1
|
Yuan Q, Deng Z, Wan Y, Zhang Y. Photoredox/Nickel Dual-Catalytic Asymmetric Silylarylation of Alkenes. Org Lett 2025; 27:680-685. [PMID: 39761560 DOI: 10.1021/acs.orglett.4c04570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The efficient construction of chiral aryl-containing organosilicon frameworks via catalytic enantioselective three-component silylarylation of alkenes remains a great challenge. Herein, a photoredox/nickel dual-catalytic asymmetric protocol has been disclosed by using a chiral biimidazoline (BiIM) as the ligand, silylboranes as the silyl radical precursors, aryl bromides as the coupling partners, and morpholine as the promoter. Remarkably, the reaction features mild and green conditions, high reaction efficiency, and excellent enantioselectivity, enabling the facile synthesis of valuable chiral tropic acid and sila-isoflavanone structures.
Collapse
Affiliation(s)
- Qiyang Yuan
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhengrong Deng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi Wan
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
2
|
Xu S, Ping Y, Su Y, Guo H, Luo A, Kong W. A modular approach to catalytic stereoselective synthesis of chiral 1,2-diols and 1,3-diols. Nat Commun 2025; 16:364. [PMID: 39754022 PMCID: PMC11699147 DOI: 10.1038/s41467-024-55744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Optically pure 1,2-diols and 1,3-diols are the most privileged structural motifs, widely present in natural products, pharmaceuticals and chiral auxiliaries or ligands. However, their synthesis relies on the use of toxic or expensive metal catalysts or suffer from low regioselectivity. Catalytic asymmetric synthesis of optically pure 1,n-diols from bulk chemicals in a highly stereoselective and atom-economical manner remains a formidable challenge. Here, we disclose a versatile and modular method for the synthesis of enantioenriched 1,2-diols and 1,3-diols from the high-production-volume chemicals ethane-1,2-diol (MEG) and 1,3-propanediol (PDO), respectively. The key to success is to temporarily mask the diol group as an acetonide, which imparts selectivity to the key step of C(sp3)-H functionalization. Additionally, 1,n-diols containing two stereogenic centers are also prepared through diastereoselective C(sp3)-H functionalization. The late-stage functionalization of biological active compounds and the expedient synthesis of chiral ligands and pharmaceutically relevant molecules further highlight the synthetic potential of this protocol.
Collapse
Affiliation(s)
- Sheng Xu
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Yuanyuan Ping
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Yinyan Su
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Haoyun Guo
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Aowei Luo
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Wangqing Kong
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China.
- Wuhan Institute of Photochemistry and Technology, Wuhan, China.
| |
Collapse
|
3
|
Tang YJ, Fan Q, Li X, Li Q, Yin B, Wang H. Stereodivergent atom transfer radical addition of α-functionalized alkyl iodides to alkynes: a strategy for selective synthesis of both E- and Z-iodoalkenes. Chem Commun (Camb) 2024; 60:13251-13254. [PMID: 39445648 DOI: 10.1039/d4cc04948a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The geometrical control of atom transfer radical addition (ATRA) reactions to alkynes poses significant challenges. Herein, we present a uniform solution by developing a stereodivergent synthetic method for both isomers of the resulting alkene products, starting from the same materials. The synthesis of the thermodynamically more stable isomer utilizes the strategy of uphill catalysis while the accumulation of the less stable isomer is facilitated by a manganese-catalyzed iodo-abstraction/radical rebound process, taking advantage of its reversibility. Various substituted alkyl iodides can be used to provide easy access to both isomers of iodoalkene products with valuable functional groups such as CF3, CF2H, CN, ester, or amide at the allylic position.
Collapse
Affiliation(s)
- Ya-Jie Tang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| | - Qi Fan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Xiaoya Li
- Department of Nephrology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, Guangdong, China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
4
|
Zhang Y, Fu D, Chen Z, Cui R, He W, Wang H, Chen J, Chen Y, Li SJ, Lan Y, Duan C, Jin Y. Bifunctional iron-catalyzed alkyne Z-selective hydroalkylation and tandem Z-E inversion via radical molding and flipping. Nat Commun 2024; 15:8619. [PMID: 39366970 PMCID: PMC11452693 DOI: 10.1038/s41467-024-53021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024] Open
Abstract
The challenging synthesis of thermodynamic-unfavored cis-olefins through catalytic cross-coupling reactions requires the synergistic interaction of substrate-activating units and configuration-regulating catalysts. Successfully hitting these two birds with one stone, we herein develop a convenient photoredox access to Z-alkenes from alkynes and light alkanes with a bifunctional iron-catalyzed system possessing both C(sp3)-H activation and configuration-controlling abilities. The protocol exhibits 100% atom utilization, mild conditions, a broad substrate scope, and compatibility with multitudinous functional groups. The detailed reaction mechanism and the origin of geometry regulation are well investigated by experimental and computational studies. Progressively, a catalytic amount of diaryl disulfides is introduced for consecutive photoinduced Z-E isomerization via reversible radical addition and flipping. Big steric hindrance substituents assembled on the disulfide emerge necessity for suppressing double-bond migration. This tandem strategy paves a promising way for stereoselective alkene construction and will bring significant inspiration for the development of transition metal photocatalysis.
Collapse
Affiliation(s)
- Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Dongmin Fu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rongqi Cui
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wenlong He
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Hongyao Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yufei Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Shi-Jun Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China.
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
5
|
Ruzi R, Shu W. Visible-Light-Mediated Ni-Catalyzed Gas-Free Carboxylation: Stereodivergent Synthesis of E- and Z-Acrylic Acids. Org Lett 2024; 26:7926-7931. [PMID: 39250168 DOI: 10.1021/acs.orglett.4c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Stereodivergent syntheses of different scaffolds from identical starting materials by switching the fewest parameters are among the most appealing synthetic technologies. Herein, a visible-light mediated Ni-catalyzed carboxylation of vinyl halides with formates has been developed, affording acrylic acids in both Z- and E-configurations from identical vinyl halides. The reaction features Ni-catalyzed gas-free carboxylation of vinyl halides by utilizing formates as a surrogate of carbon dioxide.
Collapse
Affiliation(s)
- Rehanguli Ruzi
- Guangming Advanced Research Institute, Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| | - Wei Shu
- Guangming Advanced Research Institute, Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000 Sichuan, P. R. China
| |
Collapse
|
6
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
7
|
Zanzi J, Pastorel Z, Duhayon C, Lognon E, Coudret C, Monari A, Dixon IM, Canac Y, Smietana M, Baslé O. Counterion Effects in [Ru(bpy) 3](X) 2-Photocatalyzed Energy Transfer Reactions. JACS AU 2024; 4:3049-3057. [PMID: 39211590 PMCID: PMC11350745 DOI: 10.1021/jacsau.4c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Photocatalysis that uses the energy of light to promote chemical transformations by exploiting the reactivity of excited-state molecules is at the heart of a virtuous dynamic within the chemical community. Visible-light metal-based photosensitizers are most prominent in organic synthesis, thanks to their versatile ligand structure tunability allowing to adjust photocatalytic properties toward specific applications. Nevertheless, a large majority of these photocatalysts are cationic species whose counterion effects remain underestimated and overlooked. In this report, we show that modification of the X counterions constitutive of [Ru(bpy)3](X)2 photocatalysts modulates their catalytic activities in intermolecular [2 + 2] cycloaddition reactions operating through triplet-triplet energy transfer (TTEnT). Particularly noteworthy is the dramatic impact observed in low-dielectric constant solvent over the excited-state quenching coefficient, which varies by two orders of magnitude depending on whether X is a large weakly bound (BArF 4 -) or a tightly bound (TsO-) anion. In addition, the counterion identity also greatly affects the photophysical properties of the cationic ruthenium complex, with [Ru(bpy)3](BArF 4)2 exhibiting the shortest 3MLCT excited-state lifetime, highest excited state energy, and highest photostability, enabling remarkably enhanced performance (up to >1000 TON at a low 500 ppm catalyst loading) in TTEnT photocatalysis. These findings supported by density functional theory-based calculations demonstrate that counterions have a critical role in modulating cationic transition metal-based photocatalyst potency, a parameter that should be taken into consideration also when developing energy transfer-triggered processes.
Collapse
Affiliation(s)
- Juliette Zanzi
- LCC−CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31077, France
| | - Zachary Pastorel
- Institut
des Biomolécules Max Mousseron, Université de Montpellier,
CNRS, ENSCM, Montpellier 34095, France
| | - Carine Duhayon
- LCC−CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31077, France
| | - Elise Lognon
- ITODYS, Université Paris Cité
and CNRS, Paris F-75006, France
| | - Christophe Coudret
- Université
de Toulouse, UPS, Institut de Chimie de Toulouse, FR2599, 118 Route de Narbonne, Toulouse F-31062, France
| | - Antonio Monari
- ITODYS, Université Paris Cité
and CNRS, Paris F-75006, France
| | - Isabelle M. Dixon
- LCPQ, Université
de Toulouse, CNRS, Université
Toulouse III - Paul Sabatier, 118 Route de Narbonne, Toulouse F-31062, France
| | - Yves Canac
- LCC−CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31077, France
| | - Michael Smietana
- Institut
des Biomolécules Max Mousseron, Université de Montpellier,
CNRS, ENSCM, Montpellier 34095, France
| | - Olivier Baslé
- LCC−CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31077, France
| |
Collapse
|
8
|
Cusumano AQ, Chaffin BC, Doyle AG. Mechanism of Ni-Catalyzed Photochemical Halogen Atom-Mediated C(sp 3)-H Arylation. J Am Chem Soc 2024; 146:15331-15344. [PMID: 38778454 PMCID: PMC11246173 DOI: 10.1021/jacs.4c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Within the context of Ni photoredox catalysis, halogen atom photoelimination from Ni has emerged as a fruitful strategy for enabling hydrogen atom transfer (HAT)-mediated C(sp3)-H functionalization. Despite the numerous synthetic transformations invoking this paradigm, a unified mechanistic hypothesis that is consistent with experimental findings on the catalytic systems and accounts for halogen radical formation and facile C(sp2)-C(sp3) bond formation remains elusive. We employ kinetic analysis, organometallic synthesis, and computational investigations to decipher the mechanism of a prototypical Ni-catalyzed photochemical C(sp3)-H arylation reaction. Our findings revise the previous mechanistic proposals, first by examining the relevance of SET and EnT processes from Ni intermediates relevant to the HAT-based arylation reaction. Our investigation highlights the ability for blue light to promote efficient Ni-C(sp2) bond homolysis from cationic NiIII and C(sp2)-C(sp3) reductive elimination from bipyridine NiII complexes. However interesting, the rates and selectivities of these processes do not account for the productive catalytic pathway. Instead, our studies support a mechanism that involves halogen atom evolution from in situ generated NiII dihalide intermediates, radical capture by a NiII(aryl)(halide) resting state, and key C-C bond formation from NiIII. Oxidative addition to NiI, as opposed to Ni0, and rapid NiIII/NiI comproportionation play key roles in this process. The findings presented herein offer fundamental insight into the reactivity of Ni in the broader context of catalysis.
