1
|
Rosetto G, Vidal F, McGuire TM, Kerr RWF, Williams CK. High Molar Mass Polycarbonates as Closed-Loop Recyclable Thermoplastics. J Am Chem Soc 2024; 146:8381-8393. [PMID: 38484170 PMCID: PMC10979403 DOI: 10.1021/jacs.3c14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
Using carbon dioxide (CO2) to make recyclable thermoplastics could reduce greenhouse gas emissions associated with polymer manufacturing. CO2/cyclic epoxide ring-opening copolymerization (ROCOP) allows for >30 wt % of the polycarbonate to derive from CO2; so far, the field has largely focused on oligocarbonates. In contrast, efficient catalysts for high molar mass polycarbonates are underinvestigated, and the resulting thermoplastic structure-property relationships, processing, and recycling need to be elucidated. This work describes a new organometallic Mg(II)Co(II) catalyst that combines high productivity, low loading tolerance, and the highest polymerization control to yield polycarbonates with number average molecular weight (Mn) values from 4 to 130 kg mol-1, with narrow, monomodal distributions. It is used in the ROCOP of CO2 with bicyclic epoxides to produce a series of samples, each with Mn > 100 kg mol-1, of poly(cyclohexene carbonate) (PCHC), poly(vinyl-cyclohexene carbonate) (PvCHC), poly(ethyl-cyclohexene carbonate) (PeCHC, by hydrogenation of PvCHC), and poly(cyclopentene carbonate) (PCPC). All these materials are amorphous thermoplastics, with high glass transition temperatures (85 < Tg < 126 °C, by differential scanning calorimetry) and high thermal stability (Td > 260 °C). The cyclic ring substituents mediate the materials' chain entanglements, viscosity, and glass transition temperatures. Specifically, PCPC was found to have 10× lower entanglement molecular weight (Me)n and 100× lower zero-shear viscosity compared to those of PCHC, showing potential as a future thermoplastic. All these high molecular weight polymers are fully recyclable, either by reprocessing or by using the Mg(II)Co(II) catalyst for highly selective depolymerizations to epoxides and CO2. PCPC shows the fastest depolymerization rates, achieving an activity of 2500 h-1 and >99% selectivity for cyclopentene oxide and CO2.
Collapse
Affiliation(s)
| | | | - Thomas M. McGuire
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, U.K.
| | - Ryan W. F. Kerr
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, U.K.
| | - Charlotte K. Williams
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, U.K.
| |
Collapse
|
2
|
Wang L, Li Y, Yang J, Wu Q, Liang S, Liu Z. Poly(Propylene Carbonate)-Based Biodegradable and Environment-Friendly Materials for Biomedical Applications. Int J Mol Sci 2024; 25:2938. [PMID: 38474185 DOI: 10.3390/ijms25052938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Poly(propylene carbonate) (PPC) is an emerging "carbon fixation" polymer that holds the potential to become a "biomaterial of choice" in healthcare owing to its good biocompatibility, tunable biodegradability and safe degradation products. However, the commercialization and wide application of PPC as a biomedical material are still hindered by its narrow processing temperature range, poor mechanical properties and hydrophobic nature. Over recent decades, several physical, chemical and biological modifications of PPC have been achieved by introducing biocompatible polymers, inorganic ions or small molecules, which can endow PPC with better cytocompatibility and desirable biodegradability, and thus enable various applications. Indeed, a variety of PPC-based degradable materials have been used in medical applications including medical masks, surgical gowns, drug carriers, wound dressings, implants and scaffolds. In this review, the molecular structure, catalysts for synthesis, properties and modifications of PPC are discussed. Recent biomedical applications of PPC-based biomaterials are highlighted and summarized.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Yumin Li
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jingde Yang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Qianqian Wu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Song Liang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
3
|
