• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4626380)   Today's Articles (4414)   Subscriber (49537)
For: Sarauli D, Wettstein C, Peters K, Schulz B, Fattakhova-Rohlfing D, Lisdat F. Interaction of Fructose Dehydrogenase with a Sulfonated Polyaniline: Application for Enhanced Bioelectrocatalysis. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]

Collapse
Number Cited by Other Article(s)
1
Adachi T, Kaida Y, Kitazumi Y, Shirai O, Kano K. Bioelectrocatalytic performance of d-fructose dehydrogenase. Bioelectrochemistry 2019;129:1-9. [PMID: 31063949 DOI: 10.1016/j.bioelechem.2019.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 01/14/2023]
2
Wu CW, Unnikrishnan B, Tseng YT, Wei SC, Chang HT, Huang CC. Mesoporous manganese oxide/manganese ferrite nanopopcorns with dual enzyme mimic activities: A cascade reaction for selective detection of ketoses. J Colloid Interface Sci 2019;541:75-85. [DOI: 10.1016/j.jcis.2019.01.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/06/2019] [Accepted: 01/15/2019] [Indexed: 12/25/2022]
3
Fusco G, Göbel G, Zanoni R, Bracciale MP, Favero G, Mazzei F, Lisdat F. Aqueous polythiophene electrosynthesis: A new route to an efficient electrode coupling of PQQ-dependent glucose dehydrogenase for sensing and bioenergetic applications. Biosens Bioelectron 2018;112:8-17. [DOI: 10.1016/j.bios.2018.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/27/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
4
Bollella P, Hibino Y, Kano K, Gorton L, Antiochia R. The influence of pH and divalent/monovalent cations on the internal electron transfer (IET), enzymatic activity, and structure of fructose dehydrogenase. Anal Bioanal Chem 2018;410:3253-3264. [PMID: 29564502 PMCID: PMC5937911 DOI: 10.1007/s00216-018-0991-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/17/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023]

Fructose dehydrogenase (FDH) consists of three subunits, but only two are involved in the electron transfer process: (I) 2e/2H+ fructose oxidation, (II) internal electron transfer (IET), (III) direct electron transfer (DET) through 2 heme c; FDH activity either in solution or when immobilized onto an electrode surface is enhanced about 2.5-fold by adding 10 mM CaCl2 to the buffer solution, whereas MgCl2 had an “inhibition” effect. Moreover, the additions of KCl or NaCl led to a slight current increase

  • Paolo Bollella
    • Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.,Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden
  • Yuya Hibino
    • Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
  • Kenji Kano
    • Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
  • Lo Gorton
    • Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden.
  • Riccarda Antiochia
    • Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
Collapse
5
Riedel M, Lisdat F. Integration of Enzymes in Polyaniline-Sensitized 3D Inverse Opal TiO2 Architectures for Light-Driven Biocatalysis and Light-to-Current Conversion. ACS APPLIED MATERIALS & INTERFACES 2018;10:267-277. [PMID: 29220151 DOI: 10.1021/acsami.7b15966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
6
Fusco G, Göbel G, Zanoni R, Kornejew E, Favero G, Mazzei F, Lisdat F. Polymer-supported electron transfer of PQQ-dependent glucose dehydrogenase at carbon nanotubes modified by electropolymerized polythiophene copolymers. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
7
Kuwahara T, Kameda M, Isozaki K, Toriyama K, Kondo M, Shimomura M. Bioelectrocatalytic fructose oxidation with fructose dehydrogenase-bearing conducting polymer films for biofuel cell application. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
8
Mashkour M, Rahimnejad M, Mashkour M, Bakeri G, Luque R, Oh SE. Application of Wet Nanostructured Bacterial Cellulose as a Novel Hydrogel Bioanode for Microbial Fuel Cells. ChemElectroChem 2017. [DOI: 10.1002/celc.201600868] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
9
Interaction between d-fructose dehydrogenase and methoxy-substituent-functionalized carbon surface to increase productive orientations. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.09.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
10
Sarauli D, Borowski A, Peters K, Schulz B, Fattakhova-Rohlfing D, Leimkühler S, Lisdat F. Investigation of the pH-Dependent Impact of Sulfonated Polyaniline on Bioelectrocatalytic Activity of Xanthine Dehydrogenase. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
11
Wettstein C, Kano K, Schäfer D, Wollenberger U, Lisdat F. Interaction of Flavin-Dependent Fructose Dehydrogenase with Cytochrome c as Basis for the Construction of Biomacromolecular Architectures on Electrodes. Anal Chem 2016;88:6382-9. [DOI: 10.1021/acs.analchem.6b00815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
12
Gladisch J, Sarauli D, Schäfer D, Dietzel B, Schulz B, Lisdat F. Towards a novel bioelectrocatalytic platform based on "wiring" of pyrroloquinoline quinone-dependent glucose dehydrogenase with an electrospun conductive polymeric fiber architecture. Sci Rep 2016;6:19858. [PMID: 26822141 PMCID: PMC4731776 DOI: 10.1038/srep19858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/21/2015] [Indexed: 01/05/2023]  Open
13
Aydemir N, Malmström J, Travas-Sejdic J. Conducting polymer based electrochemical biosensors. Phys Chem Chem Phys 2016;18:8264-77. [DOI: 10.1039/c5cp06830d] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
14
Sugimoto Y, Kawai S, Kitazumi Y, Shirai O, Kano K. Function of C-terminal hydrophobic region in fructose dehydrogenase. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
15
Marmisollé WA, Gregurec D, Moya S, Azzaroni O. Polyanilines with Pendant Amino Groups as Electrochemically Active Copolymers at Neutral pH. ChemElectroChem 2015. [DOI: 10.1002/celc.201500315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
16
Sugimoto Y, Kitazumi Y, Shirai O, Yamamoto M, Kano K. Role of 2-mercaptoethanol in direct electron transfer-type bioelectrocatalysis of fructose dehydrogenase at Au electrodes. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.04.164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA