1
|
Liu J, Han B, Liu X, Liang S, Fu Y, He J, Chung LH, Lin Y, Wei Y, Wang S, Ma T, Yang Z. Tailoring d-Band Center of Single-Atom Nickel Sites for Boosted Photocatalytic Reduction of Diluted CO 2 from Flue Gas. Angew Chem Int Ed Engl 2024:e202417435. [PMID: 39385458 DOI: 10.1002/anie.202417435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
Photocatalytic reduction of diluted CO2 from anthropogenic sources holds tremendous potential for achieving carbon neutrality, while the huge barrier to forming *COOH key intermediate considerably limits catalytic effectiveness. Herein, via coordination engineering of atomically scattered Ni sites in conductive metal-organic frameworks (CMOFs), we propose a facile strategy for tailoring the d-band center of metal active sites towards high-efficiency photoreduction of diluted CO2. Under visible-light irradiation in pure CO2, CMOFs with Ni-O4 sites (Ni-O4 CMOFs) exhibits an outstanding rate for CO generation of 13.3 μmol h-1 with a selectivity of 94.5 %, which is almost double that of its isostructural counterpart with traditional Ni-N4 sites (Ni-N4 CMOFs), outperforming most reported systems under comparable conditions. Interestingly, in simulated flue gas, the CO selectivity of Ni-N4 CMOFs decreases significantly while that of Ni-O4 CMOFs is mostly unchanged, signifying the supremacy for Ni-O4 CMOFs in leveraging anthropogenic diluted CO2. In situ spectroscopy and density functional theory (DFT) investigations demonstrate that O coordination can move the center of the Ni sites' d-band closer to the Fermi level, benefiting the generation of *COOH key intermediate as well as the desorption of *CO and hence leading to significantly boosted activity and selectivity for CO2-to-CO photoreduction.
Collapse
Affiliation(s)
- Jiahui Liu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Collaborative Innovation Institute of Carbon Neutrality and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Bin Han
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Collaborative Innovation Institute of Carbon Neutrality and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xueming Liu
- School of Environment and Energy, Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, 510006, P. R. China
| | - Shujie Liang
- School of Environment and Energy, Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yang Fu
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC 3000, Australia
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou, Guangdong, 510006, P. R. China
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou, Guangdong, 510006, P. R. China
| | - Yuanfang Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Collaborative Innovation Institute of Carbon Neutrality and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yupeng Wei
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Collaborative Innovation Institute of Carbon Neutrality and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, 350116, P. R. China
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC 3000, Australia
| | - Zhifeng Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Collaborative Innovation Institute of Carbon Neutrality and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
2
|
Liu Y, Chen Y, Li Q, Shi J, Liu B. Electrocatalysis of Co/Co xO y nanofilms supported by synchronously nitrogen-doped Ketjenblack carbon towards oxygen reduction reaction. J Colloid Interface Sci 2024; 679:253-261. [PMID: 39362150 DOI: 10.1016/j.jcis.2024.09.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Developing a highly active and stable non-precious metal catalyst for oxygen reduction reaction (ORR) is of great practical significance for advancing fuel cell technology. In this work, a continuous two-step hydrothermal reaction followed by high temperature pyrolysis were employed to achieve in situ N-doping preferentially into Ketjenblack carbon (KB-N) and composite of KB-N and Co/CoxOy nanofilms (Co/CoxOy-NFs) as Co/CoxOy-NFs@KB-N. The N-doped state strongly affects the ORR activity of catalyst. All prepared Co/CoxOy-NFs@KB-N catalysts exhibit observably improved ORR activity compared with the basal KB-N and N-doped Co/CoxOy-NFs, in which the optimal Co/CoxOy-NFs@KB-N catalyst demonstrate the positive Eonset (0.864 V) and E1/2 (0.788 V) vs. RHE, the low Tafel slope (69.27 mV dec-1), implying quick ORR kinetics. And, the Co/CoxOy-NFs@KB-N catalyst exhibits highly electrochemical durability. The KB-N substrate can purify Co valence in CoO component, promote amorphization of CoO crystalline structure and enhance the interaction between Co/CoxOy-NFs and KB-N in Co/CoxOy-NFs@KB-N catalyst. Thus electronic effect, structural effect and synergistic effect can strengthen O2 adsorption, provide enough adsorbed sites and accelerate electron transfer, resulting in prominent ORR performance of Co/CoxOy-NFs@KB-N catalyst.
