1
|
Liu L, Jiang Q, Tang L, Liu C, Wang Y, Wu F, Wu J. Copper-Catalyzed Asymmetric Tertiary Radical Cyanation for the Synthesis of Chiral Tetrasubstituted Monofluoroacyl Nitriles. Org Lett 2024; 26:10833-10839. [PMID: 39656094 DOI: 10.1021/acs.orglett.4c03914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The construction of chiral tetrasubstituted α-fluoro-α-cyano carbonyl compounds remains a key challenge in synthetic organic chemistry because of their popularity in multiple disciplines. In this paper, we report the copper-catalyzed asymmetric fluorinated tertiary radical cyanation reaction of cyclic α-iodo-α-fluoroindanones with TMSCN to achieve chiral nitriles with carbon-fluorine quaternary stereogenic centers. Thus, an array of optically active tetrasubstituted monofluoroacyl nitriles were synthesized with high reaction efficiency and excellent enantioselectivities (up to 91% yield, 99% ee). Moreover, mechanistic investigations, including experiments, were conducted to clarify the reaction pathway and stereochemical outcomes.
Collapse
Affiliation(s)
- Li Liu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Qi Jiang
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Long Tang
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Chao Liu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yanzhao Wang
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Jingjing Wu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| |
Collapse
|
2
|
Xu W, Sun Y, Jiang Y, Yan X, Gao Z, Wang H, Huang G, Zhou QL, Ye M. Enantioselective Carbonylative Cyclization of Alkenes with C-H Bonds for Synthesis of γ-Lactams Bearing an α-Quaternary Carbon. J Am Chem Soc 2024. [PMID: 39699579 DOI: 10.1021/jacs.4c15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The development of effective synthetic methods to construct γ-lactams bearing a chiral α-quaternary carbon from relatively inert C(O)-H bonds with alkenes has been an elusive challenge. Herein, we used a naphthylamine-derived phosphine oxide ligating Ni and Al bimetallic catalyst to realize a carbonylative cyclization of formyl C-H bonds with alkenes, highly regio- and enantioselectively constructing γ-lactams bearing a chiral α-quaternary carbon in up to 99% yield and 98% ee. These γ-lactams proved to be versatile synthetic precursors for many biologically active molecules.
Collapse
Affiliation(s)
- Weiwei Xu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yanan Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yuqing Jiang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Xueyuan Yan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Zhixuan Gao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Haorui Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
3
|
Chen S, Ding D, Yin L, Wang X, Krause JA, Liu W. Overcoming Copper Reduction Limitation in Asymmetric Substitution: Aryl-Radical-Enabled Enantioconvergent Cyanation of Alkyl Iodides. J Am Chem Soc 2024; 146:31982-31991. [PMID: 39505711 DOI: 10.1021/jacs.4c11888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Cu-catalyzed enantioconvergent cross-coupling of alkyl halides has emerged as a powerful strategy for synthesizing enantioenriched molecules. However, this approach is intrinsically limited by the weak reducing power of copper(I) species, which restricts the scope of compatible nucleophiles and necessitates extensive ligand optimization or the use of complex chiral scaffolds. To overcome these challenges, we introduce an aryl-radical-enabled strategy that decouples the alkyl halide activation step from the chiral Cu center. We demonstrate that merging aryl-radical-enabled iodine abstraction with Cu-catalyzed asymmetric radical functionalization enables the conversion of racemic α-iodoamides to enantioenriched alkyl nitrile products with good yield and enantioselectivity. The rational design of chiral ligands identified a new class of carboxamide-containing BOX ligands. Mechanistic studies support an aryl-radical-enabled pathway and the unique hydrogen-bonding ability in the newly designed BOX ligands. This aryl-radical-enabled asymmetric substitution reaction has the potential to significantly expand the scope of Cu-catalyzed enantioconvergent cross-coupling reactions.
Collapse
Affiliation(s)
- Su Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Decai Ding
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Xiao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
4
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
5
|
Yang KC, Zheng SL, Wen Z, Zhang YS, Ni HL, Chen L. Dehydrative alkynylation of 3-hydroxyisoindolinones with terminal alkynes for the synthesis of 3-alkynylated 3,3-disubstituted isoindolinones. Org Biomol Chem 2024; 22:3453-3458. [PMID: 38596838 DOI: 10.1039/d4ob00190g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A brand-new procedure for the synthesis of 3-alkynylated 3,3-disubstituted isoindolinones has been disclosed via a HOTf or Fe(OTf)3-catalyzed dehydrative alkynylation of 3-hydroxyisoindolinones with terminal alkynes. Aryl, alkenyl and alkyl terminal alkynes are suitable to couple with a broad range of 3-hydroxyisoindolinones to afford the desired products in moderate to good yields. This protocol features the use of an inexpensive catalyst, mild reaction conditions, broad substrate scope and easy elaboration of the products.
