1
|
Wang M, Chen L, Zhang Z, Wang Q. Recent advances in genome mining and synthetic biology for discovery and biosynthesis of natural products. Crit Rev Biotechnol 2025; 45:236-256. [PMID: 39134459 DOI: 10.1080/07388551.2024.2383754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 12/17/2024]
Abstract
Natural products have long served as critical raw materials in chemical and pharmaceutical manufacturing, primarily which can provide superior scaffolds or intermediates for drug discovery and development. Over the last century, natural products have contributed to more than a third of therapeutic drug production. However, traditional methods of producing drugs from natural products have become less efficient and more expensive over the past few decades. The combined utilization of genome mining and synthetic biology based on genome sequencing, bioinformatics tools, big data analytics, genetic engineering, metabolic engineering, and systems biology promises to counter this trend. Here, we reviewed recent (2020-2023) examples of genome mining and synthetic biology used to resolve challenges in the production of natural products, such as less variety, poor efficiency, and low yield. Additionally, the emerging efficient tools, design principles, and building strategies of synthetic biology and its application prospects in NPs synthesis have also been discussed.
Collapse
Affiliation(s)
- Mingpeng Wang
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lei Chen
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of WY, Laramie, Laramie, WY, USA
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
2
|
Keshmirshekan A, de Souza Mesquita LM, Ventura SPM. Biocontrol manufacturing and agricultural applications of Bacillus velezensis. Trends Biotechnol 2024; 42:986-1001. [PMID: 38448350 DOI: 10.1016/j.tibtech.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Many microorganisms have been reported as bioagents for producing ecofriendly, cost-effective, and safe products. Some Bacillus species of bacteria can be used in agricultural applications. Bacillus velezensis in particular has shown promising results for controlling destructive phytopathogens and in biofungicide manufacturing. Some B. velezensis strains can promote plant growth and display antibiotic activities against plant pathogen agents. In this review, we focus on the often-overlooked potential properties of B. velezensis as a bioagent for applications that will extend beyond the traditional agricultural uses. We delve into its versatility and future prospects, the challenges such uses may encounter, and some drawbacks associated with B. velezensis-based products.
Collapse
Affiliation(s)
- Abolfazl Keshmirshekan
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, Rua Pedro Zaccaria 1300, Limeira, Sao Paulo, Brazil.
| | - Sónia P M Ventura
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Put H, Gerstmans H, Vande Capelle H, Fauvart M, Michiels J, Masschelein J. Bacillus subtilis as a host for natural product discovery and engineering of biosynthetic gene clusters. Nat Prod Rep 2024; 41:1113-1151. [PMID: 38465694 DOI: 10.1039/d3np00065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Covering: up to October 2023Many bioactive natural products are synthesized by microorganisms that are either difficult or impossible to cultivate under laboratory conditions, or that produce only small amounts of the desired compound. By transferring biosynthetic gene clusters (BGCs) into alternative host organisms that are more easily cultured and engineered, larger quantities can be obtained and new analogues with potentially improved biological activity or other desirable properties can be generated. Moreover, expression of cryptic BGCs in a suitable host can facilitate the identification and characterization of novel natural products. Heterologous expression therefore represents a valuable tool for natural product discovery and engineering as it allows the study and manipulation of their biosynthetic pathways in a controlled setting, enabling innovative applications. Bacillus is a genus of Gram-positive bacteria that is widely used in industrial biotechnology as a host for the production of proteins from diverse origins, including enzymes and vaccines. However, despite numerous successful examples, Bacillus species remain underexploited as heterologous hosts for the expression of natural product BGCs. Here, we review important advantages that Bacillus species offer as expression hosts, such as high secretion capacity, natural competence for DNA uptake, and the increasing availability of a wide range of genetic tools for gene expression and strain engineering. We evaluate different strain optimization strategies and other critical factors that have improved the success and efficiency of heterologous natural product biosynthesis in B. subtilis. Finally, future perspectives for using B. subtilis as a heterologous host are discussed, identifying research gaps and promising areas that require further exploration.