Collapse
Affiliation(s)
- Yong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yumei Chen
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Qing Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Jianchao Shi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China; State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo 454003, PR China.
| |
Collapse
|
3
|
Xu S, Yu Y, Zhang X, Xue D, Wei Y, Xia H, Zhang F, Zhang JN. Enhanced Electron Delocalization Induced by Ferromagnetic Sulfur doped C 3N 4 Triggers Selective H 2O 2 Production. Angew Chem Int Ed Engl 2024; 63:e202407578. [PMID: 38771454 DOI: 10.1002/anie.202407578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
For the 2D metal-free carbon catalysts, the atomic coplanar architecture enables a large number of pz orbitals to overlap laterally, thus forming π-electron delocalization, and the delocalization degree of the central atom dominates the catalytic activity. Herein, designing sulfur-doped defect-rich graphitic carbon nitride (S-Nv-C3N4) materials as a model, we propose a strategy to promote localized electron polarization by enhancing the ferromagnetism of ultra-thin 2D carbon nitride nanosheets. The introduction of sulfur (S) further promotes localized ferromagnetic coupling, thereby inducing long-range ferromagnetic ordering and accelerating the electron interface transport. Meanwhile, the hybridization of sulfur atoms breaks the symmetry and integrity of the unit structure, promotes electron enrichment and stimulating electron delocalization at the active site. This optimization enhances the *OOH desorption, providing a favorable kinetic pathway for the production of hydrogen peroxide (H2O2). Consequently, S-Nv-C3N4 exhibits high selectivity (>95 %) and achieves a superb H2O2 production rate, approaching 4374.8 ppm during continuous electrolysis over 300 hour. According to theoretical calculation and in situ spectroscopy, the ortho-S configuration can provide ferromagnetic perturbation in carbon active centers, leading to the electron delocalization, which optimizes the OOH* adsorption during the catalytic process.
Collapse
Affiliation(s)
- Siran Xu
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yue Yu
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoyu Zhang
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Dongping Xue
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yifan Wei
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Huicong Xia
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jia-Nan Zhang
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
4
|
Sun S, Zhang Y, Shi X, Sun W, Felser C, Li W, Li G. From Charge to Spin: An In-Depth Exploration of Electron Transfer in Energy Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312524. [PMID: 38482969 DOI: 10.1002/adma.202312524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/24/2024] [Indexed: 05/01/2024]
Abstract
Catalytic materials play crucial roles in various energy-related processes, ranging from large-scale chemical production to advancements in renewable energy technologies. Despite a century of dedicated research, major enduring challenges associated with enhancing catalyst efficiency and durability, particularly in green energy-related electrochemical reactions, remain. Focusing only on either the crystal structure or electronic structure of a catalyst is deemed insufficient to break the linear scaling relationship (LSR), which is the golden rule for the design of advanced catalysts. The discourse in this review intricately outlines the essence of heterogeneous catalysis reactions by highlighting the vital roles played by electron properties. The physical and electrochemical properties of electron charge and spin that govern catalysis efficiencies are analyzed. Emphasis is placed on the pronounced influence of external fields in perturbing the LSR, underscoring the vital role that electron spin plays in advancing high-performance catalyst design. The review culminates by proffering insights into the potential applications of spin catalysis, concluding with a discussion of extant challenges and inherent limitations.
Collapse
Affiliation(s)
- Shubin Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yudi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Xin Shi
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Chemical Engineering, Ningbo University, 818 A Fenghua Rd, Jiangbei District, Ningbo, 315211, China
| | - Wen Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Claudia Felser
- Topological Quantum Chemistry, Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Chinese Academy of Sciences, Ningbo Institute of Material Technology and Engineering, Ningbo, 315201, China
| | - Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
5
|
Li X, Qin J, Lin Q, Yi X, Yan C, Zhang J, Dong J, Yu K, Zhang S, Xie C, Yang H, Xiao W, Li W, Wang J, Li X. Electron Spin Broken-Symmetry of Fe-Co Diatomic Pairs to Promote Kinetics of Bifunctional Oxygen Electrocatalysis for Zinc-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401187. [PMID: 38877642 PMCID: PMC11425208 DOI: 10.1002/advs.202401187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Indexed: 06/16/2024]
Abstract
Designing bifunctional catalysts to reduce the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) reaction barriers while accelerating the reaction kinetics is perceived to be a promising strategy to improve the performance of Zinc-air batteries. Unsymmetric configuration in single-atom catalysts has attracted attention due to its unique advantages in regulating electron orbitals. In this work, a seesaw effect in unsymmetric Fe-Co bimetallic monoatomic configurations is proposed, which can effectively improve the OER/ORR bifunctional activity of the catalyst. Compared with the symmetrical model of Fe-Co, a strong charge polarization between Co and Fe atoms in the unsymmetric model is detected, in whom the spin-down electrons around Co atoms are much higher than those spin-up electrons. The seesaw effect occurred between Co atoms and Fe atoms, resulting in a negative shift of the d-band center, which means that the adsorption of oxygen intermediates is weakened and more conducive to their dissociation. The optimized reaction kinetics of the catalyst leads to excellent performance in ZABs, with a peak power density of 215 mW cm-2 and stable cycling for >1300 h and >4000 cycles. Flexible Zinc-air batteries have also gained excellent performance to demonstrate their potential in the field of flexible wearables.
