1
|
Polidoro D, Perosa A, Selva M. Tunable Multi-Phase System for Highly Chemo-Selective Oxidation of Hydroxymethyl-Furfural. CHEMSUSCHEM 2022; 15:e202201059. [PMID: 35766162 DOI: 10.1002/cssc.202201059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Three different multiphase systems (MP 1-3) comprised of two immiscible liquids, with or without an ionic liquid (IL: methyltrioctyl ammonium chloride), were investigated for the oxidation of 5-hydroxymethyl-furfural (HMF) over 5 % Ru/C as a catalyst and air (8 bar) as an oxidant. These conditions proved versatile for an excellent control of the reaction selectivity to 4 distinct products derived from full or partial oxidation of the carbonyl and alcohol functions of HMF, and each one achieved in 87-96 % isolated yield at complete conversion. MP1 based on water and isooctane, yielded 2,5-furandicarboxylic acid (FDCA, 91 % yield). In MP2, obtained by adding the IL to MP1, the oxidation proceeded towards the formation of 5-formyl-2-furancarboxylic acid (FFCA, 87-89 % yield). MP2 also proved successful in the design of a one pot-two step oxidation/reduction sequence to prepare 5-hydroxymethyl-2-furancarboxylic acid (HMFCA, 85 % yield). In MP3, the use of an acetonitrile/cyclooctane biphase yielded 2,5-diformylfuran (DFF, 96 % yield). All the multiphase systems MP 1-3 allowed a perfect segregation of the catalyst in a single phase (either the hydrocarbon or the IL) distinct from the one containing HMF and its oxidation products. This was crucial not only for the catalyst/product separation but also for the recycle of Ru/C that was possible under all the tested conditions. Accordingly, MP-reaction were run in a semicontinuous mode without removing the catalyst from the reactor nor resorting to conventional separation and activation techniques. Negligible Ru leaching, less than 0.96 ppb, was measured in all cases.
Collapse
Affiliation(s)
- Daniele Polidoro
- Department of Molecular Science and Nanosystem, Ca' Foscari, Università di Venezia, Via torino 155, 30172, Venezia Mestre, Italy
| | - Alvise Perosa
- Department of Molecular Science and Nanosystem, Ca' Foscari, Università di Venezia, Via torino 155, 30172, Venezia Mestre, Italy
| | - Maurizio Selva
- Department of Molecular Science and Nanosystem, Ca' Foscari, Università di Venezia, Via torino 155, 30172, Venezia Mestre, Italy
| |
Collapse
|
2
|
Ni L, Yu C, Wei Q, Liu D, Qiu J. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew Chem Int Ed Engl 2022; 61:e202115885. [PMID: 35524649 DOI: 10.1002/anie.202115885] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 12/17/2022]
Abstract
Pickering emulsions are particle-stabilized surfactant-free dispersions composed of two immiscible liquid phases, and emerge as attractive catalysis platform to surpass traditional technique barrier in some cases. In this review, we have comprehensively summarized the development and the catalysis applications of Pickering emulsions since the pioneering work in 2010. The explicit mechanism for Pickering emulsions will be initially discussed and clarified. Then, summarization is given to the design strategy of amphiphilic emulsion catalysts in two categories of intrinsic and extrinsic amphiphilicity. The progress of the unconventional catalytic reactions in Pickering emulsion is further described, especially for the polarity/solubility difference-driven phase segregation, "smart" emulsion reaction system, continuous flow catalysis, and Pickering interfacial biocatalysis. Challenges and future trends for the development of Pickering emulsion catalysis are finally outlined.
