1
|
Sidro M, García-Mateos C, Rojo P, Wen Y, Riera A, Verdaguer X. Highly Enantioselective Synthesis of 3,3-Diarylpropyl Amines and 4-Aryl Tetrahydroquinolines via Ir-Catalyzed Asymmetric Hydrogenation. Org Lett 2024; 26:10903-10909. [PMID: 39636659 DOI: 10.1021/acs.orglett.4c04076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Chiral nitrogen-containing compounds are crucial for the chemical, pharmaceutical, and agrochemical industries. Nevertheless, the synthesis of certain valuable scaffolds remains underdeveloped due to the vast chemical space available. In this work, we present a diastereoselective methodology for synthesizing 3,3-diarylallyl phthalimides, which, following iridium-catalyzed asymmetric hydrogenation using Ir-UbaPHOX, yield 3,3-diarylpropyl amines with high enantioselectivity (98-99% ee). The importance of alkene purity to achieve high enantioselectivity is discussed. The synthetic utility of the chiral propylamines obtained is demonstrated through the preparation of medicinally useful bioactive compounds like the drugs tolterodine and tolpropamine and 4-aryl tetrahydroquinolines. This strategy enables the synthesis of these compounds with the highest enantioselectivity reported to date.
Collapse
Affiliation(s)
- Martí Sidro
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Secció Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Clara García-Mateos
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Secció Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Pep Rojo
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Secció Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Yisong Wen
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Secció Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Secció Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Secció Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Tian X, Qiu M, An W, Ren Y. Photocatalytic Hydrogenation of Alkenes Using Water as Both the Reductant and the Proton Source. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406046. [PMID: 39383057 PMCID: PMC11600260 DOI: 10.1002/advs.202406046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/22/2024] [Indexed: 10/11/2024]
Abstract
Utilization of clean and low-cost water as the reductant to enable hydrogenation of alkenes is highly attractive in green chemistry. However, this research subject is considerably challenging due to the sluggish kinetics of the water oxidation half-reaction. It is also very difficult to avoid the undesired oxidation of alkenes because that this oxidation is far easier to occur than the desired oxidation of water from thermodynamic standpoint. Herein, this challenge is overcome by applying a cooperative catalysis where HCl is used as the cocatalyst to accelerate Pt/g-C3N4-catalyzed water oxidation and suppress the undesired oxidation of the alkene. This provides an example for using water as the reductant and the proton source to enable the photocatalytic hydrogenation of alkenes. The present method exhibits broad substrate applicability, and allows various arylethenes and aliphatic alkenes to undergo the hydrogenation smoothly.
Collapse
Affiliation(s)
- Xinzhe Tian
- College of ScienceHenan Agricultural UniversityZhengzhouHenan450002P. R. China
| | - Ming Qiu
- College of ScienceHenan Agricultural UniversityZhengzhouHenan450002P. R. China
| | - Wankai An
- College of ScienceHenan Agricultural UniversityZhengzhouHenan450002P. R. China
| | - Yun‐Lai Ren
- College of ScienceHenan Agricultural UniversityZhengzhouHenan450002P. R. China
| |
Collapse
|
3
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
4
|
Pan T, Yuan Q, Xu D, Zhang W. Iridium-Catalyzed Asymmetric Hydrogenation of Unfunctionalized Cycloalkenes to Access Chiral 2-Aryl Tetralins. Org Lett 2024; 26:5850-5855. [PMID: 38950380 DOI: 10.1021/acs.orglett.4c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The transition-metal catalyzed asymmetric hydrogenation of unfunctionalized alkenes is challenging. Herein, we report an efficient iridium-catalyzed asymmetric hydrogenation of unfunctionalized cycloalkenes, delivering chiral 2-aryl tetralins in excellent yields and with moderate to excellent enantioselectivities. The reaction can be performed on a gram-scale with a low catalyst loading (S/C = 1000), and the reduced product was obtained without erosion of the enantioselectivity. Deuterium experiments indicated that the C═C bond in the substrate is hydrogenated directly without isomerization.
Collapse
Affiliation(s)
- Tierui Pan
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P. R. China
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Defeng Xu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
5
|
Faiges J, Biosca M, Pericàs MA, Besora M, Pàmies O, Diéguez M. Unlocking the Asymmetric Hydrogenation of Tetrasubstituted Acyclic Enones. Angew Chem Int Ed Engl 2024; 63:e202315872. [PMID: 38093613 DOI: 10.1002/anie.202315872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Indexed: 12/30/2023]
Abstract
Asymmetric hydrogenation (AH) of tetrasubstituted olefins generating two stereocenters is still an open topic. There are only a few reports on the AH of tetrasubstituted olefins with conjugated functional groups, while this process can create useful intermediates for the subsequent elaboration of relevant end products. Most of the tetrasubstituted olefins successfully submitted to AH belong to a small number of functional classes; remarkably, the AH of tetrasubstituted acyclic enones still represents an unsolved challenge. Herein, we disclose a class of air-stable Ir-P,N catalysts, prepared in three steps from commercially available amino alcohols, that can hydrogenate, in minutes, a wide range of electronically and sterically diverse acyclic tetrasubstituted enones (including exocyclic ones) with high yields and high enantioselectivities. The factors responsible for the excellent selectivities were elucidated by combining deuterogenation experiments and theoretical calculations. The calculations indicated that the reduction follows an IrI /IrIII mechanism, in which enantioselectivity is controlled in the first migratory insertion of the hydride to the most electrophilic olefinic Cβ and the formation of the hydrogenated product via reductive elimination takes place prior to the coordination of dihydrogen and the subsequent oxidative addition. The potential of the new catalytic systems is demonstrated by the derivatization of hydrogenation products.