Collapse
Affiliation(s)
- Alexander Q Cusumano
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Braden C Chaffin
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Abigail G Doyle
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
K P S, Russelisaac Premakumari S, Cho KB, Lee A. Hydrosulfonylation of Alkynes for Stereodivergent Synthesis of Vinyl Sulfones: Synthetic Strategy and Mechanistic Insights. J Am Chem Soc 2024; 146:14816-14828. [PMID: 38752975 DOI: 10.1021/jacs.4c03372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Direct synthesis of thermodynamically less favorable (Z)-vinyl sulfones presents a notable challenge in organic synthesis. In addition, the development of a stereodivergent synthesis for (E)- and (Z)-vinyl sulfones is crucial but remains elusive. In this study, we present a hydrosulfonylation of aryl-substituted alkynes, achieving a stereodivergent synthesis of (E)- and (Z)-vinyl sulfones by leveraging both thermodynamic and kinetic controls. Notably, the synthesis of challenging (Z)-vinyl sulfones was achieved through a kinetically controlled process without the need for a catalyst. To synthesize (E)-vinyl sulfones, unconventional visible light-mediated isomerization was employed as a means of facilitating the transition to the thermodynamically favored form. The present study encompasses a comprehensive experimental and computational investigation, which provides valuable insights into the reaction mechanism. This investigation reveals two plausible isomerization pathways: a novel double spin-flip mechanism and a hydrogen atom transfer process in the presence of eosin Y. This study not only advances our understanding of isomerization mechanisms beyond conventional energy-transfer routes but also offers a robust and switchable strategy for synthesizing (E)- and (Z)-vinyl sulfones, thereby providing a versatile avenue for the creation of valuable compounds in the fields of organic synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Sujith K P
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Steiny Russelisaac Premakumari
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kyung-Bin Cho
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Anna Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
10
|
Hu X, Cheng-Sánchez I, Kong W, Molander GA, Nevado C. Nickel-catalysed enantioselective alkene dicarbofunctionalization enabled by photochemical aliphatic C-H bond activation. Nat Catal 2024; 7:655-665. [PMID: 38947227 PMCID: PMC11208155 DOI: 10.1038/s41929-024-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/25/2024] [Indexed: 07/02/2024]
Abstract
The development of novel strategies to rapidly construct complex chiral molecules from readily available feedstocks is a long-term pursuit in the chemistry community. Radical-mediated alkene difunctionalizations represent an excellent platform towards this goal. However, asymmetric versions remain highly challenging, and more importantly, examples featuring simple hydrocarbons as reaction partners are elusive. Here we report an asymmetric three-component alkene dicarbofunctionalization capitalizing on the direct activation of C(sp 3)-H bonds through the combination of photocatalysed hydrogen atom transfer and nickel catalysis. This protocol provides an efficient platform for installing two vicinal carbon-carbon bonds across alkenes in an atom-economic fashion, providing a wide array of high-value chiral α-aryl/alkenyl carbonyls and phosphonates, as well as 1,1-diarylalkanes from ubiquitous alkane, ether and alcohol feedstocks. This method exhibits operational simplicity, broad substrate scope and excellent regioselectivity, chemoselectivity and enantioselectivity. The compatibility with bioactive motifs and expedient synthesis of pharmaceutically relevant molecules highlight the synthetic potential of this protocol.
Collapse
Affiliation(s)
- Xia Hu
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Wangqing Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Gary A. Molander
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA USA
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Pilli R, Selvam K, Balamurugan BSS, Jose V, Rasappan R. C(sp 3)-C(sp 3) Coupling of Cycloalkanes and Alkyl Halides via Dual Photocatalytic Hydrogen Atom Transfer and Nickel Catalysis. Org Lett 2024; 26:2993-2998. [PMID: 38592728 DOI: 10.1021/acs.orglett.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Functionalization of C(sp3)-H bonds represents the most straightforward and atom-economical transformation in organic synthesis. An innovative approach integrating photocatalytic hydrogen atom transfer (HAT) and transition metal catalysis has made significant progress in the coupling of α-heterosubstituted C-H bonds with alkyl halides. However, unactivated alkanes were ineffective as a result of the preponderance of byproduct formation. Herein, we demonstrate direct HAT and nickel catalysis in the coupling of cycloalkanes and benzyl bromides/primary alkyl iodides. Additionally, tetrabutylammonium decatungstate (TBADT) was recovered and recycled.
Collapse
Affiliation(s)
- Ramadevi Pilli
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Keerthika Selvam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Bala S S Balamurugan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Vidya Jose
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
12
|
Liang D, Zhou QQ, Xuan J. Multiple-cycle photochemical cascade reactions. Org Biomol Chem 2024; 22:2156-2174. [PMID: 38385507 DOI: 10.1039/d4ob00071d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Cascade reactions represent an efficient and economical synthetic approach, enabling the rapid synthesis of a wide array of structurally complex organic compounds. These compounds, previously inaccessible, can now be synthesized in a remarkably limited number of steps. Concurrently, the photochemical reactions of organic molecules have gained prominence as a potent strategy for accessing a diverse range of radical species and intermediates. This is achieved in a controlled manner under mild conditions. Owing to the relentless endeavors of chemists, significant strides have been made in the realm of photochemical cascade reactions. These advancements have facilitated the synthesis of novel molecular structures with high complexity, structures that are typically challenging to generate under thermal conditions. In this review, we comprehensively summarize and underscore the recent pivotal advancements in visible-light-induced cascade reactions. Our focus is on the elucidation of multiple photochemical catalytic cycles, emphasizing the catalytic activation modes and the types of reactions involved.
Collapse
Affiliation(s)
- Dong Liang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Quan-Quan Zhou
- Institute of Advanced Materials, Jiangxi Normal University, Nanchang 330022, China.