Collapse
Affiliation(s)
- Xiaokang Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Jian Qin
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
- Department of Materials Science and Engineering, Macau University of Science and Technology, Macau, 999078, China
| | - Qingxin Lin
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Xiaoyu Yi
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Cheng Yan
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Jianhua Zhang
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Jinjuan Dong
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Kang Yu
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Shenglong Zhang
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Chong Xie
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Huijuan Yang
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Wei Xiao
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Wenbin Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Jingjing Wang
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| | - Xifei Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
6
|
Zou J, Jiang K, Chen Y, Ma Y, Xia C, Ding W, Yao M, Lin Y, Chen Y, Zhao Y, Gao F. Tofacitinib Citrate Coordination-Based Dual-Responsive/Scavenge Nanoplatform Toward Regulate Colonic Inflammatory Microenvironment for Relieving Colitis. Adv Healthc Mater 2024:e2401869. [PMID: 39180276 DOI: 10.1002/adhm.202401869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Indexed: 08/26/2024]
Abstract
Ulcerative colitis is an inflammation of the colon characterized by immune dysregulation and intestinal inflammation. Developing safe oral nanomedicines that suppress intestinal inflammation, while modulating colonic inflammatory microenvironment by scavenging reactive oxygen species (ROS) and hydrogen sulfide (H2S) is crucial for the effective treatment of colitis. Here, the tofacitinib citrate and copper coordination-based nanoparticle (TF-Cu nanoparticle, T-C) to dual-scavenge ROS and H2S by coordination competition is synthesized. Moreover, the coordination of T-C using computer simulation is explored. To enhance the acid stability and inflammatory targeting of T-C, it is encapsulated with hyaluronic acid-modified chitosan, along with a calcium pectinate coating (T-C@HP). Owing to the dual pH/pectinase-responsive characteristics of T-C@HP, the nanoplatform can target inflamed colonic lesions, inhibiting phosphorylated Janus kinase 1. Furthermore, T-C@HP scavenges ROS and H2S, as well as increases NADPH levels, which is investigated by combining biosensor (HyPer7 and iNap1/c) and chemical probes. T-C@HP also alleviates colitis by regulating the colonic inflammatory microenvironment through multiple processes, including the modulation of apoptosis, macrophage polarization, tight junction, mucus layer, and intestinal flora. Complemented by satisfactory anti-inflammatory and biosafety results, this nanoplatform represents a promising, effective, and safe treatment option for colitis patients.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Kun Jiang
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - You Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Ma
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenxing Ding
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Yao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiting Lin
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanzuo Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuzheng Zhao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100050, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng Gao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
7
|
Cheng H, Chen Y, Liu M, Tao H, Chen L, Wang F, Huang L, Tang J, Yang T, Hu R. Theory-guided design of S-doped Fe/Co dual-atom nanozymes for highly efficient oxidase mimics. Chem Sci 2024:d4sc03101f. [PMID: 39184303 PMCID: PMC11342153 DOI: 10.1039/d4sc03101f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
The advent of dual-atom nanozymes (DAzymes) featuring distinctive bimetallic active sites garnered significant attention, representing enhanced iterations of conventional single-atom nanozymes. The quest for an effective and universal strategy to modulate the catalytic activity of DAzymes posed a formidable challenge, yet few published reports addressed this. Herein, we designed and synthesized S-doped Fe/Co DAzymes (S-FeCo-NC) under theoretical guidance and revealed their excellent oxidase-like activity. Experimental and theoretical calculations indicated that the superior oxidase-like activity exhibited by S-FeCo-NC was attributed to the S-doping, which modulated the local electronic structure of the dual-atom active site. This modulation of the local electronic structure significantly optimizes oxygen adsorption energy, thereby accelerating the rate of enzyme-catalyzed reactions. As a proof-of-concept, this study integrated S-FeCo-NC with the cascade inhibition reaction of acetylcholinesterase (AChE) to devise a sensitive analytical platform for detecting organophosphorus pesticides. This study paved the way for elucidating the correlation between the local electronic structure of the active site and enzyme activity, offering novel methodologies and insights for the rational design of DAzymes.
