1
|
Yang X, Long H, Zhang X, Yu J, Yu H. Synchronous optimization of H 2O and H adsorption on NiO 1-xTe x nanodots for alkaline photocatalytic H 2 evolution. J Colloid Interface Sci 2025; 677:359-368. [PMID: 39096704 DOI: 10.1016/j.jcis.2024.07.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Suitable H2O and H adsorption on the surface of transition metal chalcogenide cocatalyst is highly required to achieve their excellent alkaline H2-evolution rate. However, the weak adsorption of H2O and H atoms on NiTe surface greatly hinders its alkaline H2-evolution efficiency. Herein, an electron-deficient modulation strategy is proposed to synchronously improve the adsorption of H2O and H atoms on NiTe surface, which can greatly improve the alkaline photocatalytic H2 evolution of TiO2. In this case, highly electronegative oxygen atoms are introduced into the NiTe cocatalysts to induce the formation of electron-deficient Niδ+ and Teδ+ sites in the ultra-small-sized NiO1-xTex nanodots (0.5-2 nm), which can be uniformly loaded onto the TiO2 surface to prepare the NiO1-xTex/TiO2 photocatalysts by a facile complexation-photodeposition strategy. The resulting NiO1-xTex/TiO2 (0.6:0.4) photocatalyst exhibits the optimal activity (2143.36 μmol g-1 h-1), surpassing the activity levels of TiO2 and NiTe/TiO2 samples by 42.3 and 1.8 times, respectively. The experimental and theoretical investigations have revealed that the presence of highly electronegative O atoms in the NiO1-xTex cocatalyst can redistribute the charges of Ni and Te atoms for the formation of electron-deficient Niδ+ and Teδ+ active sites, thereby synchronously enhancing the adsorption of H2O on Niδ+ sites and H on Teδ+ sites and promoting alkaline photocatalytic H2 evolution. The current research about the synchronous optimization of the H2O and H adsorption offers a significant approach to design high-performance H2-evolution materials.
Collapse
Affiliation(s)
- Xian Yang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, PR China
| | - Haoyu Long
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, PR China
| | - Xidong Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, PR China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, PR China
| | - Huogen Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, PR China.
| |
Collapse
|
2
|
Cao S, Sun T, Peng Y, Yu X, Li Q, Meng FL, Yang F, Wang H, Xie Y, Hou CC, Xu Q. Simultaneously Producing H 2 and H 2O 2 by Photocatalytic Water Splitting: Recent Progress and Future. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404285. [PMID: 39073246 DOI: 10.1002/smll.202404285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Indexed: 07/30/2024]
Abstract
The solar-driven overall water splitting (2H2O→2H2 + O2) is considered as one of the most promising strategies for reducing carbon emissions and meeting energy demands. However, due to the sluggish performance and high H2 cost, there is still a big gap for the current photocatalytic systems to meet the requirements for practical sustainable H2 production. Economic feasibility can be attained through simultaneously generating products of greater value than O2, such as hydrogen peroxide (H2O2, 2H2O→H2 + H2O2). Compared with overall water splitting, this approach is more kinetically feasible and generates more high-value products of H2 and H2O2. In several years, there has been an increasing surge in exploring the possibility and substantial progress has been achieved. In this review, a concise overview of the importance and underlying principles of PIWS is first provided. Next, the reported typical photocatalysts for PIWS are discussed, including commonly used semiconductors and cocatalysts, essential design features of these photocatalysts, and connections between their structures and activities, as well as the selected approaches for enhancing their stability. Then, the techniques used to quantify H2O2 and the operando characterization techniques that can be employed to gain a thorough understanding of the reaction mechanisms are summarized. Finally, the current existing challenges and the direction needing improvement are presented. This review aims to provide a thorough summary of the most recent research developments in PIWS and sets the stage for future advancements and discoveries in this emerging area.
