1
|
Li M, Sun G, Wang Z, Zhang X, Peng J, Jiang F, Li J, Tao S, Liu Y, Pan Y. Structural Design of Single-Atom Catalysts for Enhancing Petrochemical Catalytic Reaction Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313661. [PMID: 38499342 DOI: 10.1002/adma.202313661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Petroleum, as the "lifeblood" of industrial development, is the important energy source and raw material. The selective transformation of petroleum into high-end chemicals is of great significance, but still exists enormous challenges. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites, promise a broad application in petrochemical processes. Herein, the research systematically summarizes the recent research progress of SACs in petrochemical catalytic reaction, proposes the role of structural design of SACs in enhancing catalytic performance, elucidates the catalytic reaction mechanisms of SACs in the conversion of petrochemical processes, and reveals the high activity origins of SACs at the atomic scale. Finally, the key challenges are summarized and an outlook on the design, identification of active sites, and the appropriate application of artificial intelligence technology is provided for achieving scale-up application of SACs in petrochemical process.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhidong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiatian Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
2
|
Xue F, Li Q, Lv M, Weng S, Li T, Ren Y, Liu Y, Li D, He Y, Li Q, Chen X, Zhang Q, Gu L, Deng J, Chen J, He L, Kuang X, Miao J, Cao Y, Lin K, Xing X. Decoding Active Sites for Highly Efficient Semihydrogenation of Acetylene in Palladium-Copper Nanoalloys. NANO LETTERS 2024; 24:6269-6277. [PMID: 38743874 DOI: 10.1021/acs.nanolett.4c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Accurately decoding the three-dimensional atomic structure of surface active sites is essential yet challenging for a rational catalyst design. Here, we used comprehensive techniques combining the pair distribution function and reverse Monte Carlo simulation to reveal the surficial distribution of Pd active sites and adjacent coordination environment in palladium-copper nanoalloys. After the fine-tuning of the atomic arrangement, excellent catalytic performance with 98% ethylene selectivity at complete acetylene conversion was obtained in the Pd34Cu66 nanocatalysts, outperforming most of the reported advanced catalysts. The quantitative deciphering shows a large number of active sites with a Pd-Pd coordination number of 3 distributed on the surface of Pd34Cu66 nanoalloys, which play a decisive role in highly efficient semihydrogenation. This finding not only opens the way for guiding the precise design of bimetal nanocatalysts from atomic-level insight but also provides a method to resolve the spatial structure of active sites.
Collapse
Affiliation(s)
- Fan Xue
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Mingxin Lv
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Shaoxia Weng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Tianyi Li
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yang Ren
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong 999077, People's Republic of China
| | - Yanan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yufei He
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Qiheng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Jie Chen
- Spallation Neutron Source Science Center, Dongguan 523803, People's Republic of China
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, People's Republic of China
| | - Lunhua He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Spallation Neutron Source Science Center, Dongguan 523803, People's Republic of China
| | - Xiaojun Kuang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, People's Republic of China
| | - Jun Miao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| |
Collapse
|
3
|
Ma J, Xing F, Shimizu KI, Furukawa S. Active site tuning based on pseudo-binary alloys for low-temperature acetylene semihydrogenation. Chem Sci 2024; 15:4086-4094. [PMID: 38487246 PMCID: PMC10935689 DOI: 10.1039/d3sc03704e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/25/2024] [Indexed: 03/17/2024] Open
Abstract
The development of an efficient catalytic system for low-temperature acetylene semihydrogenation using nonnoble metals is important for the cost-effective production of polymer-grade pure ethylene. However, it remains challenging owing to the intrinsic low activity. Herein, we report a flexibly tunable catalyst design concept based on a pseudo-binary alloy, which enabled a remarkable enhancement in the catalytic activity, selectivity, and durability of a Ni-based material. A series of (Ni1-xCux)3Ga/TiO2 catalysts exhibiting L12-type pseudo-binary alloy structures with various Cu contents (x = 0.2, 0.25, 0.33, 0.5, 0.6, and 0.75) were prepared for active site tuning. The optimal catalyst, (Ni0.8Cu0.2)3Ga/TiO2, exhibited outstandingly high catalytic activity among reported 3d transition metal-based systems and excellent ethylene selectivity (96%) and long-term stability (100 h) with near full conversion even at 150 °C. A mechanistic study revealed that Ni2Cu hollow sites on the (111) surface weakened the strong adsorption of acetylene and vinyl adsorbate, which significantly accelerated the hydrogenation process and inhibited undesired ethane formation.