Collapse
Affiliation(s)
- Jorge Faiges
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Maria Biosca
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Miquel A Pericàs
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Maria Besora
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Oscar Pàmies
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Montserrat Diéguez
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| |
Collapse
|
6
|
Zheng J, Peters BBC, Jiang W, Suàrez LA, Ahlquist MSG, Singh T, Andersson PG. The Effect of Conformational Freedom vs Restriction on the Rate in Asymmetric Hydrogenation: Iridium-Catalyzed Regio- and Enantioselective Monohydrogenation of Dienones. Chemistry 2023:e202303406. [PMID: 38109038 DOI: 10.1002/chem.202303406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Transition metal-catalyzed asymmetric hydrogenation constitutes an efficient strategy for the preparation of chiral molecules. When dienes are subjected to hydrogenation, control over regioselectivity still presents a large challenge and the fully saturated alkane is often yielded. A few successful monohydrogenations of dienes have been reported, but hitherto these are only efficient for dienes comprised of two distinctly different olefins. Herein, the reactivity of a conjugated carbonyl compound as a function of their conformational freedom is studied, based on a combined experimental and theoretical approach. It was found that alkenes in the (s)-cis conformation experience a large rate acceleration while (s)-trans restrained alkenes undergo hydrogenation slowly. Ultimately, this reactivity aspect was exploited in a novel method for the monohydrogenation of dienes based on conformational restriction ((s)-cis vs (s)-trans). This mode of discrimination conceptually differs from existing monohydrogenations and dienones constructed of two olefins similar in nature could efficiently be hydrogenated to the chiral alkene (up to 99 % ee). The extent of regioselection is even powerful enough to overcome the conventional reactivity order of substituted olefins (di>tri>tetra). This high yielding and atom-economical protocol provides an interesting opportunity to instal a stereogenic center on a carbocycle, while leaving a synthetically useful alkene untouched.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Bram B C Peters
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Wei Jiang
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Lluís Artús Suàrez
- School of Biotechnology, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Mårten S G Ahlquist
- School of Biotechnology, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Thishana Singh
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000, Durban, South Africa
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000, Durban, South Africa
| |
Collapse
|
7
|
Huber T, Bauer JO. A Powerful P-N Connection: Preparative Approaches, Reactivity, and Applications of P-Stereogenic Aminophosphines. Chemistry 2023:e202303760. [PMID: 38055219 DOI: 10.1002/chem.202303760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/07/2023]
Abstract
For more than five decades, P-stereogenic aminophosphine chalcogenides and boranes have attracted scientific attention and are still in the focus of ongoing research. In the last years, novel transition metal-based synthesis methods have been discovered, in addition to the long-known use of chiral auxiliaries. Enantiomerically pure compounds with N-P+ -X- (X=O, S, BH3 ) motifs served as valuable reactive building blocks to provide new classes of organophosphorus derivatives, thereby preserving the stereochemical information at the phosphorus atom. Over the years, intriguing applications in organocatalysis and transition metal catalysis have been reported for some representatives. Asymmetric reductions of C=C, C=N, and C=O double bonds were feasible with selected P-stereogenic aminophosphine oxides in the presence of hydrogen transfer reagents. P-stereogenic aminophosphine boranes could be easily deprotected and used as ligands for various transition metals to enable catalytic asymmetric hydrogenations of olefins and imines. This review traces the emergence of a synthetically and catalytically powerful functional compound class with phosphorus-centered chirality in its main lines, starting from classical approaches to modern synthesis methods to current applications.
Collapse
Affiliation(s)
- Tanja Huber
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Jonathan O Bauer
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| |
Collapse
|
8
|
Guan J, Chen J, Luo Y, Guo L, Zhang W. Copper-Catalyzed Chemoselective Asymmetric Hydrogenation of C=O Bonds of Exocyclic α,β-Unsaturated Pentanones. Angew Chem Int Ed Engl 2023; 62:e202306380. [PMID: 37307027 DOI: 10.1002/anie.202306380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
A highly chemoselective earth-abundant transition metal copper catalyzed asymmetric hydrogenation of C=O bonds of exocyclic α,β-unsaturated pentanones was realized using H2 . The desired products were obtained with up to 99 % yield and 96 % ee (enantiomeric excess) (99 % ee, after recrystallization). The corresponding chiral exocyclic allylic pentanol products can be converted into several bioactive molecules. The hydrogenation mechanism was investigated via deuterium-labelling experiments and control experiments, which indicate that the keto-enol isomerization rate of the substrate is faster than that of the hydrogenation and also show that the Cu-H complex can only catalyze chemoselectively the asymmetric reduction of the carbonyl group. Computational results indicate that the multiple attractive dispersion interactions (MADI effect) between the catalyst with bulky substituents and substrate play important roles which stabilize the transition states and reduce the generation of by-products.
Collapse
Affiliation(s)
- Jing Guan
- Frontier Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jianzhong Chen
- Frontier Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yicong Luo
- Frontier Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Lisen Guo
- Frontier Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wanbin Zhang
- Frontier Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|