Collapse
Affiliation(s)
- Lin Ni
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Qianbing Wei
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Dongming Liu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.,State Key Lab of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Ni L, Yu C, Wei Q, Liu D, Qiu J. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lin Ni
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Chang Yu
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Qianbing Wei
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Dongming Liu
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Jieshan Qiu
- Dalian University of Technology School of Chemical Engineering High Technology Zone, No. 2 Ling Gong Road 116024 Dalian CHINA
| |
Collapse
|
4
|
Shan Y, Yu C, Zhang M, Wei Q, An J, Lv H, Ni L, Qiu J. Passivating the pH-Responsive Sites to Configure a Widely pH-Stable Emulsifier for High-Efficiency Benzyl Alcohol Oxidation. CHEMSUSCHEM 2022; 15:e202102473. [PMID: 35146937 DOI: 10.1002/cssc.202102473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Widely pH-stable emulsions configured by solid emulsifiers with high chemical stabilities and anti-corrosion properties under strong acid or alkaline conditions are highly sought after for practical and wide application of Pickering interfacial catalysis. Herein, a unique strategy was reported for synthesis of a widely pH-stable and novel emulsifier by passivating the pH-responsive sites on graphene oxide nanoribbon (GONR) surface using ionic liquid (IL). The suitable wettability of GONR-IL was derived from the positive binding energy between IL and water, which ensured the stability of the emulsion in a wide pH range. Benefiting from the passivated surface chemistry of GONR, the emulsion microreactor stabilized by GONR-IL exhibited a remarkable stability over a wide range of pH values. A GONR-IL-supported Pd catalyst stabilized at the toluene-water interface achieved an excellent emulsion catalytic activity for benzyl alcohol oxidation (conversion of 92 %), which was exceedingly higher than that of Pd/GONR (<1 %), Pd/CNTs-IL (51 %), or Pd/GO-IL (8 %).
Collapse
Affiliation(s)
- Yuanyuan Shan
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Chang Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Mengdi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Qianbing Wei
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Jialong An
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Huihui Lv
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Lin Ni
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Jieshan Qiu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| |
Collapse
|
5
|
Dedovets D, Li Q, Leclercq L, Nardello‐Rataj V, Leng J, Zhao S, Pera‐Titus M. Multiphase Microreactors Based on Liquid-Liquid and Gas-Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angew Chem Int Ed Engl 2022; 61:e202107537. [PMID: 34528366 PMCID: PMC9293096 DOI: 10.1002/anie.202107537] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 01/08/2023]
Abstract
Pickering emulsions, foams, bubbles, and marbles are dispersions of two immiscible liquids or of a liquid and a gas stabilized by surface-active colloidal particles. These systems can be used for engineering liquid-liquid-solid and gas-liquid-solid microreactors for multiphase reactions. They constitute original platforms for reengineering multiphase reactors towards a higher degree of sustainability. This Review provides a systematic overview on the recent progress of liquid-liquid and gas-liquid dispersions stabilized by solid particles as microreactors for engineering eco-efficient reactions, with emphasis on biobased reagents. Physicochemical driving parameters, challenges, and strategies to (de)stabilize dispersions for product recovery/catalyst recycling are discussed. Advanced concepts such as cascade and continuous flow reactions, compartmentalization of incompatible reagents, and multiscale computational methods for accelerating particle discovery are also addressed.