Collapse
Affiliation(s)
- Huan Cheng
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming Yunnan 650500 P. R. China
| | - Yanyue Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming Yunnan 650500 P. R. China
| | - Mingjia Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming Yunnan 650500 P. R. China
| | - Hongling Tao
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming Yunnan 650500 P. R. China
| | - Lu Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming Yunnan 650500 P. R. China
| | - Fupeng Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming Yunnan 650500 P. R. China
| | - Long Huang
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming Yunnan 650500 P. R. China
| | - Jian Tang
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming Yunnan 650500 P. R. China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming Yunnan 650500 P. R. China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theronastics, Hunan University Changsha 410082 China
| |
Collapse
|
8
|
Su Y, Yuan G, Hu J, Zhang G, Tang Y, Chen Y, Tian Y, Wang S, Shakouri M, Pang H. Thiosalicylic-Acid-Mediated Coordination Structure of Nickel Center via Thermodynamic Modulation for Aqueous Ni-Zn Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406094. [PMID: 38811150 DOI: 10.1002/adma.202406094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Uniquely functional nanocomplexes with rich coordination environments are critical in energy storage. However, the construction of structurally versatile nanocomplexes remains challenging. In this study, a nickel-based complex with structural variations is designed via thermodynamic modulation using a dual-ligand synthesis strategy. A nickel-based nanomaterial (NiSA-SSA-160) with a large specific surface area is synthesized around the competing coordination of the host and guest molecules that differ in terms of the chemical properties of the O and S elements. Concurrently, the coordination environment of NiSA-SSA-160 is investigated via X-ray absorption fine structure spectroscopy. The thiol functional groups synergistically induced an electron-rich Ni structure, thus increasing the electron density of the central atom. The electrochemical performance of an assembled NiSA-SSA-160//Zn@CC battery is shown to improve significantly, with a maximum energy density of 0.54 mWh cm-2 and a peak power density of 49.49 mW cm-2. This study provides a new perspective regarding coordination transformations and offers an idea for the design of functionally rich nanomaterials.
Collapse
Affiliation(s)
- Yichun Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Guoqiang Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jinliang Hu
- Jiangsu Yangnong Chemical Group Co. Ltd., Yangzhou, Jiangsu, 225009, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yijian Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yihao Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yiluo Tian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Mohsen Shakouri
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, S7N 2V3, Canada
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
9
|
Shen X, Li H, Ma T, Jiao Q, Zhao Y, Li H, Feng C. Construction of Heterojunction-Rich Metal Nitrides Porous Nanosheets Electrocatalyst for Alkaline Water/Seawater Splitting at Large Current Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310535. [PMID: 38420898 DOI: 10.1002/smll.202310535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The exploiting electrocatalysts for water/seawater electrolysis with remarkable activity and outstanding durability at industrial grade current density remains a huge challenge. Herein, CoMoNx and Fe-doped CoMoNx nanosheet arrays are in-situ grown on Ni foam, which possess plentiful holes, multilevel heterostructure, and lavish Co5.47N/MoN@NF and Fe-Co5.47N/MoN@NF interfaces. They require low overpotentials of 213 and 296 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under alkaline media to achieve current density of 800 mA cm-2, respectively, and both possess low Tafel slopes (51.1 and 49.1 mV dec-1) and undiminished stability over 80 h. Moreover, the coupled Co5.47N/MoN@NF and Fe-Co5.47N/MoN@NF electrolyzer requires low voltages of 1.735 V to yield 500 mA cm-2 in alkaline water. Notably, they also exhibit exceptional electrocatalytic properties in alkaline seawater (1.833 V@500 mA cm-2). The experimental studies and theoretical calculations verify that Fe doping does reduce the energy barrier from OH* to O* intermediates during OER process after catalyst reconstruction, and the non-metallic N site from MoN exhibits the lowest theoretical overpotential. The splendid catalytic performance is attributed to the optimized local electron configuration and porous structure. This discovery provides a new design method toward low-cost and excellent catalysts for water/seawater splitting to produce hydrogen.
Collapse
Affiliation(s)
- Xueran Shen
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huanjun Li
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Tiantian Ma
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qingze Jiao
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- School of Materials and Environment, Beijing Institute of Technology, Jinfeng Road No.6, Xiangzhou District, Zhuhai, 519085, P. R. China
| | - Yun Zhao
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hansheng Li
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Caihong Feng
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
10
|
Tao R, Liu C, Ning W, Li Y. Strain-induced catalytic enhancement in Co-BTA and Rh-BTA for efficient 2e - oxygen reduction: a DFT study. Phys Chem Chem Phys 2024; 26:17660-17665. [PMID: 38867663 DOI: 10.1039/d4cp01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Here we design TM-BTA catalysts for the electrochemical synthesis of hydrogen peroxide (H2O2), focusing on the efficient two-electron (2e-) oxygen reduction pathway. Employing density functional theory (DFT), we screened 17 transition metals, identifying Co-BTA and Rh-BTA as outstanding candidates based on their low overpotentials and superior catalytic activity. A key innovation is the application of mechanical strain to these catalysts, significantly optimizing their performance by modulating the d-band center. This approach enhances the adsorption of oxygen-containing intermediates, crucial for the 2e- ORR process. Our findings demonstrate that a tensile strain of 1.95% optimally enhances catalytic efficiency in both Co-BTA and Rh-BTA, substantially reducing overpotential. This research not only highlights the potential of TM-BTA catalysts in H2O2 production but also underscores the importance of strain modulation as a cost-effective and efficient method to improve the selectivity and activity of electrocatalysts, offering a novel perspective in the field of sustainable chemical synthesis.
