1
|
Zhao M, Xu W, Wu YD, Yang X, Wang J, Zhou JS. Cobalt-Catalyzed Enantioselective Reductive Arylation, Heteroarylation, and Alkenylation of Michael Acceptors via an Elementary Mechanism of 1,4-Addition. J Am Chem Soc 2024; 146:20477-20493. [PMID: 38982945 DOI: 10.1021/jacs.4c06735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Cobalt complexes with chiral quinox ligands effectively promote the enantioselective conjugate addition of enones using aryl, heteroaryl, and alkenyl halides and sulfonates. Additionally, a cobalt complex with a strongly donating diphosphine, BenzP*, successfully catalyzes the asymmetric reductive arylation and alkenylation of α,β-unsaturated amides. Both catalytic systems show broad scopes and tolerance of sensitive functional groups. Both reactions can be scaled up with low loadings of cobalt catalysts. Experimental results and density functional theory (DFT) calculations suggest a new mechanism of elementary 1,4-addition of aryl cobalt(I) complexes.
Collapse
Affiliation(s)
- Mengxin Zhao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Wenqiang Xu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
| | - Xiuying Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianchun Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
2
|
Xu J. Recent Advances in π-Stacking Interaction-Controlled Asymmetric Synthesis. Molecules 2024; 29:1454. [PMID: 38611737 PMCID: PMC11012711 DOI: 10.3390/molecules29071454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The π-stacking interaction is one of the most important intramolecular and intermolecular noncovalent interactions in organic chemistry. It plays an important role in stabilizing some structures and transition states in certain reactions via both intramolecular and intermolecular interactions, facilitating different selectivities, such as chemo-, regio-, and stereoselectivities. This minireview focuses on the recent examples of the π-stacking interaction-controlled asymmetric synthesis, including auxiliary-induced asymmetric synthesis, kinetic resolution, asymmetric synthesis of helicenes and heterohelicenes, and multilayer 3D chiral molecules.
Collapse
Affiliation(s)
- Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; ; Tel./Fax: +86-10-6443-5565
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
3
|
Zhang T, Nishiura Y, Cusumano AQ, Stoltz BM. Palladium-Catalyzed Asymmetric Conjugate Addition of Arylboronic Acids to α,β-Unsaturated Lactams: Enantioselective Construction of All-Carbon Quaternary Stereocenters in Saturated Nitrogen-Containing Heterocycles. Org Lett 2023; 25:6479-6484. [PMID: 37639656 PMCID: PMC10496148 DOI: 10.1021/acs.orglett.3c02064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Indexed: 08/31/2023]
Abstract
Stereogenic nitrogen-containing heterocycles are ubiquitous in natural products and pharmaceutical compounds, but methods for their enantioselective construction have remained elusive. We report a general method for the asymmetric conjugate addition of arylboronic acids to β-alkyl/aryl α,β-unsaturated lactams that affords chiral β,β-disubstituted lactams. The transformation is operationally simple and air- and moisture-tolerant and uses a commercially available (S)-t-Bu-PyOx ligand. The method is high-yielding (up to 95% yield) and enantioselective (up to 97% ee) for a wide range of arylboronic acids and α,β-unsaturated lactams, including those with different ring sizes.
Collapse
Affiliation(s)
- Tianyi Zhang
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Yuji Nishiura
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Alexander Q. Cusumano
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Brian M. Stoltz
- The Warren and Katharine
Schlinger Laboratory for Chemistry and Chemical Engineering, Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Zhang L, Zhao M, Pu M, Ma Z, Zhou J, Chen C, Wu YD, Chi YR, Zhou JS. Nickel-Catalyzed Enantioselective Reductive Conjugate Arylation and Heteroarylation via an Elementary Mechanism of 1,4-Addition. J Am Chem Soc 2022; 144:20249-20257. [DOI: 10.1021/jacs.2c05678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Luoqiang Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Mengxin Zhao
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road,
Guangming District, Shenzhen 518107, China
| | - Zhaoming Ma
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Jingsong Zhou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Caiyou Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road,
Guangming District, Shenzhen 518107, China
- Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
5
|
Wang F, Chen Y, Yu P, Chen GQ, Zhang X. Asymmetric Hydrogenation of Oximes Synergistically Assisted by Lewis and Brønsted Acids. J Am Chem Soc 2022; 144:17763-17768. [PMID: 36166275 DOI: 10.1021/jacs.2c07506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to their low reactivity, difficult enantiocontrol, and proneness to N-O bond cleavage, the catalytic asymmetric hydrogenation of oximes to hydroxylamines has remained a significant challenge. Herein, a Lewis and Brønsted acid cooperation strategy was established for the asymmetric hydrogenation of oximes, providing the corresponding hydroxylamines with up to 95% yield and up to 96% ee. Addition of Lewis and Brønsted acid was crucial to obtain high conversion and enantioselectivity. Mechanistic investigations indicates that the thiourea fragment of the ligand, Lewis acid (In(OTf)3 or Zn(OAc)2), as well as the Brønsted acid (l-CSA) played vital roles in the control of reactivity and enantioselectivity of the reaction. In addition, the synthetic elaboration of this transformation was demonstrated by gram scale experiment with retention of the yield and enantioselectivity.
Collapse
Affiliation(s)
- Fangyuan Wang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Yu Chen
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Gen-Qiang Chen
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Xumu Zhang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518000, China
| |
Collapse
|