1
|
Li J, Yin H, Liu S, Xu C, Cai Z. Significantly enhanced catalytic performance of Pd nanocatalyst on AlOOH featuring abundant solid surface frustrated Lewis pair for improved hydrogen activation. RSC Adv 2024; 14:12593-12599. [PMID: 38638811 PMCID: PMC11024899 DOI: 10.1039/d4ra01852d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
The catalytic performance of a catalyst is significantly influenced by its ability to activate hydrogen. Constructing frustrated Lewis pairs (FLPs) with the capacity for hydrogen dissociation on non-reducible supports remains a formidable challenge. Herein, we employed a straightforward method to synthesize a layered AlOOH featuring abundant OH defects suitable for constructing solid surface frustrated Lewis pair (ssFLP). The results indicated that the AlOOH-80 (synthesized at 80 °C) possessed an appropriate crystalline structure conducive to generating numerous OH defects, which facilitated the formation of ssFLP. This was further evidenced by the minimal water adsorption in the AlOOH-80, inversely correlated with the quantity of defects in the catalyst. As expected, the Pd loaded onto AlOOH (Pd/AlOOH-80) exhibited excellent catalytic activity in hydrogenation reactions, attributed to abundant defects available for constructing ssFLP. Remarkably, the Pd/AlOOH-80 catalyst, with larger-sized Pd nanoparticles, displayed notably superior activity compared to commercial Pd/Al2O3 and Pd/C, both featuring smaller-sized Pd nanoparticles. Evidently, under the influence of ssFLP, the size effect of Pd nanoparticles did not dominate, highlighting the pivotal role of ssFLP in enhancing catalytic performance. This catalyst also exhibited exceptionally high stability, indicating its potential for industrial applications.
Collapse
Affiliation(s)
- Junwei Li
- College of Chemistry, Chemical Engineering and Environment, Minnan NormalUniversity Zhangzhou 363000 China
| | - Hongshuai Yin
- College of Chemistry, Chemical Engineering and Environment, Minnan NormalUniversity Zhangzhou 363000 China
| | - Sisi Liu
- College of Chemistry, Chemical Engineering and Environment, Minnan NormalUniversity Zhangzhou 363000 China
| | - Chaofa Xu
- College of Chemistry, Chemical Engineering and Environment, Minnan NormalUniversity Zhangzhou 363000 China
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University Zhangzhou 363000 China
| | - Zhixiong Cai
- College of Chemistry, Chemical Engineering and Environment, Minnan NormalUniversity Zhangzhou 363000 China
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University Zhangzhou 363000 China
| |
Collapse
|
2
|
Zhou J, Yang S, Zhang Y, Ren JC, Liu W. Effective Descriptor for Screening Single-Molecule Conductance Switches. J Am Chem Soc 2024; 146:6962-6973. [PMID: 38426449 DOI: 10.1021/jacs.3c14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The adsorption-type molecular switch exhibits bistable states with an equivalently long lifetime at the organic/inorganic interface, promising reliable switching behavior and superior assembly ability in the electronic circuits at the molecular scale. However, the number of reported adsorption-type molecular switches is currently less than 10, and exploring these molecular switches poses a formidable challenge due to the intricate interplay occurring at the interface. To address this challenge, we have developed a model enabling the identification of diverse molecular switches on metal surfaces based on easily accessible physical characteristics. These characteristics primarily include the metal valency electron concentration, the work function of metal surfaces, and the electronegativity difference of molecules. Using this model, we identified 56 new molecular switches. Employing the gradient descent algorithm and statistical linear discriminant analysis, we constructed an explicit descriptor that establishes a relationship between the interfacial structure and chemical environment and the stability of molecular switches. The model's accuracy was validated through density functional theory calculations, achieving a 90% accuracy for aromatic molecular switches. The conductive switching behaviors were further confirmed by nonequilibrium Green's function transport calculations.
Collapse
Affiliation(s)
- Junjun Zhou
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Sha Yang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Yirong Zhang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Ji-Chang Ren
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| |
Collapse
|
3
|
Naimi W, Vinnacombe-Willson GA, Saldana S, Ronduen L, Domjan H, Chiang N. Teaching Acid-Base Fundamentals and Introducing pH using Butterfly Pea Flower Tea. JOURNAL OF CHEMICAL EDUCATION 2024; 101:1373-1378. [PMID: 38516052 PMCID: PMC10956649 DOI: 10.1021/acs.jchemed.3c01058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Stimulating interest in science at an early age is important for STEM education. This work details an educational activity utilizing the anthocyanins found in the butterfly pea flower (Clitoria ternatea). This activity was developed for use in official classroom settings, online, and/or at-home with parental or educator guidance. Primary and high school students aged 7 to 14 performed a straightforward extraction of anthocyanin pH indicators from Clitoria ternatea with hot water. Students were able to use this indicator and its vast range of colors to compare the acidity and basicity of different household solutions. Most responses recorded show that students used reasoning from the indicator and a subsequent chemical reaction to correctly differentiate acids from bases and compare their strengths. Overall, this activity's application of non-toxic and easily accessible indicators from the butterfly pea flower assisted in introducing young students to various concepts in acid-base chemistry, including acid/base strength and pH, solute dissolution, neutralization reactions, and qualitative analysis.