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.
| |
Collapse
|
13
|
Chen LM, Reisman SE. Enantioselective C(sp 2)-C(sp 3) Bond Construction by Ni Catalysis. Acc Chem Res 2024; 57:751-762. [PMID: 38346006 PMCID: PMC10918837 DOI: 10.1021/acs.accounts.3c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
ConspectusAfter decades of palladium dominating the realm of transition-metal-catalyzed cross-coupling, recent years have witnessed exciting advances in the development of new nickel-catalyzed cross-coupling reactions to form C(sp3) centers. Nickel possesses distinct properties compared with palladium, such as facile single-electron transfer to C(sp3) electrophiles and rapid C-C reductive elimination from NiIII. These properties, among others, make nickel particularly well-suited for reductive cross-coupling (RCC) in which two electrophiles are coupled and an exogenous reductant is used to turn over the metal catalyst. Ni-catalyzed RCCs use readily available and stable electrophiles as starting materials and exhibit good functional group tolerance, which makes them appealing for applications in the synthesis of complex molecules. Building upon the foundational work in Ni-catalyzed RCCs by the groups of Kumada, Durandetti, Weix, and others, as well as the advancements in Ni-catalyzed enantioselective redox-neutral cross-couplings led by Fu and co-workers, we initiated a program to explore the feasibility of developing highly enantioselective Ni-catalyzed RCCs. Our research has also been driven by a keen interest in unraveling the factors contributing to enantioinduction and electrophile activation as we seek new avenues for advancing our understanding and further developing these reactions.In the first part of this Account, we organize our reported methods on the basis of the identity of the C(sp3) electrophiles, including benzylic chlorides, N-hydroxyphthalimide (NHP) esters, and α-chloro esters and nitriles. We highlight how the selection of specific chiral ligands plays a pivotal role in achieving high cross-selectivity and enantioselectivity. In addition, we show that reduction can be accomplished not only with heterogeneous reductants, such as Mn0, but also with the soluble organic reductant tetrakis(dimethylamino)ethylene (TDAE), as well as electrochemically. The use of homogeneous reductants, such as TDAE, is well suited for studying the mechanism of the transformation. Although this Account primarily focuses on RCCs, we also highlight our work using trifluoroborate (BF3K) salts as radical precursors for enantioselective dual-Ni/photoredox systems.At the end of this Account, we summarize the relevant mechanistic studies of two closely related asymmetric reductive alkenylation reactions developed in our laboratory and provide a context between our work and related mechanistic studies by others. We discuss how the ligand properties influence the rates and mechanisms of electrophile activation and how understanding the mode of C(sp3) radical generation can be used to optimize the yield of an RCC. Our research endeavors to offer insights on the intricate mechanisms at play in asymmetric Ni-catalyzed RCCs with the goal of using the rate of electrophile activation to improve the substrate scope of enantioselective RCCs. We anticipate that the insights we share in this Account can provide guidance for the development of new methods in this field.
Collapse
Affiliation(s)
- Li-Ming Chen
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sarah E. Reisman
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
14
|
Sivaraj C, Maiti D, Gandhi T. Photo-Catalyzed Acyl Azolium Promoted Selective α-C(sp 3 )-H Acylation of Acetone via HAT: Access to Thermodynamically Less Favoured (Z)-α,β-Unsaturated Ketones. Chemistry 2024; 30:e202303626. [PMID: 37997552 DOI: 10.1002/chem.202303626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Mono α-acylation of acetone has been achieved for the first time by reacting with bench-stable acyl azolium salts under violet-LED light at room temperature. The intermolecular hydrogen atom transfer (HAT) from acetone to triplet state of azolium salts under violet LED irradiation resulted in thermodynamically less favourable (Z)-α,β-unsaturated ketones with up to 99 : 1 selectivity via C-C bond formation. This compelling protocol access the desired α-C(sp3 )-H acylation product under metal-, ligand- and oxidant-free conditions on a wide range of substrates.
Collapse
Affiliation(s)
- Chandrasekaran Sivaraj
- Department of Chemistry, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
15
|
Xu GQ, Wang WD, Xu PF. Photocatalyzed Enantioselective Functionalization of C(sp 3)-H Bonds. J Am Chem Soc 2024; 146:1209-1223. [PMID: 38170467 DOI: 10.1021/jacs.3c06169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp3)-H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp3)-H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp3)-H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research.
Collapse
Affiliation(s)
- Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
16
|
Qin J, Zhang Z, Lu Y, Zhu S, Chu L. Divergent 1,2-carboallylation of terminal alkynes enabled by metallaphotoredox catalysis with switchable triplet energy transfer. Chem Sci 2023; 14:12143-12151. [PMID: 37969584 PMCID: PMC10631246 DOI: 10.1039/d3sc04645a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023] Open
Abstract
We report a metallaphotoredox strategy for stereodivergent three-component carboallylation of terminal alkynes with allylic carbonates and alkyl trifluoroborates. This redox-neutral dual catalytic protocol utilizes commercially available organic photocatalyst 4CzIPN and nickel catalysts to trigger a radical addition/alkenyl-allyl coupling sequence, enabling straightforward access to functionalized 1,4-dienes in a highly chemo-, regio-selective, and stereodivergent fashion. This reaction features a broad substrate generality and a tunable triplet energy transfer control with pyrene as a simple triplet energy modulator, offering a facile synthesis of complex trans- and cis-selective skipped dienes with the same set of readily available substrates.
Collapse
Affiliation(s)
- Jian Qin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University Shanghai 201620 China
| | - Zhuzhu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University Shanghai 201620 China
| | - Yi Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University Shanghai 201620 China
| |
Collapse
|
17
|
Chang R, Pang Y, Ye J. Divergent Photosensitizer Controlled Reactions of 4-Hydroxycoumarins and Unactivated Olefins: Hydroarylation and Subsequent [2+2] Cycloaddition. Angew Chem Int Ed Engl 2023; 62:e202309897. [PMID: 37749064 DOI: 10.1002/anie.202309897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Herein, we report a photoinduced approach for hydroarylation of unactivated olefins using 4-hydroxycoumarins as the arylating reagent. Key to the success of this reaction is the conversion of nucleophilic 4-hydroxycoumarins into electrophilic carbon radicals via photocatalytic arene oxidation, which not only circumvents the polarity-mismatch issue encountered under ionic conditions but also accommodates a broad substrate scope and inhibits side reactions that were previously observed. Moreover, divergent reactivity was achieved by changing the photocatalyst, enabling a subsequent [2+2] cycloaddition to deliver cyclobutane-fused pentacyclic products that are otherwise challenging to access in high yields and with high diastereoselectivity. Mechanistic studies have elucidated the mechanism of the reactions and the origin of the divergent reactivity.
