1
|
Li H, Sun Z, Fan Y, Zhang G, Ni SQ, Gawande MB, Wang Y. Enhancing hydride formation and transfer for catalytic hydrogenation via electron-deficient single-atom silver. J Colloid Interface Sci 2025; 682:751-759. [PMID: 39644746 DOI: 10.1016/j.jcis.2024.11.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Metal hydrides are sensitive to H2O and O2, which reduces the atom efficiency of the hydride donors. Silver (Ag) is an inexpensive coinage metal; however, its lower activity compared to gold, platinum, and palladium limits its application in catalytic hydrogenation. Here, electron-deficient metallic single-atom Ag (AgSA) was loaded onto γ-Al2O3 using a benzoquinone- and KNO3- assisted photolysis approach. The obtained AgSA/Al2O3 catalyst exhibited high rates, high tolerance to side reactions with O2 and H2O, and high NaBH4 atomic efficiency for the catalytic hydrogenation of nitroaromatics in aqueous media. It showed a low kinetic barrier for B-H activation, leading to silver hydride formation and nitrobenzene hydrogenation, while presenting a high kinetic barrier for OH activation, which inhibited H2 production. This behavior contrasts with that of Ag-nanoparticle-loaded γ-Al2O3. The high activity of AgSA is attributed to its electron-deficient nature and atomic dispersion, whereas its high selectivity is possibly ascribed to the involvement of a dihydrogen bond-containing intermediate. Our findings highlight the potential of AgSA to modulate the formation and reactivity of silver hydrides.
Collapse
Affiliation(s)
- Haibin Li
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhaoli Sun
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yafei Fan
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shou-Qing Ni
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431213, India
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
2
|
Li R, Mu R, Li K, Fan Y, Liu C, Ning Y, Li M, Fu Q, Bao X. Dynamically Confined Active Silver Nanoclusters with Ultrawide Operating Temperature Window in CO oxidation. Angew Chem Int Ed Engl 2025; 64:e202416852. [PMID: 39420665 DOI: 10.1002/anie.202416852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Supported metal nanoclusters are often highly active in many catalytic reactions but less stable particularly under harsh reaction conditions. Here, we demonstrate that this activity-stability trade-off can be efficiently broken through rational design of surrounding microenvironment of the supported nanocatalyst including gas adsorbate overlayer and underneath support surface chemistry. Our studies reveal that chemisorbed oxygen species on Ag surface and surface hydroxyl groups on oxide support, which are dynamically consumed during reaction but sustained by reaction environment (O2 and H2O vapor), drive spontaneous redispersion of Ag particles and stabilization of highly active Ag nanoclusters. Such a dynamic confinement effect from gas-catalyst-support interaction enables the Ag nanoclusters to exhibit complete catalytic oxidation of CO over a wide temperature window of 25-500 °C under dry conditions and 200-800 °C under wet conditions as well as remarkable stability at 300 °C over 1000 h.
Collapse
Affiliation(s)
- Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
| | - Kun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
| | - Yamei Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
| | - Conghui Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanxiao Ning
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
3
|
Fan Y, Li R, Wang B, Feng X, Du X, Liu C, Wang F, Liu C, Dong C, Ning Y, Mu R, Fu Q. Water-assisted oxidative redispersion of Cu particles through formation of Cu hydroxide at room temperature. Nat Commun 2024; 15:3046. [PMID: 38589370 PMCID: PMC11001857 DOI: 10.1038/s41467-024-47397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
Sintering of active metal species often happens during catalytic reactions, which requires redispersion in a reactive atmosphere at elevated temperatures to recover the activity. Herein, we report a simple method to redisperse sintered Cu catalysts via O2-H2O treatment at room temperature. In-situ spectroscopic characterizations reveal that H2O induces the formation of hydroxylated Cu species in humid O2, pushing surface diffusion of Cu atoms at room temperature. Further, surface OH groups formed on most hydroxylable support surfaces such as γ-Al2O3, SiO2, and CeO2 in the humid atmosphere help to pull the mobile Cu species and enhance Cu redispersion. Both pushing and pulling effects of gaseous H2O promote the structural transformation of Cu aggregates into highly dispersed Cu species at room temperature, which exhibit enhanced activity in reverse water gas shift and preferential oxidation of carbon monoxide reactions. These findings highlight the important role of H2O in the dynamic structure evolution of supported metal nanocatalysts and lay the foundation for the regeneration of sintered catalysts under mild conditions.
Collapse
Affiliation(s)
- Yamei Fan
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian, China
| | - Beibei Wang
- Center for Transformative Science, ShanghaiTech University, Shanghai, China
| | - Xiaohui Feng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian, China
| | - Xiangze Du
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian, China
| | - Chengxiang Liu
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian, China
| | - Fei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Conghui Liu
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian, China
| | - Cui Dong
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian, China
| | - Yanxiao Ning
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian, China.
| |
Collapse
|
4
|
Li H, Fan Y, Sun Z, Zhang H, Zhu Y, Ni SQ, Wang W, Tung CH, Wang Y. Abrading-Induced Breakdown of Ag Nanoparticles into Atomically Dispersed Ag for Enhancing Antimicrobial Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6150-6158. [PMID: 37010425 DOI: 10.1021/acs.est.3c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Silver is among the most essential antimicrobial agents. Increasing the efficacy of silver-based antimicrobial materials will reduce operating costs. Herein, we show that mechanical abrading causes atomization of Ag nanoparticles (AgNPs) into atomically dispersed Ag (AgSAs) on the surfaces of an oxide-mineral support, which eventually boosts the antibacterial efficacy considerably. This approach is straightforward, scalable, and applicable to a wide range of oxide-mineral supports; additionally, it does not require any chemical additives and operates under ambient conditions. The obtained AgSAs-loaded γ-Al2O3 inactivated Escherichia coli (E. coli) five times as fast as the original AgNPs-loaded γ-Al2O3. It can be utilized over 10 runs with minimal efficiency loss. The structural characterizations indicate that AgSAs exhibit a nominal charge of 0 and are anchored at the doubly bridging OH on the γ-Al2O3 surfaces. Mechanism studies demonstrate that AgSAs, like AgNPs, damage bacterial cell wall integrity, but they release Ag+ and superoxide substantially faster. This work not only provides a simple method for manufacturing AgSAs-based materials but also shows that AgSAs have better antibacterial properties than the AgNPs counterpart.
Collapse
Affiliation(s)
- Haibin Li
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yafei Fan
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoli Sun
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hongqian Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuxin Zhu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Shou-Qing Ni
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wanjun Wang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Fan Y, Wang F, Li R, Liu C, Fu Q. Surface Hydroxyl-Determined Migration and Anchoring of Silver on Alumina in Oxidative Redispersion. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yamei Fan
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fei Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Conghui Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|