Collapse
Affiliation(s)
- Jiamin Ma
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | - Feilong Xing
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| |
Collapse
|
4
|
Sharma G, Verma R, Masuda S, Badawy KM, Singh N, Tsukuda T, Polshettiwar V. Pt-doped Ru nanoparticles loaded on 'black gold' plasmonic nanoreactors as air stable reduction catalysts. Nat Commun 2024; 15:713. [PMID: 38267414 PMCID: PMC10808126 DOI: 10.1038/s41467-024-44954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
This study introduces a plasmonic reduction catalyst, stable only in the presence of air, achieved by integrating Pt-doped Ru nanoparticles on black gold. This innovative black gold/RuPt catalyst showcases good efficiency in acetylene semi-hydrogenation, attaining over 90% selectivity with an ethene production rate of 320 mmol g-1 h-1. Its stability, evident in 100 h of operation with continuous air flow, is attributed to the synergy of co-existing metal oxide and metal phases. The catalyst's stability is further enhanced by plasmon-mediated concurrent reduction and oxidation of the active sites. Finite-difference time-domain simulations reveal a five-fold electric field intensification near the RuPt nanoparticles, crucial for activating acetylene and hydrogen. Kinetic isotope effect analysis indicates the contribution from the plasmonic non-thermal effects along with the photothermal. Spectroscopic and in-situ Fourier transform infrared studies, combined with quantum chemical calculations, elucidate the molecular reaction mechanism, emphasizing the cooperative interaction between Ru and Pt in optimizing ethene production and selectivity.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 40005, India
| | - Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 40005, India
| | - Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | | | - Nirpendra Singh
- Department of Physics, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 40005, India.
| |
Collapse
|
5
|
Tiwari G, Sharma G, Verma R, Gakhad P, Singh AK, Polshettiwar V, Jagirdar BR. Acetylene Semi-Hydrogenation at Room Temperature over Pd-Zn Nanocatalyst. Chemistry 2023; 29:e202301932. [PMID: 37632841 DOI: 10.1002/chem.202301932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 08/28/2023]
Abstract
A reaction of fundamental and commercial importance is acetylene semi-hydrogenation. Acetylene impurity in the ethylene feedstock used in the polyethylene industry poisons the Ziegler-Natta catalyst which adversely affects the polymer quality. Pd based catalysts are most often employed for converting acetylene into the main reactant, ethylene, however, it often involves a tradeoff between the conversion and the selectivity and generally requires high temperatures. In this work, bimetallic Pd-Zn nanoparticles capped by hexadecylamine (HDA) have been synthesized by co-digestive ripening of Pd and Zn nanoparticles and studied for semi-hydrogenation of acetylene. The catalyst showed a high selectivity of ~85 % towards ethylene with a high ethylene productivity to the tune of ~4341 μmol g-1 min-1 , at room temperature and atmospheric pressure. It also exhibited excellent stability with ethylene selectivity remaining greater than 85 % even after 70 h on stream. To the best of the authors' knowledge, this is the first report of room temperature acetylene semi-hydrogenation, with the catalyst effecting high amount of acetylene conversion to ethylene retaining excellent selectivity and stability among all the reported catalysts thus far. DFT calculations show that the disordered Pd-Zn nanocatalyst prepared by a low temperature route exhibits a change in the d-band center of Pd and Zn which in turn enhances the selectivity towards ethylene. TPD, XPS and a range of catalysis experiments provided in-depth insights into the reaction mechanism, indicating the key role of particle size, surface area, Pd-Zn interactions, and the capping agent.
Collapse
Affiliation(s)
- Garima Tiwari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Gunjan Sharma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India
| | - Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India
| | - Pooja Gakhad
- Materials Research Centre, Indian Institute of Science, Bangalore, 560 012, India
| | - Abhishek Kumar Singh
- Materials Research Centre, Indian Institute of Science, Bangalore, 560 012, India
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India
| | - Balaji R Jagirdar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
6
|
Kang H, Wu J, Lou B, Wang Y, Zhao Y, Liu J, Zou S, Fan J. Controllable Deposition of Bi onto Pd for Selective Hydrogenation of Acetylene. Molecules 2023; 28:molecules28052335. [PMID: 36903580 PMCID: PMC10005703 DOI: 10.3390/molecules28052335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The rational regulation of catalyst active sites at atomic scale is a key approach to unveil the relationship between structure and catalytic performance. Herein, we reported a strategy for the controllable deposition of Bi on Pd nanocubes (Pd NCs) in the priority order from corners to edges and then to facets (Pd NCs@Bi). The spherical aberration-corrected scanning transmission electron microscopy (ac-STEM) results indicated that Bi2O3 with an amorphous structure covers the specific sites of Pd NCs. When only the corners and edges of the Pd NCs were covered, the supported Pd NCs@Bi catalyst exhibited an optimal trade-off between high conversion and selectivity in the hydrogenation of acetylene to ethylene under ethylene-rich conditions (99.7% C2H2 conversion and 94.3% C2H4 selectivity at 170 °C) with remarkable long-term stability. According to the H2-TPR and C2H4-TPD measurements, the moderate hydrogen dissociation and the weak ethylene adsorption are responsible for this excellent catalytic performance. Following these results, the selectively Bi-deposited Pd nanoparticle catalysts showed incredible acetylene hydrogenation performance, which provides a feasible perspective to design and develop highly selective hydrogenation catalysts for industrial applications.