Collapse
Affiliation(s)
- Dmytro Dedovets
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
- Laboratoire du Futur (LOF)UMR 5258, CNRS-Solvay-Universite Bordeaux 1178 Av Dr Albert Schweitzer33608Pessac CedexFrance
| | - Qingyuan Li
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
| | - Loïc Leclercq
- Univ LilleCNRSCentrale LilleUniv ArtoisUMR 8181 UCCSF-59000LilleFrance
| | | | - Jacques Leng
- Laboratoire du Futur (LOF)UMR 5258, CNRS-Solvay-Universite Bordeaux 1178 Av Dr Albert Schweitzer33608Pessac CedexFrance
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologySchool of Chemistry and Chemical EngineeringGuangxi University530004NanningChina
| | - Marc Pera‐Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L)UMI 3464 CNRS-Solvay3966 Jin Du Road, Xin Zhuang Ind Zone201108ShanghaiChina
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
6
|
Dedovets D, Li Q, Leclercq L, Nardello‐Rataj V, Leng J, Zhao S, Pera‐Titus M. Multiphase Microreactors Based on Liquid–Liquid and Gas–Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dmytro Dedovets
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
- Laboratoire du Futur (LOF) UMR 5258, CNRS-Solvay-Universite Bordeaux 1 178 Av Dr Albert Schweitzer 33608 Pessac Cedex France
| | - Qingyuan Li
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
| | - Loïc Leclercq
- Univ Lille CNRS Centrale Lille Univ Artois UMR 8181 UCCS F-59000 Lille France
| | | | - Jacques Leng
- Laboratoire du Futur (LOF) UMR 5258, CNRS-Solvay-Universite Bordeaux 1 178 Av Dr Albert Schweitzer 33608 Pessac Cedex France
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology School of Chemistry and Chemical Engineering Guangxi University 530004 Nanning China
| | - Marc Pera‐Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 3966 Jin Du Road, Xin Zhuang Ind Zone 201108 Shanghai China
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
7
|
Sicard F, Toro-Mendoza J. Armored Droplets as Soft Nanocarriers for Encapsulation and Release under Flow Conditions. ACS NANO 2021; 15:11406-11416. [PMID: 34264056 PMCID: PMC8397430 DOI: 10.1021/acsnano.1c00955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/13/2021] [Indexed: 05/05/2023]
Abstract
Technical challenges in precision medicine and environmental remediation create an increasing demand for smart materials that can select and deliver a probe load to targets with high precision. In this context, soft nanomaterials have attracted considerable attention due to their ability to simultaneously adapt their morphology and functionality to complex ambients. Two major challenges are to precisely control this adaptability under dynamic conditions and provide predesigned functionalities that can be manipulated by external stimuli. Here, we report on the computational design of a distinctive class of soft nanocarriers, built from armored nanodroplets, able to selectively encapsulate or release a probe load under specific flow conditions. First, we describe in detail the mechanisms at play in the formation of pocket-like structures in armored nanodroplets and their stability under external flow. Then we use that knowledge to test the capacity of these pockets to yield flow-assisted encapsulation or expulsion of a probe load. Finally, the rheological properties of these nanocarriers are put into perspective with those of delivery systems employed in pharmaceutical and cosmetic technology.
Collapse
Affiliation(s)
- François Sicard
- Department
of Physics and Astronomy, University College
London, WC1E 6BT London, U.K.
- Department
of Chemical Engineering, University College
London, WC1E 7JE London, U.K.
| | - Jhoan Toro-Mendoza
- Centro
de Estudios Interdisciplinarios de la Fisica, Instituto Venezolano de Investigaciones Cientificas, Caracas 1020A, Venezuela
| |
Collapse
|
8
|
Vis CM, Nieuwelink A, Weckhuysen BM, Bruijnincx PCA. Continuous Flow Pickering Emulsion Catalysis in Droplet Microfluidics Studied with In Situ Raman Microscopy. Chemistry 2020; 26:15099-15102. [PMID: 32748465 PMCID: PMC7756292 DOI: 10.1002/chem.202002479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/02/2020] [Indexed: 11/11/2022]
Abstract
Pickering emulsions (PEs), emulsions stabilized by solid particles, have shown to be a versatile tool for biphasic catalysis. Here, we report a droplet microfluidic approach for flow PE (FPE) catalysis, further expanding the possibilities for PE catalysis beyond standard batch PE reactions. This microreactor allowed for the inline analysis of the catalytic process with in situ Raman spectroscopy, as demonstrated for the acid-catalyzed deacetalization of benzaldehyde dimethyl acetal to form benzaldehyde. Furthermore, the use of the FPE system showed a nine fold improvement in yield compared to the simple biphasic flow system (FBS), highlighting the advantage of emulsification. Finally, FPE allowed an antagonistic set of reactions, the deacetalization-Knoevenagel condensation, which proved less efficient in FBS due to rapid acid-base quenching. The droplet microfluidic system thus offers a versatile new extension of PE catalysis.