Collapse
Affiliation(s)
- Ran Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Cheng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Weihua Ning
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
11
|
Ma R, Tang C, Wang Y, Xu X, Wu M, Cui X, Yang Y. Linker Mediated Electronic-State Manipulation of Conjugated Organic Polymers Enabling Highly Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2024; 63:e202405594. [PMID: 38638107 DOI: 10.1002/anie.202405594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Conjugated polymers with tailorable composition and microarchitecture are propitious for modulating catalytic properties and deciphering inherent structure-performance relationships. Herein, we report a facile linker engineering strategy to manipulate the electronic states of metallophthalocyanine conjugated polymers and uncover the vital role of organic linkers in facilitating electrocatalytic oxygen reduction reaction (ORR). Specifically, a set of cobalt phthalocyanine conjugated polymers (CoPc-CPs) wrapped onto carbon nanotubes (denoted CNTs@CoPc-CPs) are judiciously crafted via in situ assembling square-planar cobalt tetraaminophthalocyanine (CoPc(NH2)4) with different linear aromatic dialdehyde-based organic linkers in the presence of CNTs. Intriguingly, upon varying the electronic characteristic of organic linkers from terephthalaldehyde (TA) to 2,5-thiophenedicarboxaldehyde (TDA) and then to thieno/thiophene-2,5-dicarboxaldehyde (bTDA), their corresponding CNTs@CoPc-CPs exhibit gradually improved electrocatalytic ORR performance. More importantly, theoretical calculations reveal that the charge transfer from CoPc units to electron-withdrawing linkers (i.e., TDA and bTDA) drives the delocalization of Co d-orbital electrons, thereby downshifting the Co d-band energy level. Accordingly, the active Co centers with more positive valence state exhibit optimized binding energy toward ORR-relevant intermediates and thus a balanced adsorption/desorption pathway that endows significant enhancement in electrocatalytic ORR. This work demonstrates a molecular-level engineering route for rationally designing efficient polymer catalysts and gaining insightful understanding of electrocatalytic mechanisms.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Chenglong Tang
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yonglin Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Xiaoxue Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Mingjie Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Xun Cui
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Yingkui Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| |
Collapse
|
12
|
Li Y, Li Z, Shi K, Luo L, Jiang H, He Y, Zhao Y, He J, Lin L, Sun Z, Sun G. Single-Atom Mn Catalysts via Integration with Mn Sub Nano-Clusters Synergistically Enhance Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309727. [PMID: 38112245 DOI: 10.1002/smll.202309727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Integrating single atoms and clusters into one system represents a novel strategy for achieving the desired catalytic performance. In comparison to single-atom catalysts, catalysts combining single atoms and clusters harness the advantages of both, thus displaying greater potential. Nevertheless, constructing single-atom-cluster systems remains challenging, and the fundamental mechanism for enhancing catalytic activity remains elusive. In this study, a directly confined preparation of a 3D hollow sea urchin-like carbon structure (MnSA/MnAC-SSCNR) is developed. Mn single atoms synergistically interact with Mn clusters, optimizing and reducing energy barriers in the reaction pathway, thus enhancing reaction kinetics. Consequently, in contrast to Mn single-atom catalysts (MnSA-SSCNR), MnSA/MnAC-SSCNR exhibits significantly improved oxygen reduction activity, with a half-wave potential (E1/2) of 0.90 V in 0.1 m KOH, surpassing that of MnSA-SSCNR and Pt/C. This work demonstrates a strategy of remote synergy between heterogeneous single atoms and clusters, which not only contributes to electrocatalytic reactions but also holds potential for reactions involving more complex products.