Collapse
Affiliation(s)
- Hanne Put
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Hans Gerstmans
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
- Biosensors Group, KU Leuven, 3001 Leuven, Belgium
| | - Hanne Vande Capelle
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- imec, 3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Joleen Masschelein
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
4
|
Wang Z, Kasper A, Takahashi M, Amador AM, Bhattacharjee A, Kan J, Hernandez Y, Ternei M, Brady SF. Tapcin, an In Vivo Active Dual Topoisomerase I/II Inhibitor Discovered by Synthetic Bioinformatic Natural Product (Syn-BNP)-Coupled Metagenomics. Angew Chem Int Ed Engl 2024; 63:e202317187. [PMID: 38231130 PMCID: PMC11018531 DOI: 10.1002/anie.202317187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/18/2024]
Abstract
DNA topoisomerases are attractive targets for anticancer agents. Dual topoisomerase I/II inhibitors are particularly appealing due to their reduced rates of resistance. A number of therapeutically relevant topoisomerase inhibitors are bacterial natural products. Mining the untapped chemical diversity encoded by soil microbiomes presents an opportunity to identify additional natural topoisomerase inhibitors. Here we couple metagenome mining, bioinformatic structure prediction algorithms, and chemical synthesis to produce the dual topoisomerase inhibitor tapcin. Tapcin is a mixed p-aminobenzoic acid (PABA)-thiazole with a rare tri-thiazole substructure and picomolar antiproliferative activity. Tapcin reduced colorectal adenocarcinoma HT-29 cell proliferation and tumor volume in mouse hollow fiber and xenograft models, respectively. In both studies it showed similar activity to the clinically used topoisomerase I inhibitor irinotecan. The study suggests that the interrogation of soil microbiomes using synthetic bioinformatic natural product methods has the potential to be a rewarding strategy for identifying potent, biomedically relevant, antiproliferative agents.
Collapse
Affiliation(s)
- Zongqiang Wang
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Amanda Kasper
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Mai Takahashi
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Adrian Morales Amador
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Abir Bhattacharjee
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Jingbo Kan
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Yozen Hernandez
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Melinda Ternei
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Sean F. Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| |
Collapse
|
5
|
Chen H, Zhong L, Zhou H, Bai X, Sun T, Wang X, Zhao Y, Ji X, Tu Q, Zhang Y, Bian X. Biosynthesis and engineering of the nonribosomal peptides with a C-terminal putrescine. Nat Commun 2023; 14:6619. [PMID: 37857663 PMCID: PMC10587159 DOI: 10.1038/s41467-023-42387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
The broad bioactivities of nonribosomal peptides rely on increasing structural diversity. Genome mining of the Burkholderiales strain Schlegelella brevitalea DSM 7029 leads to the identification of a class of dodecapeptides, glidonins, that feature diverse N-terminal modifications and a uniform putrescine moiety at the C-terminus. The N-terminal diversity originates from the wide substrate selectivity of the initiation module. The C-terminal putrescine moiety is introduced by the unusual termination module 13, the condensation domain directly catalyzes the assembly of putrescine into the peptidyl backbone, and other domains are essential for stabilizing the protein structure. Swapping of this module to another two nonribosomal peptide synthetases leads to the addition of a putrescine to the C-terminus of related nonribosomal peptides, improving their hydrophilicity and bioactivity. This study elucidates the mechanism for putrescine addition and provides further insights to generate diverse and improved nonribosomal peptides by introducing a C-terminal putrescine.
Collapse
Affiliation(s)
- Hanna Chen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
- School of Medicine, Linyi University, Shuangling Road, 276000, Linyi, China
| | - Lin Zhong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Tao Sun
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Yiming Zhao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xiaoqi Ji
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Thanh Tam LT, Jähne J, Luong PT, Phuong Thao LT, Nhat LM, Blumenscheit C, Schneider A, Blom J, Kim Chung LT, Anh Minh PL, Thanh HM, Hoat TX, Hoat PC, Son TC, Weinmann M, Herfort S, Vater J, Van Liem N, Schweder T, Lasch P, Borriss R. Two plant-associated Bacillus velezensis strains selected after genome analysis, metabolite profiling, and with proved biocontrol potential, were enhancing harvest yield of coffee and black pepper in large field trials. FRONTIERS IN PLANT SCIENCE 2023; 14:1194887. [PMID: 37426979 PMCID: PMC10327441 DOI: 10.3389/fpls.2023.1194887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Elimination of chemically synthesized pesticides, such as fungicides and nematicides, in agricultural products is a key to successful practice of the Vietnamese agriculture. We describe here the route for developing successful biostimulants based on members of the Bacillus subtilis species complex. A number of endospore-forming Gram-positive bacterial strains with antagonistic action against plant pathogens were isolated from Vietnamese crop plants. Based on their draft genome sequence, thirty of them were assigned to the Bacillus subtilis species complex. Most of them were assigned to the species Bacillus velezensis. Whole genome sequencing of strains BT2.4 and BP1.2A corroborated their close relatedness to B. velezensis FZB42, the model strain for Gram-positive plant growth-promoting bacteria. Genome mining revealed that at least 15 natural product biosynthesis gene clusters (BGCs) are well conserved in all B. velezensis strains. In total, 36 different BGCs were identified in the genomes of the strains representing B. velezensis, B. subtilis, Bacillus tequilensis, and Bacillus. altitudinis. In vitro and in vivo assays demonstrated the potential of the B. velezensis strains to enhance plant growth and to suppress phytopathogenic fungi and nematodes. Due to their promising potential to stimulate plant growth and to support plant health, the B. velezensis strains TL7 and S1 were selected as starting material for the development of novel biostimulants, and biocontrol agents efficient in protecting the important Vietnamese crop plants black pepper and coffee against phytopathogens. The results of the large-scale field trials performed in the Central Highlands in Vietnam corroborated that TL7 and S1 are efficient in stimulating plant growth and protecting plant health in large-scale applications. It was shown that treatment with both bioformulations resulted in prevention of the pathogenic pressure exerted by nematodes, fungi, and oomycetes, and increased harvest yield in coffee, and pepper.
