1
|
Yang Y, Sun Y, Lu G, Gao W, Yang T. From Lewis Acid to Lewis Base by La 3+-to-Y 3+ Substitution in α-YB 5O 9: Local Structure Modification Induced Lewis Basicity. J Phys Chem Lett 2024; 15:3554-3558. [PMID: 38526310 DOI: 10.1021/acs.jpclett.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Different from the common perspective of average structure, we propose that the locally elongated metal-oxygen bonds induced by La3+-to-Y3+ substitution to a Lewis acid α-YB5O9 generate medium-strength basic sites. Experimentally, NH3- and CO2-TPD experiments prove that the La3+ doping of α-Y1-xLaxB5O9 (0 ≤ x ≤ 0.24) results in the emergence of new medium-strength basic sites and the increasing La3+ concentration modifies the number, not the strength, of the acidic and basic sites. The catalytic IPA conversion exhibits a reversal of the product selectivity, i.e., from 93% of propylene for α-YB5O9 to ∼90% of acetone for α-Y0.76La0.24B5O9, which means the La3+ doping gradually turns the solid from a Lewis acid to a Lewis base. Besides, α-Y0.76RE0.24B5O9 (RE = Ce, Eu, Gd, Tm) compounds were prepared to consolidate the above conjecture, where the acetone selectivity exhibits a linear dependence on the ionic radius (or electronegativity). This work suggests that the substitution-induced local structure change deserves more attention.
Collapse
Affiliation(s)
- Yao Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yurong Sun
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Guangxiang Lu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Wenliang Gao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Tao Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
2
|
Cheng K, Li Y, Kang J, Zhang Q, Wang Y. Selectivity Control by Relay Catalysis in CO and CO 2 Hydrogenation to Multicarbon Compounds. Acc Chem Res 2024; 57:714-725. [PMID: 38349801 DOI: 10.1021/acs.accounts.3c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
ConspectusThe hydrogenative conversion of both CO and CO2 into high-value multicarbon (C2+) compounds, such as olefins, aromatic hydrocarbons, ethanol, and liquid fuels, has attracted much recent attention. The hydrogenation of CO is related to the chemical utilization of various carbon resources including shale gas, biomass, coal, and carbon-containing wastes via syngas (a mixture of H2 and CO), while the hydrogenation of CO2 by green H2 to chemicals and liquid fuels would contribute to recycling CO2 for carbon neutrality. The state-of-the-art technologies for the hydrogenation of CO/CO2 to C2+ compounds primarily rely on a direct route via Fischer-Tropsch (FT) synthesis and an indirect route via two methanol-mediated processes, i.e., methanol synthesis from CO/CO2 and methanol to C2+ compounds. The direct route would be more energy- and cost-efficient owing to the reduced operation units, but the product selectivity of the direct route via FT synthesis is limited by the Anderson-Schulz-Flory (ASF) distribution. Selectivity control for the direct hydrogenation of CO/CO2 to a high-value C2+ compound is one of the most challenging goals in the field of C1 chemistry, i.e., chemistry for the transformation of one-carbon (C1) molecules.We have developed a relay-catalysis strategy to solve the selectivity challenge arising from the complicated reaction network in the hydrogenation of CO/CO2 to C2+ compounds involving multiple intermediates and reaction channels, which inevitably lead to side reactions and byproducts over a conventional heterogeneous catalyst. The core of relay catalysis is to design a single tandem-reaction channel, which can direct the reaction to the target product controllably, by choosing appropriate intermediates (or intermediate products) and reaction steps connecting these intermediates, and arranging optimized yet matched catalysts to implement these steps like a relay. This Account showcases representative relay-catalysis systems developed by our group in the past decade for the synthesis of liquid fuels, lower (C2-C4) olefins, aromatics, and C2+ oxygenates from CO/CO2 with selectivity breaking the limitation of conventional catalysts. These relay systems are typically composed of a metal or metal oxide for CO/CO2/H2 activation and a zeolite for C-C coupling or reconstruction, as well as a third or even a fourth catalyst component with other functions if necessary. The mechanisms for the activation of H2 and CO/CO2 on metal oxides, which are distinct from that on the conventional transition or noble metal surfaces, are discussed with emphasis on the role of oxygen vacancies. Zeolites catalyze the conversion of intermediates (including hydrocracking/isomerization of heavier hydrocarbons, methanol-to-hydrocarbon reactions, and carbonylation of methanol/dimethyl ether) in the relay system, and the selectivity is mainly controlled by the Brønsted acidity and the shape-selectivity or the confinement effect of zeolites. We demonstrate that the thermodynamic/kinetic matching of the relay steps, the proximity and spatial arrangement of the catalyst components, and the transportation of intermediates/products in sequence are the key issues guiding the selection of each catalyst component and the construction of an efficient relay-catalysis system. Our methodology would also be useful for the transformation of other C1 molecules via controlled C-C coupling, inspiring more efforts toward precision catalysis.