Collapse
Affiliation(s)
- Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yubing Pang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
18
|
Zhao H, Hu Y, Zheng S, Yuan W. α-Tertiary Primary Amine Synthesis via Photocatalytic C(sp 3)-H Aminoalkylation. Org Lett 2023; 25:6699-6704. [PMID: 37675946 DOI: 10.1021/acs.orglett.3c02507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Facile access to sterically hindered α-tertiary primary amines via photocatalytic radical coupling of native C(sp3)-H substrates with N-unsubstituted ketimines is reported. LiBr was used as a hydrogen atom transfer reagent to cleave C(sp3)-H bonds to get alkyl radicals. The in situ-generated HBr can then serve as a Bronsted acid to activate N-unsubstituted ketimines readily for single-electron reduction to deliver α-amino radicals. As a consequence, radical-radical coupling affords primary amines with a congested α-tertiary substituent. This reaction is highlighted by simple and mild conditions, 100% atom-economy, and broad hydrocarbon substrate scope for benzyl ethers, cyclic ethers, benzyl alcohols, alkylarenes, and carbocycles.
Collapse
Affiliation(s)
- Hongping Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China
| | - Yuanyuan Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China
| | - Songlin Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, PR China
| |
Collapse
|
19
|
McNicholas BJ, Tong ZJ, Bím D, Turro RF, Kazmierczak NP, Chalupský J, Reisman SE, Hadt RG. Electronic Structures of Nickel(II)-Bis(indanyloxazoline)-dihalide Catalysts: Understanding Ligand Field Contributions That Promote C(sp 2)-C(sp 3) Cross-Coupling. Inorg Chem 2023; 62:14010-14027. [PMID: 37584501 PMCID: PMC10530056 DOI: 10.1021/acs.inorgchem.3c02048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
NiII(IB) dihalide [IB = (3aR,3a'R,8aS,8a'S)-2,2'-(cyclopropane-1,1-diyl)bis(3a,8a-dihydro-8H-indeno[1,2-d]-oxazole)] complexes are representative of a growing class of first-row transition-metal catalysts for the enantioselective reductive cross-coupling of C(sp2) and C(sp3) electrophiles. Recent mechanistic studies highlight the complexity of these ground-state cross-couplings but also illuminate new reactivity pathways stemming from one-electron redox and their significant sensitivities to reaction conditions. For the first time, a diverse array of spectroscopic methods coupled to electrochemistry have been applied to NiII-based precatalysts to evaluate specific ligand field effects governing key Ni-based redox potentials. We also experimentally demonstrate DMA solvent coordination to catalytically relevant Ni complexes. Coordination is shown to favorably influence key redox-based reaction steps and prevent other deleterious Ni-based equilibria. Combined with electronic structure calculations, we further provide a direct correlation between reaction intermediate frontier molecular orbital energies and cross-coupling yields. Considerations developed herein demonstrate the use of synergic spectroscopic and electrochemical methods to provide concepts for catalyst ligand design and rationalization of reaction condition optimization.
Collapse
Affiliation(s)
- Brendon J. McNicholas
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Z. Jaron Tong
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Daniel Bím
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Raymond F. Turro
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Nathanael P. Kazmierczak
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Jakub Chalupský
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Sarah E. Reisman
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
20
|
Maity B, Dutta S, Cavallo L. The mechanism of visible light-induced C-C cross-coupling by C sp3-H bond activation. Chem Soc Rev 2023; 52:5373-5387. [PMID: 37464786 DOI: 10.1039/d2cs00960a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Csp3-C cross-coupling by activating Csp3-H bonds is a dream reaction for the chemical community, and visible light-induced transition metal-catalysis under mild reaction conditions is considered a powerful tool to achieve it. Advancement of this research area is still in its infancy because of the chemical and technical complexity of this catalysis. Mechanistic studies illuminating the operative reaction pathways can rationalize the increasing amount of experimental catalysis data and provide the knowledge allowing faster and rational advances in the field. This goal requires complementary experimental and theoretical mechanistic studies, as each of them is unfit to clarify the operative mechanisms alone. In this tutorial review we summarize representative experimental and computational mechanistic studies, highlighting weaknesses, strengths, and synergies between the two approaches.
Collapse
Affiliation(s)
- Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Sayan Dutta
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
21
|
Liu MS, Shu W. Rapid Synthesis of β-Chiral Sulfones by Ni-Organophotocatalyzed Enantioselective Sulfonylalkenylation of Alkenes. JACS AU 2023; 3:1321-1327. [PMID: 37234126 PMCID: PMC10207110 DOI: 10.1021/jacsau.3c00069] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
β-Chiral sulfones are substructures widespread in drug molecules and bioactive targets and serve as important chiral synthons in organic synthesis yet are challenging to access. Herein, a three-component strategy enabled by visible-light- and Ni-catalyzed sulfonylalkenylation of styrenes for the synthesis of enantioenriched β-chiral sulfones has been developed. This dual-catalysis strategy allows for one-step skeletal assembly along with the control of enantioselectivity in the presence of a chiral ligand, providing an efficient and straightforward access to enantioenriched β-alkenyl sulfones from easily available and simple starting materials. Mechanistic investigations reveal that the reaction undergoes a chemoselective radical addition over two alkenes followed by a Ni-intercepted asymmetric Csp3-Csp2 coupling with alkenyl halides.