Collapse
Affiliation(s)
- Yayin Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zihan Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Kefan Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Lanke Luo
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Haomin Jiang
- Center for Advanced Materials Research & College of Arts and Sciences Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai, 519087, China
| | - Yu He
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuelin Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jiayue He
- Center for Advanced Materials Research & College of Arts and Sciences Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai, 519087, China
| | - Liu Lin
- Center for Advanced Materials Research & College of Arts and Sciences Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai, 519087, China
| | - Zemin Sun
- Center for Advanced Materials Research & College of Arts and Sciences Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai, 519087, China
| | - Genban Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
13
|
Lin L, Xu Y, Han Y, Xu R, Wang T, Sun Z, Yan Z. Spin-Magnetic Effect of d-π Conjugation Polymer Enhanced O-H Cleavage in Water Oxidation. J Am Chem Soc 2024; 146:7363-7372. [PMID: 38452363 DOI: 10.1021/jacs.3c11907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A deep understanding of the mechanism for the spin-magnetic effect on O-H cleavage is crucial for the development of new catalysts for water oxidation. Herein, we designed and synthesized the crystalline Fe-DABDT and Co-DABDT (DABDT = 2,5-diaminobenzene-1,4-dithiol) and optimized an effective magnetic moment to explore the role of the spin-magnetic effect in the regulation of water oxidation activity. It can be found that the OER activity of the catalyst is positively correlated with its effective magnetic moment. Under the external magnetic field, Fe-DABDT with more spin single electrons has a stronger spin-magnetic response to water oxidation than Fe/Co-DABDT and Co-DABDT. The increase in OER current of Fe-DABDT is nearly 2 times higher than that of Co-DABDT. Experimental and density functional theory studies show that magnetized Fe sites could realize nucleophilic reaction, accelerate the polarization of electron spin states, and promote the polar decomposition of O-H and the formation of the O-O bond. This study provides mechanistic insight into the spin-magnetic effect of oxygen evolution reaction and further understanding of the spin origin of catalytic activity, which is expected to improve the energy efficiency of hydrogen production.
Collapse
Affiliation(s)
- Liu Lin
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yunming Xu
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yiting Han
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Ruikun Xu
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Tongyue Wang
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Zemin Sun
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Zhenhua Yan
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Zhi Q, Jiang R, Yang X, Jin Y, Qi D, Wang K, Liu Y, Jiang J. Dithiine-linked metalphthalocyanine framework with undulated layers for highly efficient and stable H 2O 2 electroproduction. Nat Commun 2024; 15:678. [PMID: 38263147 PMCID: PMC10805717 DOI: 10.1038/s41467-024-44899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Realization of stable and industrial-level H2O2 electroproduction still faces great challenge due large partly to the easy decomposition of H2O2. Herein, a two-dimensional dithiine-linked phthalocyaninato cobalt (CoPc)-based covalent organic framework (COF), CoPc-S-COF, was afforded from the reaction of hexadecafluorophthalocyaninato cobalt (II) with 1,2,4,5-benzenetetrathiol. Introduction of the sulfur atoms with large atomic radius and two lone-pairs of electrons in the C-S-C linking unit leads to an undulated layered structure and an increased electron density of the Co center for CoPc-S-COF according to a series of experiments in combination with theoretical calculations. The former structural effect allows the exposition of more Co sites to enhance the COF catalytic performance, while the latter electronic effect activates the 2e- oxygen reduction reaction (2e- ORR) but deactivates the H2O2 decomposition capability of the same Co center, as a total result enabling CoPc-S-COF to display good electrocatalytic H2O2 production performance with a remarkable H2O2 selectivity of >95% and a stable H2O2 production with a concentration of 0.48 wt% under a high current density of 125 mA cm-2 at an applied potential of ca. 0.67 V versus RHE for 20 h in a flow cell, representing the thus far reported best H2O2 synthesis COFs electrocatalysts.
Collapse
Affiliation(s)
- Qianjun Zhi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rong Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yunpeng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, China.
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
15
|
Li X, Yang S, Xu Q. Metal-Free Covalent Organic Frameworks for the Oxygen Reduction Reaction. Chemistry 2024; 30:e202302997. [PMID: 37823329 DOI: 10.1002/chem.202302997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
The oxygen reduction reaction (ORR) is the key reaction in metal air and fuel cells. Among the catalysts that promote ORR, carbon-based metal-free catalysts are getting more attention because of their maximum atom utilization, effective active sites and satisfactory catalytic activity and stability. However, the pyrolysis synthesis of these carbons resulted in disordered porosities and uncontrolled catalytic sites, which hindered us in realizing the catalysts' design, the optimization of catalyst performance and the elucidation of structure-property relationship at the molecular level. Covalent organic frameworks (COFs) constructed with designable building blocks have been employed as metal-free electrocatalysts for the ORR due to their controlled skeletons, tailored pores size and environments, as well as well-defined location and kinds of catalytic sites. In this Concept article, the development of metal-free COFs for the ORR is summarized, and different strategies including skeletons regulation, linkages engineering and edge-sites modulation to improve the catalytic selectivity and activity are discussed. Furthermore, this Concept provides prospectives for designing and constructing powerful electrocatalysts based on the catalytic COFs.