Collapse
Affiliation(s)
- Le Thi Thanh Tam
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Jennifer Jähne
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Pham Thi Luong
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Le Thi Phuong Thao
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Le Mai Nhat
- Science and International Co-operation Department, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Christian Blumenscheit
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andy Schneider
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Le Thi Kim Chung
- Institute for Preventive Medicine and Public Health, Hanoi Medical University, Ha Noi, Vietnam
| | - Pham Le Anh Minh
- Department of Biotechnology, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Ha Minh Thanh
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Trinh Xuan Hoat
- Science and International Co-operation Department, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Pham Cong Hoat
- Department of Science and Technology for Economic Technical Branches, Ministry of Science and Technology (MOST), Hanoi, Vietnam
| | - Tran Cao Son
- Laboratory of Food Toxicology and Allergens, National Institute for Food Control (NIFC), Ha Noi, Vietnam
| | - Markus Weinmann
- Ernährungsphysiologie Der Kulturpflanzen, University of Hohenheim, Stuttgart, Germany
| | - Stefanie Herfort
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Joachim Vater
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Nguyen Van Liem
- Science and International Co-operation Department, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Thomas Schweder
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany
| | - Peter Lasch
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Rainer Borriss
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| |
Collapse
|
7
|
Dynamics and mechanistic interpretations of nonribosomal peptide synthetase cyclization domains. Curr Opin Chem Biol 2023; 72:102228. [PMID: 36402006 DOI: 10.1016/j.cbpa.2022.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
Abstract
Ox-/thiazoline groups in nonribosomal peptides are formed by a variant of peptide-forming condensation domains called heterocyclization (Cy) domains and appear in a range of pharmaceutically important natural products and virulence factors. Recent cryo-EM, crystallographic, and NMR studies of Cy domains make it opportune to revisit outstanding questions regarding their molecular mechanisms. This review covers structural and dynamical findings about Cy domains that will inform future bioengineering efforts and our understanding of natural product synthesis.
Collapse
|
8
|
Jähne J, Le Thi TT, Blumenscheit C, Schneider A, Pham TL, Le Thi PT, Blom J, Vater J, Schweder T, Lasch P, Borriss R. Novel Plant-Associated Brevibacillus and Lysinibacillus Genomospecies Harbor a Rich Biosynthetic Potential of Antimicrobial Compounds. Microorganisms 2023; 11:168. [PMID: 36677460 PMCID: PMC9867215 DOI: 10.3390/microorganisms11010168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
We have previously reported the draft genome sequences of 59 endospore-forming Gram-positive bacterial strains isolated from Vietnamese crop plants due to their ability to suppress plant pathogens. Based on their draft genome sequence, eleven of them were assigned to the Brevibacillus and one to the Lysinibacillus genus. Further analysis including full genome sequencing revealed that several of these strains represent novel genomospecies. In vitro and in vivo assays demonstrated their ability to promote plant growth, as well as the strong biocontrol potential of Brevibacilli directed against phytopathogenic bacteria, fungi, and nematodes. Genome mining identified 157 natural product biosynthesis gene clusters (BGCs), including 36 novel BGCs not present in the MIBiG data bank. Our findings indicate that plant-associated Brevibacilli are a rich source of putative antimicrobial compounds and might serve as a valuable starting point for the development of novel biocontrol agents.
