraging density functional theory (DFT) calculations, we report herein the computational design of metal-alkoxide-functionalized metal-organic framework (MOF) UiO-67 with well-defined dual sites that can activate CH4 and CO2 cooperatively to boost acetic acid synthesis. The dual sites are distributed on two adjacent functionalized organic linkers originating from the same node and feature a metal-metal distance of about 6-7 Å. Initially, a total of 13 single-site metal-alkoxide-functionalized UiO-67s (including three alkaline earth metals and 10 transition metals) are examined; then, favorable metal-alkoxides are identified and further used to design dual-site metal-alkoxide-functionalized UiO-67s for converting CH4 and CO2 into acetic acid. Detailed mechanistic investigation predicts that the dual-site UiO-67s functionalized with Mn-, Fe-, Co-, Ni-. and Zn-alkoxide are highly promising catalysts for this reaction. Compared to the single-site counterparts, the metal pair-site UiO-67s provide a subtle microenvironment for synergistic dual activation of CH4 and CO2, thus efficiently stabilizing the transition state and substantially reducing the reaction barrier for C-C coupling. The microscopic insights and design strategies in this work might advance the development of efficient MOF-based catalysts with built-in cooperative active sites toward direct acetic acid synthesis from CH4 and CO2.
Collapse
Affiliation(s)
- Kuiwei Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
5
|
Metallated porphyrinic metal−organic frameworks for CO2 conversion to HCOOH: A computational screening and mechanistic study. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Zhang B, Xiang S, Frenkel AI, Wachs IE. Molecular Design of Supported MoO x Catalysts with Surface TaO x Promotion for Olefin Metathesis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Zhang
- Operando Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Shuting Xiang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Israel E. Wachs
- Operando Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
7
|
Myradova M, Węgrzynowicz A, Węgrzyniak A, Gierada M, Jodlowski P, Łojewska J, Handzlik J, Michorczyk P. Tuning metathesis performance of molybdenum oxide-based catalyst by silica support acidity modulation and high temperature pretreatment. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02064a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum oxide-based catalysts containing 5 wt. % of Mo obtained by simple impregnation of silica mesoporous support were studied in olefin metathesis reaction at 50 °C. Effect of support modification...
Collapse
|