Collapse
Affiliation(s)
- Hongquan Kang
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jianzhou Wu
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Baohui Lou
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yue Wang
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yilin Zhao
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Juanjuan Liu
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310036, China
| | - Shihui Zou
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Correspondence: (S.Z.); (J.F.)
| | - Jie Fan
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
- Correspondence: (S.Z.); (J.F.)
| |
Collapse
|
7
|
Song Y, Weng S, Xue F, McCue AJ, Zheng L, He Y, Feng J, Liu Y, Li D. Understanding the Role of Coordinatively Unsaturated Al 3+ Sites on Nanoshaped Al 2O 3 for Creating Uniform Ni–Cu Alloys for Selective Hydrogenation of Acetylene. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuanfei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaoxia Weng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fan Xue
- Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Alan J. McCue
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, U.K
| | - Lirong Zheng
- High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yufei He
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Jing W, Shen H, Qin R, Wu Q, Liu K, Zheng N. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem Rev 2022; 123:5948-6002. [PMID: 36574336 DOI: 10.1021/acs.chemrev.2c00569] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The surface and interface coordination structures of heterogeneous metal catalysts are crucial to their catalytic performance. However, the complicated surface and interface structures of heterogeneous catalysts make it challenging to identify the molecular-level structure of their active sites and thus precisely control their performance. To address this challenge, atomically dispersed metal catalysts (ADMCs) and ligand-protected atomically precise metal clusters (APMCs) have been emerging as two important classes of model heterogeneous catalysts in recent years, helping to build bridge between homogeneous and heterogeneous catalysis. This review illustrates how the surface and interface coordination chemistry of these two types of model catalysts determines the catalytic performance from multiple dimensions. The section of ADMCs starts with the local coordination structure of metal sites at the metal-support interface, and then focuses on the effects of coordinating atoms, including their basicity and hardness/softness. Studies are also summarized to discuss the cooperativity achieved by dual metal sites and remote effects. In the section of APMCs, the roles of surface ligands and supports in determining the catalytic activity, selectivity, and stability of APMCs are illustrated. Finally, some personal perspectives on the further development of surface coordination and interface chemistry for model heterogeneous metal catalysts are presented.
Collapse
Affiliation(s)
- Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
9
|
Zhang C, Shi XK, Wu CD. Stabilization of Ni 0/Ni II Heterojunctions inside Robust Porous Metal Silicate Materials for High-Performance Catalysis. Inorg Chem 2022; 61:16786-16793. [PMID: 36228321 DOI: 10.1021/acs.inorgchem.2c02624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterostructural nanomaterials demonstrate great potential to replace noble metal-based catalysts because heterojunctions could induce relocalization of electrons and facilitate the migration of electrons and charge carriers at the heterostructural boundary between electron-rich and electron-deficient metal sites; however, the instability of heterojunctions greatly hinders their practical applications. We report herein an effective strategy for the fabrication and stabilization of Ni0/NiII heterojunctions inside a porous metal silicate (PMS) material PMS-22 using a nickel coordination complex as the bifunctional template. The synergistic activity between metallic nickel and nickel silicate in PMS-22 highly boosts the catalytic activity in the hydrogenation of phenol, which could activate phenol at a very low temperature of 50 °C. Most importantly, PMS-22 demonstrates robust stability in catalysis, attributed to the strong interaction and charge transfer between metallic Ni and nickel silicate at the heterointerfaces inside the confined pores. Therefore, this work paves a new pathway to improve the stability and activity of heterostructural nanomaterials for catalytic applications.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou310027, P. R. China
| | - Xiao-Ke Shi
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou310027, P. R. China
| | - Chuan-De Wu
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou310027, P. R. China
| |
Collapse
|
10
|
Yuan Z, Kumar A, Zhou D, Feng J, Liu B, Sun X. Highly efficient semi-hydrogenation of acetylene over Ni supported mesoporous MgAl2O4 spinel derived from aluminate-intercalated layered double hydroxide. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Hu H, Xi J. Single-atom catalysis for organic reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Li Y, Yan K, Cao Y, Ge X, Zhou X, Yuan W, Chen D, Duan X. Mechanistic and Atomic-Level Insights into Semihydrogenation Catalysis to Light Olefins. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yurou Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kelin Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohu Ge
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Liu Y, Weng S, McCue AJ, Fu B, Yu H, He Y, Feng J, Li D, Duan X. Mitigating catalyst deactivation in selective hydrogenation by enhancing dispersion and utilizing reaction heat effect. AIChE J 2022. [DOI: 10.1002/aic.17874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yanan Liu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
- Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology Beijing China
| | - Shaoxia Weng
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| | - Alan J. McCue
- Department of Chemistry University of Aberdeen Aberdeen U.K
| | - Baoai Fu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| | - He Yu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| | - Yufei He
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
- Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology Beijing China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
- Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology Beijing China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
- Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology Beijing China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| |
Collapse
|