Collapse
Affiliation(s)
- Ming-Shang Liu
- Shenzhen
Grubbs Institute, Department of Chemistry, and Guangdong Provincial
Key Laboratory of Catalysis, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, People’s Republic
of China
| | - Wei Shu
- Shenzhen
Grubbs Institute, Department of Chemistry, and Guangdong Provincial
Key Laboratory of Catalysis, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, People’s Republic
of China
| |
Collapse
|
22
|
Xu S, Ping Y, Li W, Guo H, Su Y, Li Z, Wang M, Kong W. Enantioselective C(sp 3)-H Functionalization of Oxacycles via Photo-HAT/Nickel Dual Catalysis. J Am Chem Soc 2023; 145:5231-5241. [PMID: 36812098 DOI: 10.1021/jacs.2c12481] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The selective functionalization of ubiquitous but inert C-H bonds is highly appealing in synthetic chemistry, but the direct transformation of hydrocarbons lacking directing groups into high-value chiral molecules remains a formidable challenge. Herein, we develop an enantioselective C(sp3)-H functionalization of undirected oxacycles via photo-HAT/nickel dual catalysis. This protocol provides a practical platform for the rapid construction of high-value and enantiomerically enriched oxacycles directly from simple and abundant hydrocarbon feedstocks. The synthetic utility of this strategy is further demonstrated in the late-stage functionalization of natural products and the synthesis of many pharmaceutically relevant molecules. Experimental and density functional theory calculation studies provide detailed insights into the mechanism and the origin of enantioselectivity for the asymmetric C(sp3)-H functionalization.
Collapse
Affiliation(s)
- Sheng Xu
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Yuanyuan Ping
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Wei Li
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Haoyun Guo
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Yinyan Su
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Ziyang Li
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wangqing Kong
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| |
Collapse
|
23
|
Hu Y, Zou Y, Yang H, Ji H, Jin Y, Zhang Z, Liu Y, Zhang W. Precise Synthesis of Chiral Z-Allylamides by Cobalt-Catalyzed Asymmetric Sequential Hydrogenations. Angew Chem Int Ed Engl 2023; 62:e202217871. [PMID: 36753391 DOI: 10.1002/anie.202217871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Asymmetric sequential hydrogenations of conjugated enynes have been developed using a Ph-BPE-CoI catalyst for the precise synthesis of chiral Z-allylamides in high activity (up to 1000 substrate/catalyst (S/C)) and with excellent enantioselectivity (up to >99 % enantiomeric excess (ee)). Mechanism experiments and theoretical calculations support a cationic CoI /CoIII redox catalytic cycle. The catalytic activity difference between cobalt complexes of Ph-BPE and QuinoxP* was explained by the process decomposition of rate-determining step in the second hydrogenation.
Collapse
Affiliation(s)
- Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huiwen Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Haotian Ji
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yue Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
24
|
Huang L, Szewczyk M, Kancherla R, Maity B, Zhu C, Cavallo L, Rueping M. Modulating stereoselectivity in allylic C(sp 3)-H bond arylations via nickel and photoredox catalysis. Nat Commun 2023; 14:548. [PMID: 36725849 PMCID: PMC9892578 DOI: 10.1038/s41467-023-36103-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
While significant progress has been made in developing selective C-H bond cross-couplings in the field of radical chemistry, the site and stereoselectivity remain a long-standing challenge. Here, we present the successful development of stereodivergent allylic C(sp3)-H bond arylations through a systematic investigation of the direction and degree of stereoselectivity in the cross-coupling process. In contrast to the signature photosensitized geometrical isomerization of alkenes, the catalytic reaction demonstrates the feasibility of switching the C-C double bond stereoselectivity by means of ligand control as well as steric and electronic effects. Computational studies explain the stereochemical outcome and indicate that excitation of a Ni-allyl complex from singlet to a triplet state results in a spontaneous change of the allyl group coordination and that the subsequent isomerization can be directed by the choice of the ligand to achieve E/Z selectivity.
Collapse
Affiliation(s)
- Long Huang
- grid.1957.a0000 0001 0728 696XInstitute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Marcin Szewczyk
- grid.1957.a0000 0001 0728 696XInstitute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Rajesh Kancherla
- grid.45672.320000 0001 1926 5090KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Bholanath Maity
- grid.45672.320000 0001 1926 5090KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Chen Zhu
- grid.45672.320000 0001 1926 5090KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Luigi Cavallo
- grid.45672.320000 0001 1926 5090KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Magnus Rueping
- grid.45672.320000 0001 1926 5090KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia ,grid.1957.a0000 0001 0728 696XInstitute for Experimental Molecular Imaging, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
25
|
Li X, Yuan M, Chen F, Huang Z, Qing FL, Gutierrez O, Chu L. Three-component enantioselective alkenylation of organophosphonates via nickel metallaphotoredox catalysis. Chem 2023; 9:154-169. [PMID: 39554778 PMCID: PMC11566131 DOI: 10.1016/j.chempr.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of efficient catalytic multicomponent reactions (MCRs) is highly sought-after in chemical synthesis. However, catalytic asymmetric MCRs, particularly involving radical species, remain largely underdeveloped due to the exceptionally high reactivity of open-shell radical species. Herein, we report a metallaphotoredox-catalyzed asymmetric three-component method to access a diverse array of enantio-enriched α-alkenyl phosphonates from readily available vinyl phosphonates, alkenyl halides, and alkyl trifluoroborates under mild conditions. This operationally simple and redox-neutral protocol exhibits broad substrate scope and excellent chemo-, regio-, stereo-, and enantioselectivity. Furthermore, by simple modification of the triplet energy of the photocatalyst employed, both enantio-enriched trans and cis α-alkenyl phosphonates can be divergently accessed. Detailed computational and experimental studies were undertaken to elucidate the mechanism and origin of the observed reactivity and selectivity, which support a radical cascade sequence with α-phosphonate controlling the trajectory of radical capture by a chiral tetrahedral alkenyl nickel(II) species in the enantioselectivity-determining step.
