1
|
Hore S, Jeong J, Kim D, Chang S. Visible-Light-Promoted Enantioselective α-Amidation of Aldehydes by Harnessing Organo-Iron Dual Catalysis. J Am Chem Soc 2024; 146:22172-22179. [PMID: 39078876 DOI: 10.1021/jacs.4c07884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The strategic integration of organocatalysis with transition-metal catalysis to achieve otherwise unattainable stereoselective transformations may serve as a powerful synthetic tool. Herein, we present a synthetically versatile α-amidation of aldehydes by leveraging dual iron and chiral enamine catalysis in an enantioselective manner (up to >99:1 er). Experimental and computational studies have led us to propose a new mechanistic platform, wherein visible-light-promoted LMCT generates [Fe(II)Cl3-], which effectively activates dioxazolones to form an iron-acylnitrenoid radical that inserts into chiral enamine intermediates.
Collapse
Affiliation(s)
- Soumyadip Hore
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jiwoo Jeong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
2
|
Wan Y, Ramírez E, Ford A, Zhang HK, Norton JR, Li G. Cooperative Fe/Co-Catalyzed Remote Desaturation for the Synthesis of Unsaturated Amide Derivatives. J Am Chem Soc 2024; 146:4985-4992. [PMID: 38320266 DOI: 10.1021/jacs.3c14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Unsaturated amides represent common functional groups found in natural products and bioactive molecules and serve as versatile synthetic building blocks. Here, we report an iron(II)/cobalt(II) dual catalytic system for the syntheses of distally unsaturated amide derivatives. The transformation proceeds through an iron nitrenoid-mediated 1,5-hydrogen atom transfer (1,5-HAT) mechanism. Subsequently, the radical intermediate undergoes hydrogen atom abstraction from vicinal methylene by a cobaloxime catalyst, efficiently yielding β,γ- or γ,δ-unsaturated amide derivatives under mild conditions. The efficiency of Co-mediated HAT can be tuned by varying different auxiliaries, highlighting the generality of this protocol. Remarkably, this desaturation protocol is also amenable to practical scalability, enabling the synthesis of unsaturated carbamates and ureas, which can be readily converted into various valuable molecules.
Collapse
Affiliation(s)
- Yanjun Wan
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Emmanuel Ramírez
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Ayzia Ford
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Harriet K Zhang
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jack R Norton
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Gang Li
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
| |
Collapse
|
3
|
Keum H, Ryoo H, Kim D, Chang S. Amidative β-Scission of Alcohols Enabled by Dual Catalysis of Photoredox Proton-Coupled Electron Transfer and Inner-Sphere Ni-Nitrenoid Transfer. J Am Chem Soc 2024; 146:1001-1008. [PMID: 38109265 DOI: 10.1021/jacs.3c11813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The photoredox/Ni dual catalysis is an appealing strategy to enable unconventional C-heteroatom bond formation. While significant advances have been achieved using this system, intermolecular C(sp3)-N bond formation has been relatively underdeveloped due to the difficulty in C(sp3)-N reductive elimination. Herein, we present a new mechanistic approach that utilizes dioxazolones as the Ni(II)-nitrenoid precursor to capture carbon-centered radicals by merging proton-coupled electron transfer (PCET) with nickel catalysis, thus forming synthetically versatile N-alkyl amides using alcohols. Based on mechanistic investigations, the involvement of (κ2-N,O)Ni(II)-nitrenoid species was proposed to capture photoredox PCET-induced alkyl radicals, thereby playing a pivotal role to enable the C(sp3)-N bond formation.
Collapse
Affiliation(s)
- Hyeyun Keum
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Harin Ryoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
4
|
Yang S, Wang Y, Xu W, Tian X, Bao M, Yu X. Visible-Light-Driven Iron-Catalyzed Decarboxylative C-N Coupling Reaction of Alkyl Carboxylic Acids with NaNO 2. Org Lett 2023. [PMID: 38054743 DOI: 10.1021/acs.orglett.3c03526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
An efficient visible-light-driven iron-catalyzed decarboxylative C-N coupling reaction of alkyl carboxylic acids with NaNO2 under mild conditions was developed. The reaction proceeds under photosensitizer-free conditions and features good to excellent yields, broad functional group tolerance, and an easy operation procedure. Preliminary mechanistic investigations showed that visible-light-driven iron catalysis not only achieved oxidative decarboxylation of alkyl carboxylic acids to alkyl radicals but also promoted the reduction of NO2- to NO, thus leading to the C-N radical coupling reaction.