Collapse
Affiliation(s)
- Xuewen Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China
| | - Shuai Yang
- School of Physical Science and Technology, Shanghai Tech University, 201210, Shanghai, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China
| |
Collapse
|
16
|
Sun Y, Fan W, Li Y, Sui NLD, Zhu Z, Zhou Y, Lee JM. Tuning Coordination Structures of Zn Sites Through Symmetry-Breaking Accelerates Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306687. [PMID: 37649133 DOI: 10.1002/adma.202306687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/19/2023] [Indexed: 09/01/2023]
Abstract
Manipulating the coordination environment of individual active sites in a precise manner remains an important challenge in electrocatalytic reactions. Herein, inspired by theoretical predictions, a facile procedure to synthesize a series of symmetry-breaking zinc metal-organic framework (Zn-MOF) catalysts with well-defined structures is presented. Benefiting from the optimized coordination microenvironment regulated by symmetry-breaking, Zn-N2 S2 -MOF exhibits the best performance of nitrogen (N2 ) reduction reaction (NRR) with NH3 yield rate of 25.07 ± 1.57 µg h-1 cm-2 and Faradaic efficiency of 44.57 ± 2.79% compared with reported Zn-based NRR catalysts. X-ray absorption near-edge structure shows that the symmetry-breaking distorts the coordination environment and modulates the delocalized electrons around the Zn sites, which favors the formation of unpaired low-valence Znδ+ , thereby facilitating the adsorption/activation of N2 . Theoretical calculations elucidate that low-valence Znδ+ in Zn-N2 S2 -MOF can effectively lower the energy barrier of potential determining step, promoting the kinetics and boosting the NRR activity. This work highlights the relationship between the precise coordination environment of metal sites and the catalytic activity, which offers insightful guidance for rationally designing high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Yuntong Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Wenjun Fan
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yinghao Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Nicole L D Sui
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute (NEWRI), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637141, Singapore
| | - Zhouhao Zhu
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
17
|
Luo L, Xu J, Wan Q, Han Y, Li M, Cui D, Chen R, Tang Z, Cui X, Xin X, Li X, Xiang Y, Dong H, Lin L, Sun Z, Sun G. Highly Ordered Hierarchical Macro-Mesoporous Carbon-Supported Cobalt Electrocatalyst for Efficient Oxygen Evolution Reaction. Chem Asian J 2023:e202300946. [PMID: 38143244 DOI: 10.1002/asia.202300946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 12/26/2023]
Abstract
Metal-organic frameworks (MOFs) and their derivatives have been extensively employed in Oxygen Evolution Reaction (OER) catalysts due to their significantly larger specific surface areas, distinct metal centers, and well-organized porous structures. However, the microporous structure of MOFs and their derivatives presents mass transfer resistance, limiting their further development. Drawing inspiration from hierarchical structures allowing for the transport and exchange of substances in the biological world, we designed and fabricated biomimetic layered porous structures within ZIF-67 and its derivatives. Based on this, we achieved a three-dimensional ordered layered porous nitrogen-doped carbon-coated magnetic cobalt catalyst (3DOLP Co@NDC) with a biomimetic pore structure. It is found that the 3DOLP Co@NDC (352 mV @10 mA cm-1 ) was better than Co@NDC (391 mV @10 mA cm-1 ). The introduction of a three-dimensional ordered layered porous structure is conducive to increasing the specific surface area of the material, increasing the electrochemical active area, and improving the catalytic performance of the material. The introduction of a three-dimensional ordered layered porous structure would help to build a bionic grade pore structure. The existence of biomimetic grade pore structure can effectively reduce the mass transfer resistance, improve the material exchange efficiency, and accelerate the reaction kinetics.
Collapse
Affiliation(s)
- Lanke Luo
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Jingshen Xu
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Qiuhong Wan
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Yiting Han
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Mingxuan Li
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Dingwei Cui
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Runxuan Chen
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Zhangrong Tang
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Xinjun Cui
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Xin Xin
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Xinchang Li
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Yulu Xiang
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Haohai Dong
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Liu Lin
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Zemin Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Genban Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
18
|
Xue Z, Tan R, Wang H, Tian J, Wei X, Hou H, Zhao Y. A novel tetragonal T-C 2N supported transition metal atoms as superior bifunctional catalysts for OER/ORR: From coordination environment to rational design. J Colloid Interface Sci 2023; 651:149-158. [PMID: 37542890 DOI: 10.1016/j.jcis.2023.07.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Single-atom catalysts with particular electronic structures and precisely regulated coordination environments delivering excellent activity for oxygen-evolution reaction (OER) and oxygen-reduction reaction (ORR) are highly desirable for renewable energy applications. In this work, a novel tetragonal carbon nitride T-C2N monolayer with remarkable stability was predicted by using the RG2 method. Inspired by the well-defined atomic structures and just right N4 aperture of T-C2N substrate, the electrocatalytic performance of a series of transition metal single-atoms anchored on porous T-C2N matrix (TM@C2N) have been systematically investigated. In addition, machine learning (ML) method was employed with the gradient boosting regression GBR model to deeply explore the complex controlling factors and offer direct guidance for rational discovery of desirable catalysts. On this basis, the coordination environment of the central TM active sites has been tailored by incorporating heteroatoms. Impressively, the Co@C2N/B-C, Rh@C2N/SC and Rh@C2N/SN exhibit significantly enhanced OER/ORR activity with notably low ηOER/ηORR of 0.39/0.32, 0.26/0.35 and 0.37/0.27 V, respectively. Our work provides insights into the rational design, data-driven, performance regulation, mechanism analysis and practical application of TMNC catalysts. Such a systematic theoretical framework can also be expanded to many other kinds of catalysts for energy storage and conversion.