Collapse
Affiliation(s)
- Kang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yubing Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jincan Kang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
3
|
Cordero-Lanzac T, Capel Berdiell I, Airi A, Chung SH, Mancuso JL, Redekop EA, Fabris C, Figueroa-Quintero L, Navarro de Miguel JC, Narciso J, Ramos-Fernandez EV, Svelle S, Van Speybroeck V, Ruiz-Martínez J, Bordiga S, Olsbye U. Transitioning from Methanol to Olefins (MTO) toward a Tandem CO 2 Hydrogenation Process: On the Role and Fate of Heteroatoms (Mg, Si) in MAPO-18 Zeotypes. JACS AU 2024; 4:744-759. [PMID: 38425934 PMCID: PMC10900493 DOI: 10.1021/jacsau.3c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
The tandem CO2 hydrogenation to hydrocarbons over mixed metal oxide/zeolite catalysts (OXZEO) is an efficient way of producing value-added hydrocarbons (platform chemicals and fuels) directly from CO2via methanol intermediate in a single reactor. In this contribution, two MAPO-18 zeotypes (M = Mg, Si) were tested and their performance was compared under methanol-to-olefins (MTO) conditions (350 °C, PCH3OH = 0.04 bar, 6.5 gCH3OH h-1 g-1), methanol/CO/H2 cofeed conditions (350 °C, PCH3OH/PCO/PH2 = 1:7.3:21.7 bar, 2.5 gCH3OH h-1 g-1), and tandem CO2 hydrogenation-to-olefin conditions (350 °C, PCO2/PH2 = 7.5:22.5 bar, 1.4-12.0 gMAPO-18 h molCO2-1). In the latter case, the zeotypes were mixed with a fixed amount of ZnO:ZrO2 catalyst, well-known for the conversion of CO2/H2 to methanol. Focus was set on the methanol conversion activity, product selectivity, and performance stability with time-on-stream. In situ and ex situ Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), solid-state nuclear magnetic resonance (NMR), sorption experiments, and ab initio molecular dynamics (AIMD) calculations were performed to correlate material performance with material characteristics. The catalytic tests demonstrated the better performance of MgAPO-18 versus SAPO-18 at MTO conditions, the much superior performance of MgAPO-18 under methanol/CO/H2 cofeeds, and yet the increasingly similar performance of the two materials under tandem conditions upon increasing the zeotype-to-oxide ratio in the tandem catalyst bed. In situ FT-IR measurements coupled with AIMD calculations revealed differences in the MTO initiation mechanism between the two materials. SAPO-18 promoted initial CO2 formation, indicative of a formaldehyde-based decarboxylation mechanism, while CO and ketene were the main constituents of the initiation pool in MgAPO-18, suggesting a decarbonylation mechanism. Under tandem CO2 hydrogenation conditions, the presence of high water concentrations and low methanol partial pressure in the reaction medium led to lower, and increasingly similar, methanol turnover frequencies for the zeotypes. Despite both MAPO-18 zeotypes showing signs of activity loss upon storage due to the interaction of the sites with ambient humidity, they presented a remarkable stability after reaching steady state under tandem reaction conditions and after steaming and regeneration cycles at high temperatures. Water adsorption experiments at room temperature confirmed this observation. The faster activity loss observed in the Mg version is assigned to its harder Mg2+-ion character and the higher concentration of CHA defects in the AEI structure, identified by solid-state NMR and XRD. The low stability of a MgAPO-34 zeotype (CHA structure) upon storage corroborated the relationship between CHA defects and instability.
Collapse
Affiliation(s)
- Tomás Cordero-Lanzac
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | - Izar Capel Berdiell
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | - Alessia Airi
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Sang-Ho Chung
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jenna L. Mancuso
- Center
for Molecular Modeling, Ghent University, Technologiepark 46, B-9052 Zwijnaarde, Belgium
| | - Evgeniy A. Redekop
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | - Claudia Fabris
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | - Leidy Figueroa-Quintero
- Inorganic
Chemistry Department, Laboratory of Advanced Materials, University Materials Institute of Alicante, University
of Alicante, Apartado 99, Alicante 03080, Spain
| | - Juan C. Navarro de Miguel
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Javier Narciso
- Inorganic
Chemistry Department, Laboratory of Advanced Materials, University Materials Institute of Alicante, University
of Alicante, Apartado 99, Alicante 03080, Spain
| | - Enrique V. Ramos-Fernandez
- Inorganic
Chemistry Department, Laboratory of Advanced Materials, University Materials Institute of Alicante, University
of Alicante, Apartado 99, Alicante 03080, Spain
| | - Stian Svelle
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | | | - Javier Ruiz-Martínez
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Silvia Bordiga
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Unni Olsbye
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
4
|
Redekop EA, Cordero-Lanzac T, Salusso D, Pokle A, Oien-Odegaard S, Sunding MF, Diplas S, Negri C, Borfecchia E, Bordiga S, Olsbye U. Zn Redistribution and Volatility in ZnZrO x Catalysts for CO 2 Hydrogenation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:10434-10445. [PMID: 38162044 PMCID: PMC10753788 DOI: 10.1021/acs.chemmater.3c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
ZnO-ZrO2 mixed oxide (ZnZrOx) catalysts are widely studied as selective catalysts for CO2 hydrogenation into methanol at high-temperature conditions (300-350 °C) that are preferred for the subsequent in situ zeolite-catalyzed conversion of methanol into hydrocarbons in a tandem process. Zn, a key ingredient of these mixed oxide catalysts, is known to volatilize from ZnO under high-temperature conditions, but little is known about Zn mobility and volatility in mixed oxides. Here, an array of ex situ and in situ characterization techniques (scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), Infrared (IR)) was used to reveal that Zn2+ species are mobile between the solid solution phase with ZrO2 and segregated and/or embedded ZnO clusters. Upon reductive heat treatments, partially reversible ZnO cluster growth was observed above 250 °C and eventual Zn evaporation above 550 °C. Extensive Zn evaporation leads to catalyst deactivation and methanol selectivity decline in CO2 hydrogenation. These findings extend the fundamental knowledge of Zn-containing mixed oxide catalysts and are highly relevant for the CO2-to-hydrocarbon process optimization.
Collapse
Affiliation(s)
- Evgeniy A. Redekop
- Centre
for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Tomas Cordero-Lanzac
- Centre
for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Davide Salusso
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Anuj Pokle
- Centre
for Materials Science and Nanotechnology (SMN), Department of Physics, University of Oslo, N-0315 Oslo, Norway
| | - Sigurd Oien-Odegaard
- Centre
for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | | | - Spyros Diplas
- Materials
Physics Oslo, SINTEF Industry, Forskningsveien 1, NO-0373 Oslo, Norway
| | - Chiara Negri
- Centre
for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Elisa Borfecchia
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Silvia Bordiga
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Unni Olsbye
- Centre
for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| |
Collapse
|
5
|
Xie J, Olsbye U. The Oxygenate-Mediated Conversion of CO x to Hydrocarbons─On the Role of Zeolites in Tandem Catalysis. Chem Rev 2023; 123:11775-11816. [PMID: 37769023 PMCID: PMC10603784 DOI: 10.1021/acs.chemrev.3c00058] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 09/30/2023]
Abstract
Decentralized chemical plants close to circular carbon sources will play an important role in shaping the postfossil society. This scenario calls for carbon technologies which valorize CO2 and CO with renewable H2 and utilize process intensification approaches. The single-reactor tandem reaction approach to convert COx to hydrocarbons via oxygenate intermediates offers clear benefits in terms of improved thermodynamics and energy efficiency. Simultaneously, challenges and complexity in terms of catalyst material and mechanism, reactor, and process gaps have to be addressed. While the separate processes, namely methanol synthesis and methanol to hydrocarbons, are commercialized and extensively discussed, this review focuses on the zeolite/zeotype function in the oxygenate-mediated conversion of COx to hydrocarbons. Use of shape-selective zeolite/zeotype catalysts enables the selective production of fuel components as well as key intermediates for the chemical industry, such as BTX, gasoline, light olefins, and C3+ alkanes. In contrast to the separate processes which use methanol as a platform, this review examines the potential of methanol, dimethyl ether, and ketene as possible oxygenate intermediates in separate chapters. We explore the connection between literature on the individual reactions for converting oxygenates and the tandem reaction, so as to identify transferable knowledge from the individual processes which could drive progress in the intensification of the tandem process. This encompasses a multiscale approach, from molecule (mechanism, oxygenate molecule), to catalyst, to reactor configuration, and finally to process level. Finally, we present our perspectives on related emerging technologies, outstanding challenges, and potential directions for future research.