Collapse
Affiliation(s)
- Shuang Cao
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yong Peng
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Xianghui Yu
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qinzhu Li
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Fan Lu Meng
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Fan Yang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Han Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Yunhui Xie
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Chun-Chao Hou
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
3
|
Shen C, Meng XY, Zou R, Sun K, Wu Q, Pan YX, Liu CJ. Boosted Sacrificial-Agent-Free Selective Photoreduction of CO 2 to CH 3OH by Rhenium Atomically Dispersed on Indium Oxide. Angew Chem Int Ed Engl 2024; 63:e202402369. [PMID: 38446496 DOI: 10.1002/anie.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
Solar-energy-driven photoreduction of CO2 is promising in alleviating environment burden, but suffers from low efficiency and over-reliance on sacrificial agents. Herein, rhenium (Re) is atomically dispersed in In2O3 to fabricate a 2Re-In2O3 photocatalyst. In sacrificial-agent-free photoreduction of CO2 with H2O, 2Re-In2O3 shows a long-term stable efficiency which is enhanced by 3.5 times than that of pure In2O3 and is also higher than those on Au-In2O3, Ag-In2O3, Cu-In2O3, Ir-In2O3, Ru-In2O3, Rh-In2O3 and Pt-In2O3 photocatalysts. Moreover, carbon-based product of the photoreduction overturns from CO on pure In2O3 to CH3OH on 2Re-In2O3. Re promotes charge separation, H2O dissociation and CO2 activation, thus enhancing photoreduction efficiency of CO2 on 2Re-In2O3. During the photoreduction, CO is a key intermediate. CO prefers to desorption rather than hydrogenation on pure In2O3, as CO binds to pure In2O3 very weakly. Re strengthens the interaction of CO with 2Re-In2O3 by 5.0 times, thus limiting CO desorption but enhancing CO hydrogenation to CH3OH. This could be the origin for photoreduction product overturn from CO on pure In2O3 to CH3OH on 2Re-In2O3. The present work opens a new way to boost sacrificial-agent-free photoreduction of CO2.
Collapse
Affiliation(s)
- Chenyang Shen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Xin-Yu Meng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Rui Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Kaihang Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Qinglei Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Yun-Xiang Pan
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chang-Jun Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, 300372, P. R. China
| |
Collapse
|
4
|
Zimmerli NK, Rochlitz L, Checchia S, Müller CR, Copéret C, Abdala PM. Structure and Role of a Ga-Promoter in Ni-Based Catalysts for the Selective Hydrogenation of CO 2 to Methanol. JACS AU 2024; 4:237-252. [PMID: 38274252 PMCID: PMC10806875 DOI: 10.1021/jacsau.3c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Supported, bimetallic catalysts have shown great promise for the selective hydrogenation of CO2 to methanol. In this study, we decipher the catalytically active structure of Ni-Ga-based catalysts. To this end, model Ni-Ga-based catalysts, with varying Ni:Ga ratios, were prepared by a surface organometallic chemistry approach. In situ differential pair distribution function (d-PDF) analysis revealed that catalyst activation in H2 leads to the formation of nanoparticles based on a Ni-Ga face-centered cubic (fcc) alloy along with a small quantity of GaOx. Structure refinements of the d-PDF data enabled us to determine the amount of both alloyed Ga and GaOx species. In situ X-ray absorption spectroscopy experiments confirmed the presence of alloyed Ga and GaOx and indicated that alloying with Ga affects the electronic structure of metallic Ni (viz., Niδ-). Both the Ni:Ga ratio in the alloy and the quantity of GaOx are found to minimize methanation and to determine the methanol formation rate and the resulting methanol selectivity. The highest formation rate and methanol selectivity are found for a Ni-Ga alloy having a Ni:Ga ratio of ∼75:25 along with a small quantity of oxidized Ga species (0.14 molNi-1). Furthermore, operando infrared spectroscopy experiments indicate that GaOx species play a role in the stabilization of formate surface intermediates, which are subsequently further hydrogenated to methoxy species and ultimately to methanol. Notably, operando XAS shows that alloying between Ni and Ga is maintained under reaction conditions and is key to attaining a high methanol selectivity (by minimizing CO and CH4 formation), while oxidized Ga species enhance the methanol formation rate.
Collapse
Affiliation(s)
- Nora K. Zimmerli
- Department
of Mechanical and Process Engineering, ETH
Zürich, Leonhardstrasse 21, CH 8092 Zürich, Switzerland
| | - Lukas Rochlitz
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, CH 8093 Zürich, Switzerland
| | - Stefano Checchia
- ESRF
− The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Christoph R. Müller
- Department
of Mechanical and Process Engineering, ETH
Zürich, Leonhardstrasse 21, CH 8092 Zürich, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, CH 8093 Zürich, Switzerland
| | - Paula M. Abdala
- Department
of Mechanical and Process Engineering, ETH
Zürich, Leonhardstrasse 21, CH 8092 Zürich, Switzerland
| |
Collapse
|