Gu Y, Kou X, Wang X, Li Z. Creating Remarkably Moisture- and Air-Stable Macromolecular Lewis Acid by Integrating Borane within the Polymer Chain: A Highly Active Catalyst for Homo(co)polymerization of Epoxides. Angew Chem Int Ed Engl 2024; 63:e202318645. [PMID: 38155561 DOI: 10.1002/anie.202318645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Borane-based Lewis acids (LA) play an indispensable role in the Lewis pair (LP) mediated polymerization. However, most borane-based LPs are moisture- and air-sensitive. Therefore, development of moisture and air-stable borane-based LP is highly desirable. To achieve this goal, the concept of "aggregation induced enlargement effects" by chemically linking multiple borane within a nanoscopic confinement was conceived to create macromolecular LA. Accordingly, an extremely moisture and air stable macromolecular borane, namely, PVP-1B featuring poly(4-vinylphenol) backbone, was constructed. The concentration of borane active site is greatly higher than average concentration due to local confinement. Therefore, an enhanced activity was observed. Moreover, the local LA aggregation effects allow its tolerance to air and large amount of chain transfer agent. Consequently, PVP-1B showed remarkable efficiency for propylene oxide (PO) polymerization at 25 °C (TOF=27900 h-1 ). Furthermore, it enables generation of well-defined telechelic poly (CHO-alt-CO2 ) diol (0.6-15.3 kg/mol) with narrow Đs via copolymerizing cyclohexene oxide and CO2 at 80 °C. This work indicates unifying multiple borane within a polymer in a macromolecular level shows superior catalytic performance than constructing binary, bi(multi)functional systems in a molecular level. This paves a new way to make functional polyethers.
Collapse
Affiliation(s)
- Yanru Gu
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, 266042, Qingdao, China
| | - Xinhui Kou
- Analyses and Testing Center, Qingdao University of Science and Technology, 53 Zhengzhou Road, 266042, Qingdao, China
| | - Xiaowu Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, 266042, Qingdao, China
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, 266042, Qingdao, China
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, 266042, Qingdao, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, 266042, Qingdao, China
| |
Collapse
|
4
|
Kuang Q, Zhang R, Zhou Z, Liao C, Liu S, Chen X, Wang X. A Supported Catalyst that Enables the Synthesis of Colorless CO 2 -Polyols with Ultra-Low Molecular Weight. Angew Chem Int Ed Engl 2023; 62:e202305186. [PMID: 37157011 DOI: 10.1002/anie.202305186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
Ultra-low molecular weight (ULMW) CO2 -polyols with well-defined hydroxyl end groups represent useful soft segments for the preparation of high-performance polyurethane foams. However, owing to the poor proton tolerance of catalysts towards CO2 /epoxide telomerization, it remains challenging to synthesize ULMW yet colorless CO2 -polyols. Herein, we propose an immobilization strategy of constructing supported catalysts by chemical anchoring of aluminum porphyrin on Merrifield resin. The resulting supported catalyst displays both extremely high proton tolerance (≈8000 times the equivalents of metal centers) and independence of cocatalyst, affording CO2 -polyols with ULMW (580 g mol-1 ) and high polymer selectivity (>99 %). Moreover, the ULMW CO2 -polyols with various architectures (tri-, quadra-, and hexa-arm) can be obtained, suggesting the wide proton universality of supported catalysts. Notably, benefiting from the heterogeneous nature of the supported catalyst, colorless products can be facilely achieved by simple filtration. The present strategy provides a platform for the synthesis of colorless ULMW polyols derived from not only CO2 /epoxides, but also lactone, anhydrides etc. or their combinations.
Collapse
Affiliation(s)
- Qingxian Kuang
- Key Laboratory of Polymer Ecomaterial, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Ruoyu Zhang
- Key Laboratory of Polymer Ecomaterial, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhenzhen Zhou
- Key Laboratory of Polymer Ecomaterial, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Can Liao
- Key Laboratory of Polymer Ecomaterial, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterial, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterial, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterial, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
5
|
Qu R, Wei Z, Suo H, Gu Y, Wang X, Xin Z, Qin Y.