Collapse
Affiliation(s)
- Xiaofang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Mingbin Yuan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Zhonghou Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
- Lead contact
| |
Collapse
|
26
|
Asymmetric construction of allylicstereogenic carbon center featuring atrifluoromethyl group via enantioselective reductive fluoroalkylation. Nat Commun 2022; 13:7035. [PMID: 36396652 PMCID: PMC9672039 DOI: 10.1038/s41467-022-34841-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Emerging as a powerful tool for lead optimization in pharmaceutical research and development, to develop the facile, general protocols that allows the incorporation of fluorine-containing motif in drug candidates has accumulated enormous research interest in recent years. Among these important motifs, the incorporation of strategic motif CF3 on aliphatic chain especially with the concomitant construction of trifluoromethylated alkanes bearing a CF3-substituted stereogenic carbon, is of paramount importance. Herein, we disclose an asymmetric nickel-catalyzed reductive trifluoroalkylation of alkenyl halides for enantioselective syntheses of diverse α-trifluoromethylated allylic alkanes, offering a general protocol to access the trifluoromethyl analogue to chiral α-methylated allylic alkanes, one of the most prevalent key components among natural products and pharmaceuticals. Utilities of the method including the application of the asymmetric trifluoroalkylation on multiple biologically active complex molecules, derivatization of transformable alkenyl functionality were demonstrated, providing a facile method in the diversity-oriented syntheses of CF3-containing chiral drugs and bioactive-molecules.
Collapse
|
27
|
Katta N, Zhao QQ, Mandal T, Reiser O. Divergent and Synergistic Photocatalysis: Hydro- and Oxoalkylation of Vinyl Arenes for the Stereoselective Synthesis of Cyclopentanols via a Formal [4+1]-Annulation of 1,3-Dicarbonyls. ACS Catal 2022; 12:14398-14407. [PMID: 36439036 PMCID: PMC9680001 DOI: 10.1021/acscatal.2c04736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/06/2022] [Indexed: 11/10/2022]
Abstract
![]()
The controllable
divergent reactivity of 1,3-dicarbonyls is described,
which enables the efficient hydro- and oxoalkylation of vinyl arenes.
Both reaction pathways are initiated through the formation of polarity-reversed C-centered-radical intermediates at the active methylene
center of 1,3-dicarbonyls via direct photocatalytic C–H bond
transformations. The oxoalkylation of alkenes is achieved under aerobic
conditions via a Cu(II)-photomediated rebound mechanism, while
the corresponding hydroalkylation becomes possible under a nitrogen
atmosphere by the combination of 4CzIPN and a Brønsted base.
The breadth of these divergent protocols is demonstrated in the late-stage
modification of drugs and natural products and by the transformation
of the products to a variety of heterocycles such as pyridines, pyrroles,
or furans. Moreover, the two catalytic modes can be combined synergistically
for the stereoselective construction of cyclopentanol derivatives
in a formal [4+1]-annulation process.
Collapse
Affiliation(s)
- Narenderreddy Katta
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Quan-Qing Zhao
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Tirtha Mandal
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
28
|
Selective functionalization of benzylic C(sp3)–H bonds to synthesize complex molecules. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Wang F, Pan S, Zhu S, Chu L. Selective Three-Component Reductive Alkylalkenylation of Unbiased Alkenes via Carbonyl-Directed Nickel Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shiwei Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
30
|
Corpas J, Gomez-Mendoza M, Ramírez-Cárdenas J, de la Peña O'Shea VA, Mauleón P, Gómez Arrayás R, Carretero JC. One-Metal/Two-Ligand for Dual Activation Tandem Catalysis: Photoinduced Cu-Catalyzed Anti-hydroboration of Alkynes. J Am Chem Soc 2022; 144:13006-13017. [PMID: 35786909 PMCID: PMC9348838 DOI: 10.1021/jacs.2c05805] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
A dual catalyst system
based on ligand exchange of two diphosphine
ligands possessing different properties in a copper complex has been
devised to merge metal- and photocatalytic activation modes. This
strategy has been applied to the formal anti-hydroboration of activated
internal alkynes via a tandem sequence in which Cu/Xantphos catalyzes
the B2pin2-syn-hydroboration
of the alkyne whereas Cu/BINAP serves as a photocatalyst for visible
light-mediated isomerization of the resulting alkenyl boronic ester.
Photochemical studies by means of UV–vis absorption, steady-state
and time-resolved fluorescence, and transient absorption spectroscopy
have allowed characterizing the photoactive Cu/BINAP species in the
isomerization reaction and its interaction with the intermediate syn-alkenyl boronic ester through energy transfer from the
triplet excited state of the copper catalyst. In addition, mechanistic
studies shed light into catalyst speciation and the interplay between
the two catalytic cycles as critical success factors.
Collapse
Affiliation(s)
- Javier Corpas
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA Energy Institute, Technological Park of Mostoles, Avda. Ramón de la Sagra 3, 28935 Madrid, Spain
| | - Jonathan Ramírez-Cárdenas
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Víctor A de la Peña O'Shea
- Photoactivated Processes Unit, IMDEA Energy Institute, Technological Park of Mostoles, Avda. Ramón de la Sagra 3, 28935 Madrid, Spain
| | - Pablo Mauleón
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| | - Ramón Gómez Arrayás
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| | - Juan C Carretero
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| |
Collapse
|
31
|
Lu Q, Guan H, Wang YE, Xiong D, Lin T, Xue F, Mao J. Nickel/Photoredox-Catalyzed Enantioselective Reductive Cross-Coupling between Vinyl Bromides and Benzyl Chlorides. J Org Chem 2022; 87:8048-8058. [PMID: 35666844 DOI: 10.1021/acs.joc.2c00707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-promoted nickel/photoredox-catalyzed reductive cross-coupling reaction between vinyl bromides and benzyl chlorides is reported. A diverse array of enantioenriched allylic centers containing products could be achieved in good yields (up to 90%) and high enantioselectivities (up to 95% ee). The mechanistic studies show that this reductive cross-coupling involves a radical pathway.