Collapse
Affiliation(s)
- Zhe Xue
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China
| | - Rui Tan
- Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China
| | - Hongxia Wang
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China
| | - Jinzhong Tian
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China
| | - Xiaolin Wei
- Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Hua Hou
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China; School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yuhong Zhao
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China; Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110010, China.
| |
Collapse
|
19
|
Feng R, Ruan QD, Feng JJ, Yao YQ, Li LM, Zhang L, Wang AJ. Facile pyrolysis synthesis of abundant FeCo dual-single atoms anchored on N-doped carbon nanocages for synergistically boosting oxygen reduction reaction. J Colloid Interface Sci 2023; 654:1240-1250. [PMID: 39491913 DOI: 10.1016/j.jcis.2023.10.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Single-atom transition metal-based nitrogen-doped carbon (M-Nx-C) is regarded as high-efficiency and cost-effectiveness alternatives to replace noble metal catalysts for oxygen reduction reaction (ORR) in renewable energy storage and conversion devices. In this work, rich FeCo dual-single atoms were efficiently entrapped into N-doped carbon nanocages (FeCo DSAs-NCCs) by simple pyrolysis of the bimetallic precursors doped zeolitic imidazolate framework-8 (ZIF-8), as affirmed by a series of characterizations. The graphitization degree of the N-doping carbon substrate was regulated by modulating the pyrolysis temperature and the types of the metal salts. The typical catalyst substantially improved the alkaline ORR performance, with the onset potential (Eonset) of 0.99 V (vs. RHE) and half-wave potential (E1/2) of 0.88 V (vs. RHE). Ultimately, the catalyst-assembled Zn-air battery possessed a higher open-circuit voltage of 1.501 V, larger power density of 123.7 mW cm-2, and outstanding durability for 150 h. This study provides a guide on developing ORR catalysts for electrochemical energy conversion and storage technology.
Collapse
Affiliation(s)
- Rui Feng
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Qi-Dong Ruan
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Jiu-Ju Feng
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China
| | - You-Qiang Yao
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Lin-Mei Li
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Lu Zhang
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Ai-Jun Wang
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China.
| |
Collapse
|
20
|
Zeng K, Lei L, Wu C, Wu K. Cobalt-based conjugated coordination polymers with tunable dimensions for electrochemical sensing of p-nitrophenol. Anal Chim Acta 2023; 1279:341772. [PMID: 37827671 DOI: 10.1016/j.aca.2023.341772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/27/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Using planar π-conjugated 2,5-diamino-1,4-benzenedithiol as organic ligand, Co-based conjugated coordination polymers (CoCCPs) with different morphology were prepared through controlling the injection rate of Co2+. When the injection rate decreases from 1.00 to 0.25 mL min-1, the obtained CoCCPs change from 2D nanosheets to quasi-1D nanorods. It is found that the different-shaped CoCCPs exhibit varying electrochemical sensing performance. The prepared CoCCPs-1 with quasi-1D nanowires and porous network structure possesses larger active area, faster electron transfer and higher accumulation ability. Moreover, the CoCCPs-1 is more active for the oxidation of p-nitrophenol (PNP), and greatly enhances its oxidation signal. Based on the morphology-tuned sensing performance of CoCCPs, a highly-sensitive electrochemical sensor has been developed for PNP, with detection limit of 0.00986 μM (9.86 nM). It was used in the analysis of wastewater samples, and the results is validated by other instrumental method.
Collapse
Affiliation(s)
- Keni Zeng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ling Lei
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Can Wu
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China.
| | - Kangbing Wu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; College of Health Science and Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
21
|
Lin L, Xin R, Yuan M, Wang T, Li J, Xu Y, Xu X, Li M, Du Y, Wang J, Wang S, Jiang F, Wu W, Lu C, Huang B, Sun Z, Liu J, He J, Sun G. Revealing Spin Magnetic Effect of Iron-Group Layered Double Hydroxides with Enhanced Oxygen Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Liu Lin
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Ruiyun Xin
- Inner Mongolia University, 235 West University Street, Hohhot010021, China
| | - Mengwei Yuan
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Tongyue Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jie Li
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Yunming Xu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Xuhui Xu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Mingxuan Li
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Yu Du
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jianing Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Shuyi Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Fubin Jiang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Wenxin Wu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Caicai Lu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Binbin Huang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Zemin Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jian Liu
- Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao266101, China
| | - Jinlu He
- Inner Mongolia University, 235 West University Street, Hohhot010021, China
| | - Genban Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing100875, China
| |
Collapse
|