CO
2
‐based
amphiphilic block copolymers: Facile
one‐step
synthesis and aqueous
self‐assembly. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Rui Qu
- College of Chemistry and Chemical Engineering Yantai University Yantai China
| | - Zhenyu Wei
- College of Chemistry and Chemical Engineering Yantai University Yantai China
| | - Hongyi Suo
- College of Chemistry and Chemical Engineering Yantai University Yantai China
| | - Yanan Gu
- College of Chemistry and Chemical Engineering Yantai University Yantai China
| | - Xue Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai China
| | - Zhirong Xin
- College of Chemistry and Chemical Engineering Yantai University Yantai China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering Yantai University Yantai China
| |
Collapse
|
6
|
Recyclable polythioesters and polydisulfides with near-equilibrium thermodynamics and dynamic covalent bonds. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
High-Performance Biodegradable PBAT/PPC Composite Film Through Reactive Compatibilizer. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-023-2900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Zhuo C, Cao H, Wang X, Liu S, Wang X. Polymeric aluminum porphyrin: Controllable synthesis of ultra-low molecular weight CO2-based polyols. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Jo S, Cruz L, Shah S, Wasantwisut S, Phan A, Gilliard-AbdulAziz KL. Perspective on Sorption Enhanced Bifunctional Catalysts to Produce Hydrocarbons. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seongbin Jo
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Luz Cruz
- Department of Material Science and Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Soham Shah
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Somchate Wasantwisut
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Annette Phan
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
| | - Kandis Leslie Gilliard-AbdulAziz
- Department of Chemical and Environmental Engineering, University of California−Riverside, Riverside, California92521, United States
- Department of Material Science and Engineering, University of California−Riverside, Riverside, California92521, United States
| |
Collapse
|
10
|
Qu R, Suo H, Gu Y, Weng Y, Qin Y. Sidechain Metallopolymers with Precisely Controlled Structures: Synthesis and Application in Catalysis. Polymers (Basel) 2022; 14:1128. [PMID: 35335458 PMCID: PMC8956016 DOI: 10.3390/polym14061128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Inspired by the cooperative multi-metallic activation in metalloenzyme catalysis, artificial enzymes as multi-metallic catalysts have been developed for improved kinetics and higher selectivity. Previous models about multi-metallic catalysts, such as cross-linked polymer-supported catalysts, failed to precisely control the number and location of their active sites, leading to low activity and selectivity. In recent years, metallopolymers with metals in the sidechain, also named as sidechain metallopolymers (SMPs), have attracted much attention because of their combination of the catalytic, magnetic, and electronic properties of metals with desirable mechanical and processing properties of polymeric backbones. Living and controlled polymerization techniques provide access to SMPs with precisely controlled structures, for example, controlled degree of polymerization (DP) and molecular weight dispersity (Đ), which may have excellent performance as multi-metallic catalysts in a variety of catalytic reactions. This review will cover the recent advances about SMPs, especially on their synthesis and application in catalysis. These tailor-made SMPs with metallic catalytic centers can precisely control the number and location of their active sites, exhibiting high catalytic efficiency.
Collapse
Affiliation(s)
- Rui Qu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| | - Hongyi Suo
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| | - Yanan Gu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| | - Yunxuan Weng
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| |
Collapse
|
11
|
Wang M, Liu S, Chen X, Wang X, Wang F. Aldehyde end-capped CO 2-based polycarbonates: a green synthetic platform for site-specific functionalization. Polym Chem 2022. [DOI: 10.1039/d2py00129b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aldehyde end-capped CO2-based polycarbonates were prepared to serve as a green platform for the construction of diverse functional polymers.
Collapse
Affiliation(s)
- Molin Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Fosong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
12
|
Liu J, Wang J, Li M, Tao Y. Gradient isoselective ring-opening polymerization of racemic cyclic diolide driven by chiral phosphoric acid catalysis. Polym Chem 2022. [DOI: 10.1039/d2py00955b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Commercially available binaphthol-derived chiral phosphoric acid organocatalysts were demonstrated to enable chemo- and stereoselective ROP of rac-cyclic diolide, yielding gradient isotactic multiblock poly(3-hydroxybutyrate) (P3HB).
Collapse
Affiliation(s)
- Junbao Liu
- China-Japan Union Hospital of Jilin University, Xiantai Street 126, Changchun 130000, People's Republic of China
| | - Jianqun Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|