Collapse
Affiliation(s)
- Qianqian Lu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Haixing Guan
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.,Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Tingzhi Lin
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
32
|
Li Z, Li C, Ding Y, Huo H. Photoinduced nickel-catalyzed enantioselective coupling reactions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Acceptorless dehydrogenative amination of alkenes for the synthesis of N-heterocycles. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Bonciolini S, Noël T, Capaldo L. Synthetic Applications of Photocatalyzed Halogen‐radical mediated Hydrogen Atom Transfer for C−H Bond Functionalization. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Stefano Bonciolini
- University of Amsterdam: Universiteit van Amsterdam Van 't Hoff Institute for Molecular Sciences NETHERLANDS
| | - Timothy Noël
- University of Amsterdam: Universiteit van Amsterdam Van 't Hoff Institute for Molecular Sciences NETHERLANDS
| | - Luca Capaldo
- University of Amsterdam: Universiteit van Amsterdam Van 't Hoff Institute for Molecular Sciences Science Park 904 1098 XH Amsterdam NETHERLANDS
| |
Collapse
|
35
|
Shu X, Zhong D, Lin Y, Qin X, Huo H. Modular Access to Chiral α-(Hetero)aryl Amines via Ni/Photoredox-Catalyzed Enantioselective Cross-Coupling. J Am Chem Soc 2022; 144:8797-8806. [PMID: 35503417 DOI: 10.1021/jacs.2c02795] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chiral α-aryl N-heterocycles are commonly found in natural products, pharmaceutical agents, and chiral catalysts but remain challenging to access via asymmetric catalysis. Herein, we report a general and modular approach for the direct enantioselective α-arylation of saturated azacycles and acyclic N-alkyl benzamides via nickel/photoredox dual catalysis. This process exploits the hydrogen atom transfer ability of photoeliminated chlorine radicals to convert azacycles to the corresponding α-amino alkyl radicals that then are coupled with ubiquitous and inexpensive (hetero)aryl chlorides. These coupling reactions require no oxidants or organometallic reagents, feature feedstock starting materials, a broad substrate scope, and high enantioselectivities, and are applicable to late-stage diversification of medicinally relevant complex molecules. Mechanistic studies suggest that the nickel catalyst uncommonly plays multiple roles, accomplishing chlorine radical generation, α-amino radical capture, cross-coupling, and asymmetric induction.
Collapse
Affiliation(s)
- Xiaomin Shu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De Zhong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanmei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao Qin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haohua Huo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
36
|
Xiong P, Hemming M, Ivlev SI, Meggers E. Electrochemical Enantioselective Nucleophilic α-C(sp 3)-H Alkenylation of 2-Acyl Imidazoles. J Am Chem Soc 2022; 144:6964-6971. [PMID: 35385651 DOI: 10.1021/jacs.2c01686] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Merging electrochemistry with asymmetric catalysis promises to provide an environmentally friendly and efficient strategy for the construction of nonracemic chiral molecules. However, in practice, significant challenges arise from the instability or incompatibility of the chiral catalysts under the electrochemical conditions at the interface of electrode and solution. Herein, we report a catalytic asymmetric indirect electrolysis employing the combination of a redox mediator and a chiral-at-rhodium Lewis acid, which achieves a previously elusive enantioselective nucleophilic α-C(sp3)-H alkenylation of ketones. Specifically, 2-acyl imidazoles react with potassium alkenyl trifluoroborates in high yields (up to 94%) and with exceptional enantioselectivities (27 examples with ≥99% ee) without the need for any additional stoichiometric oxidants (overall 40 examples). The new indirect electrosynthesis can be scaled to gram quantities and was applied to the straightforward synthesis of intermediates of the natural product cryptophycin A and a cathepsin K inhibitor.
Collapse
Affiliation(s)
- Peng Xiong
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Marcel Hemming
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Sergei I Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| |
Collapse
|
37
|
Corpas J, Mauleón P, Gómez Arrayás R, Carretero JC. E/Z
Photoisomerization of Olefins as an Emergent Strategy for the Control of Stereodivergence in Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Pablo Mauleón
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Juan C. Carretero
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| |
Collapse
|
38
|
Buendia MB, Higginson B, Kegnæs S, Kramer S, Martin R. Redox-Neutral Ni-Catalyzed sp 3 C–H Alkylation of α-Olefins with Unactivated Alkyl Bromides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mikkel B. Buendia
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Bradley Higginson
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Department de Quimica, c/Marcel i Domingo, 1, 43007 Tarragona, Spain
| | - Søren Kegnæs
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
39
|
Affiliation(s)
- Yota Sakakibara
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
- Japanese Science and Technology Agency (JST)−PRESTO, Chiyoda, Tokyo 102-0076, Japan
| | - Kei Murakami
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
- Japanese Science and Technology Agency (JST)−PRESTO, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
40
|
Li T, Cheng X, Lu J, Wang H, Fang Q, Lu Z. Enantioselective Reductive
Cross‐Coupling
of Aryl/Alkenyl Bromides with Benzylic Chlorides via Photoredox/Biimidazoline Nickel Dual Catalysis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tongtong Li
- Department of Chemistry Zhejiang University 866 Yuhangtang road Hangzhou 310058 China
| | - Xiaokai Cheng
- Department of Chemistry Zhejiang University 866 Yuhangtang road Hangzhou 310058 China
| | - Jiamin Lu
- Department of Chemistry Zhejiang University 866 Yuhangtang road Hangzhou 310058 China
| | - Huifeng Wang
- Department of Chemistry Zhejiang University 866 Yuhangtang road Hangzhou 310058 China
- Hangzhou Innovation Center, Zhejiang University Hangzhou 311200 China
| | - Qun Fang
- Department of Chemistry Zhejiang University 866 Yuhangtang road Hangzhou 310058 China
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
- Hangzhou Innovation Center, Zhejiang University Hangzhou 311200 China
| | - Zhan Lu
- Department of Chemistry Zhejiang University 866 Yuhangtang road Hangzhou 310058 China
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
- Hangzhou Innovation Center, Zhejiang University Hangzhou 311200 China
| |
Collapse
|