Collapse
Affiliation(s)
- Shilei Yang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China
| | - Yi Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China
| | - Wenyao Xu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China
| | - Xiao Tian
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China
- School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, People's Republic of China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China
| |
Collapse
|
5
|
Lei J, Li M, Zhang Q, Liu S, Li H, Shi L, Jiang WF, Duan C, Jin Y. Visible-Light-Induced Radical Cascade Cross-Coupling via C(sp 3)-H Activation and C-N/N-O Cleavage: Feasible Access to Methylenebisamide Derivatives. Org Lett 2023; 25:2300-2305. [PMID: 36972412 DOI: 10.1021/acs.orglett.3c00646] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Here we report facile and manipulable access to methylenebisamide derivatives via visible-light-driven radical cascade processes incorporating C(sp3)-H activation and C-N/N-O cleavage. Mechanistic studies reveal that a traditional Ir-catalyzed photoredox pathway and a novel copper-induced complex-photolysis pathway are both involved, contributing to activating the inert N-methoxyamides and rendering the valuable bisamides. This approach exhibits many advantages, including mild reaction conditions, broad scope and functional group tolerance, and competitive step economy. Given the mechanistic plenitude and operational simplicity, we believe this package deal paves a promising way for the synthesis of valuable nitrogen-containing molecules.
Collapse
Affiliation(s)
- Jinglan Lei
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
- Experiment Center of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Min Li
- Experiment Center of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qingqing Zhang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Haifang Li
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wen-Feng Jiang
- Experiment Center of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
Liang Z, Wang K, Sun Q, Peng Y, Bao X. Iron-catalyzed dual decarboxylative coupling of α-amino acids and dioxazolones under visible-light to access amide derivatives. Chem Commun (Camb) 2023; 59:752-755. [PMID: 36541573 DOI: 10.1039/d2cc03318f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An iron-catalyzed decarboxylative C-N coupling of α-amino acids with dioxazolones is described herein to synthesize amide derivatives under visible-light. The desired products can be given in good to excellent yields under simple, mild, and oxidant-free conditions. This protocol provides a practical route for the transformation of α-amino acids to the corresponding amides. Computational studies were carried out to shed light on the mechanism of this reaction.
Collapse
Affiliation(s)
- Zhanqun Liang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Kaifeng Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Qing Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Yuzhu Peng
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China. .,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Xiong N, Li Y, Zeng R. Merging Photoinduced Iron-Catalyzed Decarboxylation with Copper Catalysis for C–N and C–C Couplings. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ni Xiong
- School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yang Li
- School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Rong Zeng
- School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| |
Collapse
|
8
|
Park J, Jang D, Son J, An J, Park Y, Bae H, Kim M, Lee J. Copper(I)-Mediated Decarboxylative N-Arylation of Dioxazolones: Synthesis of N-Aryl Amides. Synlett 2023. [DOI: 10.1055/s-0041-1738431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractDioxazolones, which are potent amide precursors, have been widely explored for the formation of C–N bonds with the help of transition-metal catalysts. Here, we highlight our recent studies on the synthesis of N-aryl amides using dioxazolones and boronic acids in the presence of copper(I) chloride under mild conditions. The versatility of the developed reaction is demonstrated by its wide range of functional-group tolerances as well as the release of nontoxic carbon dioxide. Optimization screenings reveal that a fluorine additive improves the desired reactivity toward the intended transformation. The addition of triphenylphosphine results in an N-acyl iminophosphorane, suggesting the involvement of an N-acyl nitrene intermediate in this transformation.
