1
|
Qiu C, Odarchenko Y, Meng Q, Dong H, Gonzalez IL, Panchal M, Olalde-Velasco P, Maccherozzi F, Zanetti-Domingues L, Martin-Fernandez ML, Beale AM. Compositional Evolution of Individual CoNPs on Co/TiO 2 during CO and Syngas Treatment Resolved through Soft XAS/X-PEEM. ACS Catal 2023; 13:15956-15966. [PMID: 38125980 PMCID: PMC10729030 DOI: 10.1021/acscatal.3c03214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
The nanoparticle (NP) redox state is an important parameter in the performance of cobalt-based Fischer-Tropsch synthesis (FTS) catalysts. Here, the compositional evolution of individual CoNPs (6-24 nm) in terms of the oxide vs metallic state was investigated in situ during CO/syngas treatment using spatially resolved X-ray absorption spectroscopy (XAS)/X-ray photoemission electron microscopy (X-PEEM). It was observed that in the presence of CO, smaller CoNPs (i.e., ≤12 nm in size) remained in the metallic state, whereas NPs ≥ 15 nm became partially oxidized, suggesting that the latter were more readily able to dissociate CO. In contrast, in the presence of syngas, the oxide content of NPs ≥ 15 nm reduced, while it increased in quantity in the smaller NPs; this reoxidation that occurs primarily at the surface proved to be temporary, reforming the reduced state during subsequent UHV annealing. O K-edge measurements revealed that a key parameter mitigating the redox behavior of the CoNPs were proximate oxygen vacancies (Ovac). These results demonstrate the differences in the reducibility and the reactivity of Co NP size on a Co/TiO2 catalyst and the effect Ovac have on these properties, therefore yielding a better understanding of the physicochemical properties of this popular choice of FTS catalysts.
Collapse
Affiliation(s)
- Chengwu Qiu
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Yaroslav Odarchenko
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Qingwei Meng
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China)
| | - Hongyang Dong
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Ines Lezcano Gonzalez
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Monik Panchal
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | | | | | | | | | - Andrew M. Beale
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| |
Collapse
|
2
|
Li M, Li J, Huang J, Wu B, Chen F, Liu X. Binary Metal-Oxide Active Sites Derived from Cu-Doped MIL-88 with Enhanced Electroactivity for Nitrate Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16653-16661. [PMID: 37865968 DOI: 10.1021/acs.est.3c05606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Nitrate-to-ammonia electrochemical conversion is important for decreasing water pollution and increasing the production of valuable ammonia. However, achieving high ammonium production without undesirable byproducts is difficult. Cu-doped MIL-88-derived bimetallic oxide catalysts with electrocatalytically active Fe-O-Cu bridges, which have high NO3- adsorption energy and facilitate N-intermediate hydrogenation, are developed for NH4+ production. Cu doping promotes hybridization between the O 2p of NO3- and Fe-Cu 3d, facilitating the adsorption and reduction of NO3- with a low Tafel slope (62.1 mV dec-1) and high ammonia yield (1698.8 μg·h-1·cm-2). The cathode efficiency is stable for seven cycles. Cu adjacent to Fe sites inhibits hydrogen evolution, promotes NO3- adsorption, and decreases the intermediate adsorption energy barrier. This study provides new opportunities for fabricating diverse binary metal oxides with new interfaces as efficient cathode materials for selective electroreduction.
Collapse
Affiliation(s)
- Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiacheng Li
- School of Environment, Tsinghua University, Beijing 100084, China
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiaxin Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Boyang Wu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fei Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Insights into the Fischer–Tropsch mechanism on χ-Fe5C2(510) based on the hydrogen coverage effect. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
van Koppen LM, Iulian Dugulan A, Leendert Bezemer G, Hensen EJ. Elucidating deactivation of titania-supported cobalt Fischer-Tropsch catalysts under simulated high conversion conditions. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|