Collapse
Affiliation(s)
- Carolien M. Vis
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584CGUtrechtThe Netherlands
| | - Anne‐Eva Nieuwelink
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584CGUtrechtThe Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584CGUtrechtThe Netherlands
| | - Pieter C. A. Bruijnincx
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584CGUtrechtThe Netherlands
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584CGUtrechtThe Netherlands
| |
Collapse
|
9
|
Deng C, Xu M, Dong Z, Li L, Yang J, Guo X, Peng L, Xue N, Zhu Y, Ding W. Exclusively catalytic oxidation of toluene to benzaldehyde in an O/W emulsion stabilized by hexadecylphosphate acid terminated mixed-oxide nanoparticles. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63417-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Varshney R, Kumar S, Ghosh K, Patra D. Fabrication of dual catalytic microcapsules by mesoporous graphitic carbon nitride (mpg-C3N4) nanoparticle–enzyme conjugate stabilized emulsions. NEW J CHEM 2020. [DOI: 10.1039/c9nj05322k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual catalytic microcapsules (MCs) were fabricated by simultaneous self-assembly and cross-linking of mpg-C3N4 nanoparticles (NPs) and lipase conjugates at oil–water interface.
Collapse
Affiliation(s)
- Rohit Varshney
- Institute of Nano Science and Technology
- Habitat Centre
- Mohali
- India
| | - Sushil Kumar
- Institute of Nano Science and Technology
- Habitat Centre
- Mohali
- India
| | - Kaushik Ghosh
- Institute of Nano Science and Technology
- Habitat Centre
- Mohali
- India
| | - Debabrata Patra
- Institute of Nano Science and Technology
- Habitat Centre
- Mohali
- India
| |
Collapse
|
11
|
Bahuguna A, Kumar A, Krishnan V. Carbon‐Support‐Based Heterogeneous Nanocatalysts: Synthesis and Applications in Organic Reactions. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900259] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ashish Bahuguna
- School of Basic Sciences and Advanced Materials Research CenterIndian Institute of Technology Mandi, Kamand Himachal Pradesh 175005 India
| | - Ajay Kumar
- School of Basic Sciences and Advanced Materials Research CenterIndian Institute of Technology Mandi, Kamand Himachal Pradesh 175005 India
| | - Venkata Krishnan
- School of Basic Sciences and Advanced Materials Research CenterIndian Institute of Technology Mandi, Kamand Himachal Pradesh 175005 India
| |
Collapse
|
12
|
Kumar S, Nepak D, Kansal SK, Elumalai S. Expeditious isomerization of glucose to fructose in aqueous media over sodium titanate nanotubes. RSC Adv 2018; 8:30106-30114. [PMID: 35546834 PMCID: PMC9085425 DOI: 10.1039/c8ra04353a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/20/2018] [Indexed: 11/21/2022] Open
Abstract
Isomerization reaction of glucose to fructose over sodium titanate nanotubes (Na-TNTs) as a Lewis base catalyst was studied. Analytical instruments recorded the specific structural, textural and basic properties of the as-synthesized Na-TNTs. Furthermore, studying the catalytic isomerization performance of the Na-TNTs confirmed their high catalytic efficiency and suitability in aqueous media. The catalyst prompted rapid glucose isomerization within 2 min by achieving nearly half of the maximum yield, whereas with a prolonged reaction up to 15 min the maximum glucose conversion could be reached with 31.26% fructose yield and 65.26% selectivity under relatively lower operating conditions (100 °C and 10% wt catalyst dose). However, the recyclability performance of the catalyst was not impressive due to the accelerated leaching of cations and surface retention of carbonaceous content, resulting in ∼16% reduced yield after 4 runs. A simple regeneration technique using NaOH led to the initial catalytic activity being totally regained. Overall, a titania-based catalyst (preferably nanotube structured sodium titanate) was shown as a potential catalyst for large-scale demonstration of glucose isomerization to achieve high fructose productivity.