Collapse
Affiliation(s)
- Jinhwan Park
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University
| | - Dongkyu Jang
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University
| | - Jongwoo Son
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University
- Department of Chemistry, Dong-A University
| | - Jihye An
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University
| | - Yeongmi Park
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University
| | | | | | | |
Collapse
|
9
|
Nitrenium ion-based ipso-addition and ortho-cyclization of arenes under photo and iron dual-catalysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Song JL, Chen SY, Xiao L, Xie XL, Zheng YC, Shang-Shi Z, Shu B. Rh(III)‐Catalyzed N‐Arylation of Alkyl Dioxazolones with Arylboronic Acids for the Synthesis of N‐Aryl Amides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia-Lin Song
- Guangdong Pharmaceutical University School of Pharmacy CHINA
| | - Shao-Yong Chen
- Guangdong Pharmaceutical University Center for Drug Research and Development CHINA
| | - Lin Xiao
- Guangdong Pharmaceutical University Center for Drug Research and Development CHINA
| | - Xiao-Ling Xie
- Guangdong Pharmaceutical University School of Pharmacy CHINA
| | - Yi-Chuan Zheng
- Guangdong Pharmaceutical University Center for Drug Research and Development CHINA
| | - Zhang Shang-Shi
- Guangdong Pharmaceutical University Center for Drug Research and development Higher Education Mega Center 510006 GuangZhou CHINA
| | - Bing Shu
- Guangdong Pharmaceutical University School of Pharmacy CHINA
| |
Collapse
|
11
|
Shi P, Tu Y, Kong D, Wu P, Ma D, Bolm C. Iron-Catalyzed Intramolecular Arene C(sp 2 )-H Amidations under Mechanochemical Conditions. Angew Chem Int Ed Engl 2022; 61:e202204874. [PMID: 35511087 PMCID: PMC9401578 DOI: 10.1002/anie.202204874] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Indexed: 02/06/2023]
Abstract
In a ball mill, FeBr3 -catalyzed intramolecular amidations lead to 3,4-dihydro-2(1H)-quinolinones in good to almost quantitative yields. The reactions do not require a solvent and are easy to perform. No additional ligand is needed for the iron catalyst. Both 4-substituted aryl and β-substituted dioxazolones provide products with high selectivity. Mechanistically, an electrophilic spirocyclization followed by C-C migration explains the formation of rearranged products.
Collapse
Affiliation(s)
- Peng Shi
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Yongliang Tu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Deshen Kong
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Peng Wu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Ding Ma
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
12
|
Adegboyega AK, Son J. Reaction of Dioxazolones with Boronic Acids: Copper-Mediated Synthesis of N-Aryl Amides via N-Acyl Nitrenes. Org Lett 2022; 24:4925-4929. [PMID: 35776142 DOI: 10.1021/acs.orglett.2c01837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dioxazolones, as direct amide sources, have been used with boronic acids in the presence of copper(I) chloride to access N-aryl amides at room temperature. The versatility of the developed reaction is proven by ample scope having a wide range of functional group tolerance. The reaction optimization conditions revealed that a fluorine additive demonstrated improved reactivity toward the intended transformation. The addition of triphenylphosphine resulted in N-acyl iminophosphorane, suggesting the involvement of an N-acyl nitrene intermediate.
Collapse
Affiliation(s)
| | - Jongwoo Son
- Department of Chemistry, Dong-A University, Busan 49315, South Korea.,Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan 49315, South Korea
| |
Collapse
|
13
|
Hou M, Zhang Z, Lai X, Zong Q, Jiang X, Guan M, Qi R, Qiu G. Photoredox/Iron Dual-Catalyzed Insertion of Acyl Nitrenes into C-H Bonds. Org Lett 2022; 24:4114-4118. [PMID: 35666621 DOI: 10.1021/acs.orglett.2c01176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this work, the use of N-acyloxybenzamides as efficient acyl nitrene precursors under photoredox/iron dual catalysis is reported. The resulting acyl nitrenes could be captured by various types of C-H bonds and S- or P-containing molecules. Mechanism investigations suggested that the formation of the acyl nitrene from the N-acyloxybenzamide occurs by a photoredox process, and it is believed that in this redox process oxidative N-H bond cleavage of the N-acyloxybenzamide occurs prior to reductive N-O bond cleavage of the N-acyloxybenzamide.
Collapse
Affiliation(s)
- Ming Hou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 341014, China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Zhide Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xiaojing Lai
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Qianshou Zong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 341014, China
| | - Meng Guan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Rui Qi
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| |
Collapse
|
14
|
Shi P, Tu Y, Kong D, Wu P, Ma D, Bolm C. Iron‐Catalyzed Intramolecular Arene C(sp
2
)−H Amidations under Mechanochemical Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peng Shi
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Yongliang Tu
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Deshen Kong
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Peng Wu
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Ding Ma
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
15
|
Pan J, Li H, Sun K, Tang S, Yu B. Visible-Light-Induced Decarboxylation of Dioxazolones to Phosphinimidic Amides and Ureas. Molecules 2022; 27:3648. [PMID: 35744775 PMCID: PMC9229220 DOI: 10.3390/molecules27123648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023] Open
Abstract
A visible-light-induced external catalyst-free decarboxylation of dioxazolones was realized for the bond formation of N=P and N-C bonds to access phosphinimidic amides and ureas. Various phosphinimidic amides and ureas (47 examples) were synthesized with high yields (up to 98%) by this practical strategy in the presence of the system's ppm Fe.
