1
|
Pozhydaiev V, Paparesta A, Moran J, Lebœuf D. Iron(II)-Catalyzed 1,2-Diamination of Styrenes Installing a Terminal NH 2 Group Alongside Unprotected Amines. Angew Chem Int Ed Engl 2024; 63:e202411992. [PMID: 39016034 DOI: 10.1002/anie.202411992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
1,2-Diamination of alkenes represents an attractive way to generate differentiated vicinal diamines, which are prevalent motifs in biologically active compounds and catalysts. However, existing methods are usually limited in scope and produce diamines where one or both nitrogens are protected, adding synthetic steps for deprotection and further N-functionalization to reach a desired target. Furthermore, the range of amino groups that can be introduced at the internal position is fairly limited. Here we describe a 1,2-diamination of styrenes that directly installs a free amino group at the terminal position and a wide variety of unprotected nitrogen nucleophiles (primary or secondary alkyl or aromatic amines, sulfoximines, N-heterocycles, and ammonia surrogate) at the internal position. Two complementary sets of conditions encompass electronically activated and deactivated styrenes with diverse substitution patterns and functional groups. Moreover, this strategy can be extended to the 1,2-aminothiolation of styrenes.
Collapse
Affiliation(s)
- Valentyn Pozhydaiev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Antonio Paparesta
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
2
|
Pradhan TR, Farah AO, Sagar K, Wise HR, Srimannarayana M, Cheong PHY, Park JK. Acetate Assistance in Regioselective Hydroamination of Allenamides: A Combined Experimental and Density Functional Theory Study. J Org Chem 2024; 89:5927-5940. [PMID: 38651750 DOI: 10.1021/acs.joc.3c02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
A key factor in the development of selective nucleophilic addition to allenamides is controlling the reactivity of electrophilic intermediates, which is generally achieved using an electrophilic activator via conjugated iminium intermediates. In this combined experimental and computational study, we show that a general and highly chemoselective hydroamination of allenamides can be accomplished using a combination of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and NaOAc. Experimental mechanistic studies revealed that HFIP mediates proton transfer to activate the allenamide, while the acetate additive significantly contributes to N-selective interception. This strategy enables a general hydroamination of allenamides without the use of metals. We demonstrated that various functionalized 1,3-diamines could be readily synthesized and diversified into value-added structural motifs. Detailed mechanistic investigations using the density functional theory revealed the role of NaOAc in the formation of reactive electrophilic intermediates, which ultimately governed the selective formation of 1,3-diamine products. Critically, calculations of the potential energy surface around the proton-transfer transition state revealed that two different reactive electrophilic intermediates were formed when NaOAc was added.
Collapse
Affiliation(s)
- Tapas R Pradhan
- Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kadiyala Sagar
- Department of Chemistry, School of Science, GITAM University (Hyderabad Campus), Telangana 502329, India
- Medicinal Chemistry Division, Aragen Life Sciences Pvt. Ltd., Hyderabad 500076, India
| | - Henry R Wise
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Malempati Srimannarayana
- Department of Chemistry, School of Science, GITAM University (Hyderabad Campus), Telangana 502329, India
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jin Kyoon Park
- Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Ho AT, Vanable EP, Miguel CS, Hull KL. Iridium-catalysed hydroamination of internal homoallylic amines. Chem Commun (Camb) 2024; 60:1615-1618. [PMID: 38230687 PMCID: PMC10846566 DOI: 10.1039/d3cc05594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
An Ir-catalysed regioselective hydroamination of internal homoallylic amines is reported. Both cyclic and acyclic internal olefins undergo directed hydroamination reactions with both aromatic and cyclic aliphatic amines to afford a variety of 1,4-diamines in fair to excellent yields. Diastereoselectivity and mechanistic investigations support that for cyclic substrates the reactions are proceeding via trans-aminoiridation to form a 5-membered metalacyclic intermediate.
Collapse
Affiliation(s)
- An T Ho
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, TX 78741, USA.
| | - Evan P Vanable
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Chelsea San Miguel
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, TX 78741, USA.
| | - Kami L Hull
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, TX 78741, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
4
|
Escorihuela J, Lledós A, Ujaque G. Anti-Markovnikov Intermolecular Hydroamination of Alkenes and Alkynes: A Mechanistic View. Chem Rev 2023; 123:9139-9203. [PMID: 37406078 PMCID: PMC10416226 DOI: 10.1021/acs.chemrev.2c00482] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 07/07/2023]
Abstract
Hydroamination, the addition of an N-H bond across a C-C multiple bond, is a reaction with a great synthetic potential. Important advances have been made in the last decades concerning catalysis of these reactions. However, controlling the regioselectivity in the amine addition toward the formation of anti-Markovnikov products (addition to the less substituted carbon) still remains a challenge, particularly in intermolecular hydroaminations of alkenes and alkynes. The goal of this review is to collect the systems in which intermolecular hydroamination of terminal alkynes and alkenes with anti-Markovnikov regioselectivity has been achieved. The focus will be placed on the mechanistic aspects of such reactions, to discern the step at which regioselectivity is decided and to unravel the factors that favor the anti-Markovnikov regioselectivity. In addition to the processes entailing direct addition of the amine to the C-C multiple bond, alternative pathways, involving several reactions to accomplish anti-Markovnikov regioselectivity (formal hydroamination processes), will also be discussed in this review. The catalysts gathered embrace most of the metal groups of the Periodic Table. Finally, a section discussing radical-mediated and metal-free approaches, as well as heterogeneous catalyzed processes, is also included.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departament
de Química Orgànica, Universitat
de València, 46100 Burjassot, Valencia, Spain
| | - Agustí Lledós
- Departament
de Química and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Gregori Ujaque
- Departament
de Química and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| |
Collapse
|