Collapse
Affiliation(s)
- Kai-Cheng Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | - Shi-Lu Zheng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | - Zhong Wen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | - Yu-Shan Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jing An Road, Chengdu 610066, P. R. China
| | - Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China.
| |
Collapse
|
6
|
Choi S, Choi Y, Kim Y, Lee J, Lee SY. Copper-Catalyzed C-C Cross-Couplings of Tertiary Alkyl Halides with Anilines Enabled by Cyclopropenimine-Based Ligands. J Am Chem Soc 2023. [PMID: 37933129 DOI: 10.1021/jacs.3c09369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Catalytic cross-couplings of tertiary alkyl electrophiles with carbon nucleophiles offer a powerful platform for constructing quaternary carbon centers, which are prevalent in bioactive molecules. However, these reactions remain underdeveloped primarily because of steric challenges that impede efficient bond formation. Herein, we describe the copper-catalyzed synthesis of such centers through the C(sp3)-C(sp2) bond-forming reaction between tertiary alkyl halides and arene rings of aniline derivatives, enabled by the strategic implementation of bidentate bis(cyclopropenimine) ligands. The copper catalyst bound by two imino-nitrogen atoms of these ligands, which have never been employed in metal catalysis previously, is highly effective in rapidly activating tertiary halides to generate alkyl radicals, allowing them to react with aryl nucleophiles under mild conditions with remarkably short reaction times (1-2 h). Various tertiary halides bearing carbonyl functional groups can be coupled with secondary or primary anilines, furnishing a range of quaternary carbon centers in good yields. Several mechanistic observations support the generation of copper(II) species and alkyl radicals which as a result elucidate the steps in the proposed catalytic cycle.
Collapse
Affiliation(s)
- Serim Choi
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Yongseok Choi
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Yongjae Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaehoo Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Chun J, Li Y, Xie X, Guo K, Zhao D, Chen K, Zhu Y. Photoinduced Copper-Catalyzed Enantioconvergent Remote Alkynylation via 1,4-Heteroaryl Migration. Org Lett 2023; 25:7739-7744. [PMID: 37851948 DOI: 10.1021/acs.orglett.3c03158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A photoinduced copper-catalyzed enantioconvergent remote alkynylation of N-hydroxyphthalimide esters with terminal alkynes via 1,4-heteroaryl migration has been developed. A broad scope of heteroaryl-tethered chiral alkynes has been synthesized with good regio- and enantioselectivities. The chiral-ligand-coordinated copper species plays a dual role as both the photoredox and cross-coupling catalyst. This methodology provides a new platform for enantioconvergent remote alkynylations.
Collapse
Affiliation(s)
- Jianlin Chun
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yukun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xiaofei Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Kang Guo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Daoyuan Zhao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Kang Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
8
|
Kong HH, Zhu C, Deng S, Xu G, Zhao R, Yao C, Xiang HM, Zhao C, Qi X, Xu H. Remote Enantioselective [4 + 1] Annulation with Copper-Vinylvinylidene Intermediates. J Am Chem Soc 2022; 144:21347-21355. [DOI: 10.1021/jacs.2c09572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Han-Han Kong
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Cuiju Zhu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Shuang Deng
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Guang Xu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Ruinan Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Chaochao Yao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Hua-Ming Xiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Chunhui Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hao Xu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| |
Collapse
|
9
|
Dong XY, Li ZL, Gu QS, Liu XY. Ligand Development for Copper-Catalyzed Enantioconvergent Radical Cross-Coupling of Racemic Alkyl Halides. J Am Chem Soc 2022; 144:17319-17329. [PMID: 36048164 DOI: 10.1021/jacs.2c06718] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The enantioconvergent cross-coupling of racemic alkyl halides represents a powerful tool for the synthesis of enantioenriched molecules. In this regard, the first-row transition metal catalysis provides a suitable mechanism for stereoconvergence by converting racemic alkyl halides to prochiral radical intermediates owing to their good single-electron transfer ability. In contrast to the noble development of chiral nickel catalyst, copper-catalyzed enantioconvergent radical cross-coupling of alkyl halides is less studied. Besides the enantiocontrol issue, the major challenge arises from the weak reducing capability of copper that slows the reaction initiation. Recently, significant efforts have been dedicated to basic research aimed at developing chiral ligands for copper-catalyzed enantioconvergent radical cross-coupling of racemic alkyl halides. This perspective will discuss the advances in this burgeoning area with particular emphasis on the strategic chiral anionic ligand design to tune the reducing capability of copper for the reaction initiation under thermal conditions from our research group.
Collapse
Affiliation(s)
- Xiao-Yang Dong
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|