Collapse
Affiliation(s)
- Sandeep Kumar
- Chemical Engineering Division, Center of Innovative and Applied Bioprocessing (CIAB) Mohali Punjab 140306 India .,Dr S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University Chandigarh 160014 India
| | - Devadutta Nepak
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH) Kandi Telangana 502285 India
| | - Sushil Kumar Kansal
- Dr S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University Chandigarh 160014 India
| | - Sasikumar Elumalai
- Chemical Engineering Division, Center of Innovative and Applied Bioprocessing (CIAB) Mohali Punjab 140306 India
| |
Collapse
|
13
|
Suttipat D, Wannapakdee W, Yutthalekha T, Ittisanronnachai S, Ungpittagul T, Phomphrai K, Bureekaew S, Wattanakit C. Hierarchical FAU/ZIF-8 Hybrid Materials as Highly Efficient Acid-Base Catalysts for Aldol Condensation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16358-16366. [PMID: 29676158 DOI: 10.1021/acsami.8b00389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The composite of hierarchical faujasite nanosheets and zeolitic imidazolate framework-8 (Hie-FAU-ZIF-8) has been successfully prepared via a stepwise deposition of ZIF-8 on modified zeolite surfaces. Compared to the direct deposition of metal organic frameworks (MOFs) on zeolite surfaces, ZIF-8 nanospheres were selectively attached to the external surfaces of the MOF ligand-grafted FAU crystals because of the enhancing interaction between the zeolite and MOF in the composite. In addition, the degree of surface functionalization can be greatly enhanced because of the presence of hierarchical structures. This behavior leads to an increase in the deposited MOF content, improving the hydrophobic properties of the zeolite surfaces. Interestingly, the designed hierarchical composite exhibits outstanding catalytic properties as an acid-base catalyst for the aldol condensation of 5-hydroxymethylfurfural with acetone. Compared to the isolated FAU and ZIF-8, a high yield of the product, 4-[5-(hydroxymethyl)furan-2-yl]but-3-en-2-one (67%), can be observed in the composite because of the synergistic effect between the Na+-stabilized zeolite framework and the imidazolate linkers bearing basic nitrogen functions. This opens up interesting perspectives for the development of new organic and inorganic hybrid materials as heterogeneous acid-base catalysts.
Collapse
|
14
|
Wang J, Xi J, Xia Q, Liu X, Wang Y. Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via green routes. Sci China Chem 2017. [DOI: 10.1007/s11426-016-9035-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Qi L, Alamillo R, Elliott WA, Andersen A, Hoyt DW, Walter ED, Han KS, Washton NM, Rioux RM, Dumesic JA, Scott SL. Operando Solid-State NMR Observation of Solvent-Mediated Adsorption-Reaction of Carbohydrates in Zeolites. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01045] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Ricardo Alamillo
- Department
of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | | - Amity Andersen
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - David W. Hoyt
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Eric D. Walter
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kee Sung Han
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Nancy M. Washton
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - James A. Dumesic
- Department
of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | |
Collapse
|
16
|
Zhang F, Li J, Li X, Yang M, Yang H, Zhang XM. In Situ Surface Engineering of Mesoporous Silica Generates Interfacial Activity and Catalytic Acceleration Effect. ACS OMEGA 2016; 1:930-938. [PMID: 31457173 PMCID: PMC6640749 DOI: 10.1021/acsomega.6b00209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/13/2016] [Indexed: 05/22/2023]
Abstract
Mesoporous structured catalysts featuring interfacial activity are the most promising candidates for biphasic interface catalysis because their nanopores can concurrently accommodate catalytic active components and provide countless permeable channels for mass transfer between the interior and the exterior of Pickering droplets. However, to date, a convenient and effective strategy for the preparation of an anchor site-containing interfacial active mesoporous catalyst is still lacking. In the present work, we report a novel and efficient interfacial active mesoporous silica (MS) catalyst, which is prepared by a facile cocondensation of two types of organosilanes and subsequent anchoring of Pd NPs onto its surface through the confinement and coordination interactions. The as-prepared catalyst is then applied as emulsifier to stabilize the water-in-oil (W/O) Pickering emulsion and investigated as an interfacial catalyst for the hydrogenation of nitroarenes. An obviously enhanced rate toward the nitrobenzene hydrogenation is observed for the 0.8 mol% Pd/PAP-functionalized mesoporous silica-20 catalyst in the emulsion system (both conversion and selectivity are >99% within 30 min) in comparison to a single aqueous solution. Moreover, the emulsion catalytic system can be easily recycled six times without the separation of the catalyst from the water phase during the recycling process. This finding demonstrates that the incorporation of phenylaminopropyl trimethoxysilane amphiphilic groups during the hydrolysis of tetramethyl orthosilicate not only endows MS with interfacial activity but also improves the catalytic activity and stability.