Collapse
Affiliation(s)
- Jie Pan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; (J.P.); (H.L.)
| | - Haocong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; (J.P.); (H.L.)
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; (J.P.); (H.L.)
- College of Chemistry & Materials Engineering, Huaihua University, Huaihua 418008, China
| | - Shi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China;
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; (J.P.); (H.L.)
| |
Collapse
|
16
|
Zhou Z, Kweon J, Jung H, Kim D, Seo S, Chang S. Photoinduced Transition-Metal-Free Chan-Evans-Lam-Type Coupling: Dual Photoexcitation Mode with Halide Anion Effect. J Am Chem Soc 2022; 144:9161-9171. [PMID: 35549253 DOI: 10.1021/jacs.2c03343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report a photoinduced transition-metal-free C(aryl)-N bond formation between 2,4,6-tri(aryl)boroxines or arylboronic acids as an aryl source and 1,4,2-dioxazol-5-ones (dioxazolones) as an amide coupling partner. Chloride anion, either generated in situ by photodissociation of chlorinated solvent molecules or added separately as an additive, was found to play a critical cooperative role, thereby giving convenient access to a wide range of synthetically versatile N-arylamides under mild photo conditions. The synthetic virtue of this transition-metal-free Chan-Evans-Lam-type coupling was demonstrated by large-scale reactions, synthesis of 15N-labeled arylamides, and applicability toward biologically relevant compounds. On the basis of mechanistic investigations, two distinctive photoexcitations are proposed to function in the current process, in which the first excitation involving chloro-boron adduct facilitates the transition-metal-free activation of dioxazolones by single electron transfer (SET), and the second one enables the otherwise-inoperative 1,2-aryl migration of the thus-formed N-chloroamido-borate adduct.
Collapse
Affiliation(s)
- Zijun Zhou
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Jeonguk Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Sangwon Seo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
17
|
Mei YK, Min XT, Guo SY, Liu CH, Zhang XX, Ji DW, Wan B, Chen QA. Photo‐Induced Construction of N‐Aryl Amides under Fe Catalysis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yong-Kang Mei
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Xiang-Ting Min
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Shi-Yu Guo
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Chang-Hui Liu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Xiang-Xin Zhang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Ding-Wei Ji
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Boshun Wan
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Qing-An Chen
- Chinese Academy of Sciences Dalian Institute of Chemical Physics 457 Zhongshan Road 116023 Dalian CHINA
| |
Collapse
|
18
|
Jia H, He M, Yang S, Yu X, Bao M. Visible‐Light‐Driven di‐
t
‐Butyl Peroxide‐Promoted the Oxidative Homo‐ and Cross‐Coupling of Phenols. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hanqiang Jia
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116023 Dalian Liaoning China
| | - Min He
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116023 Dalian Liaoning China
| | - Shilei Yang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116023 Dalian Liaoning China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116023 Dalian Liaoning China
| | - Ming Bao
- State Key Laboratory of Fine Chemicals Dalian University of Technology 116023 Dalian Liaoning China
| |
Collapse
|
19
|
Kweon J, Kim D, Kang S, Chang S. Access to β-Lactams via Iron-Catalyzed Olefin Oxyamidation Enabled by the π-Accepting Phthalocyanine Ligand. J Am Chem Soc 2022; 144:1872-1880. [PMID: 35041409 DOI: 10.1021/jacs.1c12125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we report the development of an iron-catalyzed olefin oxyamidation by utilizing tethered dioxazolones as the nitrenoid precursor to produce valuable β-lactam scaffolds. Mechanistic studies revealed that a relatively strong π-accepting ability of the phthalocyanine ligand is critical in generating the key triplet iron-imidyl radical intermediate to enable the 4-exo-trig-lactamization with the incorporation of oxygen nucleophiles in high diastereoselectivity. This cyclization approach was readily extended to the highly efficient γ-lactam synthesis (TON > 300).
Collapse
Affiliation(s)
- Jeonguk Kweon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Seungju Kang
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|