Collapse
Affiliation(s)
- Jennifer Jähne
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany
| | - Thanh Tam Le Thi
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Duc Thang, Bac Tu Liem, Ha Noi, Vietnam
| | - Christian Blumenscheit
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany
| | - Andy Schneider
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany
| | - Thi Luong Pham
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Duc Thang, Bac Tu Liem, Ha Noi, Vietnam
| | - Phuong Thao Le Thi
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Duc Thang, Bac Tu Liem, Ha Noi, Vietnam
| | - Jochen Blom
- Bioinformatics and Systems Biology, Faculty of Biology and Chemistry, Justus-Liebig Universität Giessen, 35392 Giessen, Germany
| | - Joachim Vater
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany
| | - Thomas Schweder
- Institute of Marine Biotechnology e.V. (IMaB), 17489 Greifswald, Germany
- Pharmaceutical Biotechnology, University of Greifswald, 17489 Greifswald, Germany
| | - Peter Lasch
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany
| | - Rainer Borriss
- Institute of Marine Biotechnology e.V. (IMaB), 17489 Greifswald, Germany
- Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| |
Collapse
|
9
|
Wu C, Tang J, Limlingan Malit JJ, Wang R, Sung HHY, Williams ID, Qian PY. Bathiapeptides: Polythiazole-Containing Peptides from a Marine Biofilm-Derived Bacillus sp. JOURNAL OF NATURAL PRODUCTS 2022; 85:1751-1762. [PMID: 35703501 DOI: 10.1021/acs.jnatprod.2c00290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacteria in marine biofilms are a rich reservoir of natural products. To facilitate novel secondary metabolite discovery, we investigated the metabolic profile of a marine biofilm-derived Bacillus sp. B19-2 by combining bioinformatics and LC-UV-MS analyses. After dereplication and purification of putatively unknown compounds, a new family of compounds 1-8 was uncovered and named bathiapeptides. Structural elucidation using NMR, HRESIMS, ozonolysis, advanced Marfey's analysis, and X-ray diffraction revealed that bathiapeptides are polypeptides that contain a rare polythiazole moiety. These compounds exhibited strong cytotoxicity against Hep G2, HeLa, MCF-7, and MGC-803 cell lines, and the lowest IC50 value was 0.5 μM. An iterative biosynthesis logic in bathiapeptides' biosynthesis was proposed based on the identified chemical structures and putative gene cluster analysis.
Collapse
Affiliation(s)
- Chuanhai Wu
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Jianwei Tang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Jessie James Limlingan Malit
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Ruojun Wang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Herman H-Y Sung
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Ian D Williams
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| |
Collapse
|
10
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2022. [PMID: 35708284 DOI: 10.1039/d2np90019j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as chevalinulin A from Aspergillus chevalieri.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, UK, G12 8QQ.
| | | |
Collapse
|
11
|
Liu J, Wang X, Dai G, Zhang Y, Bian X. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol Adv 2022; 59:107966. [PMID: 35487394 DOI: 10.1016/j.biotechadv.2022.107966] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
Abstract
The cryptic secondary metabolite biosynthetic gene clusters (BGCs) far outnumber currently known secondary metabolites. Heterologous production of secondary metabolite BGCs in suitable chassis facilitates yield improvement and discovery of new-to-nature compounds. The two juxtaposed conventional model microorganisms, Escherichia coli, Saccharomyces cerevisiae, have been harnessed as microbial chassis to produce a bounty of secondary metabolites with the help of certain host engineering. In last decade, engineering non-model microbes to efficiently biosynthesize secondary metabolites has received increasing attention due to their peculiar advantages in metabolic networks and/or biosynthesis. The state-of-the-art synthetic biology tools lead the way in operating genetic manipulation in non-model microorganisms for phenotypic optimization or yields improvement of desired secondary metabolites. In this review, we firstly discuss the pros and cons of several model and non-model microbial chassis, as well as the importance of developing broader non-model microorganisms as alternative programmable heterologous hosts to satisfy the desperate needs of biosynthesis study and industrial production. Then we highlight the lately advances in the synthetic biology tools and engineering strategies for optimization of non-model microbial chassis, in particular, the successful applications for efficient heterologous production of multifarious complex secondary metabolites, e.g., polyketides, nonribosomal peptides, as well as ribosomally synthesized and post-translationally modified peptides. Lastly, emphasis is on the perspectives of chassis cells development to access the ideal cell factory in the artificial intelligence-driven genome era.
Collapse
Affiliation(s)
- Jiaqi Liu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China; Present address: Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Xue Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Guangzhi Dai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|