Collapse
Affiliation(s)
- Wallee Naimi
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Gail A Vinnacombe-Willson
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Stanley Saldana
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Lionnel Ronduen
- STEM Center, University of Houston, Houston, Texas 77204, United States
| | - Heather Domjan
- STEM Center, University of Houston, Houston, Texas 77204, United States
| | - Naihao Chiang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
4
|
Miyazaki M, Saito H, Ogasawara K, Kitano M, Hosono H. BaTiO 3-xN y: Highly Basic Oxide Catalyst Exhibiting Coupling of Electrons at Oxygen Vacancies with Substituted Nitride Ions. J Am Chem Soc 2023; 145:25976-25982. [PMID: 37983189 DOI: 10.1021/jacs.3c10727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The base strength of oxide catalysts is controlled by the electron charge distribution between cations and anions, with unsaturated oxygen ions that have lone pair electrons typically acting as basic sites. Substitution of oxide ions with anions that have different valences, such as nitride and hydride ions, can often generate basic sites. It is plausible that electrons trapped at oxygen vacancy sites could provide increased electron density and shift the highest occupied molecular orbital energy levels of anions upward in the case that the oxygen vacancies couple with surface-substituted anions. The present work demonstrates that high catalytic basicity can be obtained via site-selective doping of anions at face-sharing Ti2O9 dimer sites with oxygen vacancies in BaTiO3-x. This improved basicity stems from the coupling of substituted nitride ions to electrons at oxygen vacancies. The oxynitride BaTiO3-xNy was found to contain nitride ions that have increased electronic charge density on the basis of such interactions. Enhanced surface basicity following doping with nitride ion was also confirmed by CO2 temperature-programmed desorption and infrared spectroscopy in conjunction with the adsorption of CHCl3. The strong Lewis base sites resulting from the formation of the oxynitride evidently facilitated the catalytic activation of C-H bonds to promote Knoevenagel condensation reactions between aldehydes and active methylene compounds with pKa values of up to 28.9.
Collapse
Affiliation(s)
- Masayoshi Miyazaki
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroshi Saito
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Kiya Ogasawara
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Masaaki Kitano
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hideo Hosono
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Wpi-MANA, National Institute for Materials Science, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
5
|
Omran A, Gonzalez A, Menor-Salvan C, Gaylor M, Wang J, Leszczynski J, Feng T. Serpentinization-Associated Mineral Catalysis of the Protometabolic Formose System. Life (Basel) 2023; 13:1297. [PMID: 37374080 DOI: 10.3390/life13061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The formose reaction is a plausible prebiotic chemistry, famed for its production of sugars. In this work, we demonstrate that the Cannizzaro process is the dominant process in the formose reaction under many different conditions, thus necessitating a catalyst for the formose reaction under various environmental circumstances. The investigated formose reactions produce primarily organic acids associated with metabolism, a protometabolic system, and yield very little sugar left over. This is due to many of the acids forming from the degradation and Cannizaro reactions of many of the sugars produced during the formose reaction. We also show the heterogeneous Lewis-acid-based catalysis of the formose reaction by mineral systems associated with serpentinization. The minerals that showed catalytic activity include olivine, serpentinite, and calcium, and magnesium minerals including dolomite, calcite, and our Ca/Mg-chemical gardens. In addition, computational studies were performed for the first step of the formose reaction to investigate the reaction of formaldehyde, to either form methanol and formic acid under a Cannizzaro reaction or to react to form glycolaldehyde. Here, we postulate that serpentinization is therefore the startup process necessary to kick off a simple proto metabolic system-the formose protometabolic system.
Collapse
Affiliation(s)
- Arthur Omran
- Department of Chemistry, University of North Florida, Jacksonville, FL 32224, USA
- Department of Geosciences, University of South Florida, Tampa, FL 33620, USA
| | - Asbell Gonzalez
- Department of Chemistry, University of North Florida, Jacksonville, FL 32224, USA
| | - Cesar Menor-Salvan
- Departmento de Biologia de Sistemas, Universidad de Alcala, 28805 Alcala de Henares, Spain
| | - Michael Gaylor
- Analytical Sciences, Small Molecules Technologies, Bayer U.S., Saint Louis, MO 63167, USA
| | - Jing Wang
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Jerzy Leszczynski
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Tian Feng
- Department of Geosciences, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
6
|
Morales-Rivera CA, Cormack G, Burrington J, Proust N, Mpourmpakis G. Understanding and Optimizing the Behavior of Al- and Ru-Based Catalysts for the Synthesis of Polyisobutenyl Succinic Anhydrides. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cristian A. Morales-Rivera
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Glenn Cormack
- The Lubrizol Corporation, 29400 Lakeland Boulevard, Wickliffe, Ohio 44092, United States
| | - James Burrington
- The Lubrizol Corporation, 29400 Lakeland Boulevard, Wickliffe, Ohio 44092, United States
| | - Nicolas Proust
- The Lubrizol Corporation, 29400 Lakeland Boulevard, Wickliffe, Ohio 44092, United States
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|