Collapse
Affiliation(s)
- Jingxiu Xie
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0315 Oslo, Norway
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
6
|
Song F, Cheng W, Yu Y, Cao Y, Xu Q. Copper-doped ZnO-ZrO 2 solid solution catalysts for promoting methanol synthesis from CO 2 hydrogenation. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221213. [PMID: 37325598 PMCID: PMC10265016 DOI: 10.1098/rsos.221213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/21/2023] [Indexed: 06/17/2023]
Abstract
Copper-doped ZnO-ZrO2 solid solution catalysts were synthesized via co-precipitation for promoting CH3OH synthesis via hydrogenation of CO2. Various testing methods were applied to investigate the effect of various copper contents on the catalysts. The catalytic performance was evaluated by a fixed bed reactor. XRD, HRTEM and Raman spectra collectively indicated that a ZnO-ZrO2 solid solution catalyst with 3% Cu had a higher Cu dispersion, while the H2-TPR results confirmed that a catalyst with 3% Cu had more Cu active sites under low temperature H2 pretreatment. When the copper content increased to 5% and 10%, the catalyst showed a better Cu crystallinity and a worse Cu dispersion, which could have a negative effect. Therefore, the CO2 conversion and methanol yield with a 3% CuZnO-ZrO2 catalyst at 5 MPa, 250°C and 12 000 ml/(g h) increased by 8.6% and 7.6%, respectively. Moreover, the CH3OH selectivity and catalytic stability of the solid solution catalyst were better than those of the traditional CZA catalyst.
Collapse
Affiliation(s)
- Fujiao Song
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Wenqiang Cheng
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Yang Yu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Yan Cao
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Qi Xu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| |
Collapse
|
7
|
Shi Z, Bhan A. Metrics of Performance Relevant in Methanol-to-Hydrocarbons Catalysis. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
8
|
Paunović V, Hemberger P, Bodi A, Hauert R, van Bokhoven JA. Impact of Nonzeolite-Catalyzed Formation of Formaldehyde on the Methanol-to-Hydrocarbons Conversion. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vladimir Paunović
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Roland Hauert
- Swiss Federal Laboratories for Materials Science and Technology, EMPA, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Jeroen A. van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| |
Collapse
|
9
|
Niu L, Li Y, Long X, Ji D, Wang D, Li H, Zhao X. Grinding synthesis of SAPO-18 zeolite by a single/dual-template route: which is the best catalyst of methanol-to-olefins reaction? REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Shi Z, Bhan A. Methanol-to-olefins catalysis on window-cage type zeolites/zeotypes with syngas co-feeds: Understanding syngas-to-olefins chemistry. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Airi A, Damin A, Xie J, Olsbye U, Bordiga S. Catalyst sites and active species in the early stages of MTO conversion over cobalt AlPO-18 followed by IR spectroscopy. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction-time resolved IR spectroscopy highlights the role of CO and surface –OCH3 in the MTO conversion catalysed by CoAPO-18 with maximised concentration of acidic sites.
Collapse
Affiliation(s)
- Alessia Airi
- Department of Chemistry, NIS, and INSTM Reference Centre, University of Turin, Via Quarello 15/A, 10135, Turin, Italy
| | - Alessandro Damin
- Department of Chemistry, NIS, and INSTM Reference Centre, University of Turin, Via Quarello 15/A, 10135, Turin, Italy
| | - Jingxiu Xie
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Oslo N-0315, Norway
| | - Unni Olsbye
- Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Oslo N-0315, Norway
| | - Silvia Bordiga
- Department of Chemistry, NIS, and INSTM Reference Centre, University of Turin, Via Quarello 15/A, 10135, Turin, Italy
| |
Collapse
|