Collapse
Affiliation(s)
- Fengwei Zhang
- Institute of Crystalline Materials and School of Chemistry and Chemical
Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Juan Li
- Institute of Crystalline Materials and School of Chemistry and Chemical
Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Xincheng Li
- Institute of Crystalline Materials and School of Chemistry and Chemical
Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Mengqi Yang
- Institute of Crystalline Materials and School of Chemistry and Chemical
Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Hengquan Yang
- Institute of Crystalline Materials and School of Chemistry and Chemical
Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Xian-Ming Zhang
- Institute of Crystalline Materials and School of Chemistry and Chemical
Engineering, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
17
|
Barbera K, Lanzafame P, Perathoner S, Centi G, Migliori M, Aloise A, Giordano G. HMF etherification using NH4-exchanged zeolites. NEW J CHEM 2016. [DOI: 10.1039/c5nj03461b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reversible dissociation of NH4+ ions in the intra-cages of zeolites is correlated with their catalytic reactivity for HMF etherification.
Collapse
Affiliation(s)
- Katia Barbera
- University of Messina
- Section Industrial Chemistry
- ERIC aisbl and CASPE-INSTM
- 98166 Messina
- Italy
| | - Paola Lanzafame
- University of Messina
- Section Industrial Chemistry
- ERIC aisbl and CASPE-INSTM
- 98166 Messina
- Italy
| | - Siglinda Perathoner
- University of Messina
- Section Industrial Chemistry
- ERIC aisbl and CASPE-INSTM
- 98166 Messina
- Italy
| | - Gabriele Centi
- University of Messina
- Section Industrial Chemistry
- ERIC aisbl and CASPE-INSTM
- 98166 Messina
- Italy
| | - Massimo Migliori
- Department of Environmental and Chemical Engineering
- University of Calabria
- 87036 Rende
- Italy
| | - Alfredo Aloise
- Department of Environmental and Chemical Engineering
- University of Calabria
- 87036 Rende
- Italy
| | - Girolamo Giordano
- Department of Environmental and Chemical Engineering
- University of Calabria
- 87036 Rende
- Italy
| |
Collapse
|
18
|
Khulbe KC, Matsuura T, Feng CY, Ismail AF. Recent development on the effect of water/moisture on the performance of zeolite membrane and MMMs containing zeolite for gas separation; review. RSC Adv 2016. [DOI: 10.1039/c6ra03007f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding the effects of water vapour on gas permeation and separation properties of zeolite membranes especially at lower temperatures is important for the applications of these zeolite membranes for gas separations involving water vapour.
Collapse
Affiliation(s)
- K. C. Khulbe
- Industrial Membrane Research Laboratory (IMRL)
- Faculty of Engineering
- Chemical and Biological Engineering
- University of Ottawa
- Canada
| | - T. Matsuura
- Industrial Membrane Research Laboratory (IMRL)
- Faculty of Engineering
- Chemical and Biological Engineering
- University of Ottawa
- Canada
| | - C. Y. Feng
- Industrial Membrane Research Laboratory (IMRL)
- Faculty of Engineering
- Chemical and Biological Engineering
- University of Ottawa
- Canada
| | - A. F. Ismail
- Advanced Membrane Technology Research Center (AMTEC)
- Universiti Teknologi Malaysia
- Johor Bahru
- Malaysia
| |
Collapse
|