1
|
Ghosh S, Ariya PA. Selective reductive conversion of CO 2 to CH 2-bridged compounds by using a Fe-functionalized graphene oxide-based catalyst. COMMUNICATIONS MATERIALS 2024; 5:196. [PMID: 39430061 PMCID: PMC11488465 DOI: 10.1038/s43246-024-00639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024]
Abstract
Anthropogenic climate change drastically affects our planet, with CO2 being the most critical gaseous driver. Despite the existing carbon dioxide capture and transformation, there is much need for innovative carbon dioxide hydrogenation catalysts with excellent selectivity. Here, we present a fast, effective, and sustainable route for coupling diverse alcohols, amines and amides with CO2 via heterogenization of a natural metal-based homogeneous catalyst through decorating on functionalized graphene oxide (GO). Combined synthetic, experimental, and theoretical studies unravel mechanistic routes to convergent 4‑electron reduction of CO2 under mild conditions. We successfully replace the toxic and expensive ruthenium species with inexpensive, ubiquitously available and recyclable iron. This iron-based functionalized graphene oxide (denoted as Fe@GO-EDA, where EDA represents ethylenediamine) functions as an efficient catalyst for the selective conversion of CO2 into a formaldehyde oxidation level, thus opening the door for interesting molecular structures using CO2 as a C1 source. Overall, this work describes an intriguing heterogeneous platform for the selective synthesis of valuable methylene-bridged compounds via 4‑electron reduction of CO2.
Collapse
Affiliation(s)
- Swarbhanu Ghosh
- Department of Chemistry, McGill University, Montréal, QC Canada
| | - Parisa A. Ariya
- Department of Chemistry, McGill University, Montréal, QC Canada
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, QC Canada
| |
Collapse
|
2
|
Dutta I, Gholap SS, Rahman MM, Tan D, Zhang L, Dighe SU, Huang KW. Homogeneous Catalysis in N-Formylation/N-Methylation Utilizing Carbon Dioxide as the C1 Source. Chem Asian J 2024:e202400497. [PMID: 39152629 DOI: 10.1002/asia.202400497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
The growing emphasis on sustainable chemistry has driven research into utilizing carbon dioxide (CO2) as a nontoxic, abundant, and cost-effective C1 building block. CO2 offers a promising avenue for direct conversion into valuable chemicals ranging from fuels to pharmaceuticals. This review focuses on the utilization of CO2 for reductive N-formylation/N-methylation reactions of various amines, providing advantages over conventional methods involving toxic CO and other methylating reagents. The approach employs readily available reductants such as silane, borane reagents, and hydrogen (H2). The discussion encompasses recent developments in transition metal and organocatalyst systems for these reactions, highlighting mechanistic interpretations and factors influencing product selectivity.
Collapse
Affiliation(s)
- Indranil Dutta
- Chemistry Program, Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Sandeep Suryabhan Gholap
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| | - Mohammad Misbahur Rahman
- Chemistry Program, Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Davin Tan
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| | - Lili Zhang
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| | - Shashikant U Dighe
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| | - Kuo-Wei Huang
- Chemistry Program, Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| |
Collapse
|
3
|
Desmons S, Bonin J, Robert M, Bontemps S. Four-electron reduction of CO 2: from formaldehyde and acetal synthesis to complex transformations. Chem Sci 2024:d4sc02888k. [PMID: 39246334 PMCID: PMC11376136 DOI: 10.1039/d4sc02888k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
The expansive and dynamic field of the CO2 Reduction Reaction (CO2RR) seeks to harness CO2 as a sustainable carbon source or energy carrier. While significant progress has been made in two, six, and eight-electron reductions of CO2, the four-electron reduction remains understudied. This review fills this gap, comprehensively exploring CO2 reduction into formaldehyde (HCHO) or acetal-type compounds (EOCH2OE, with E = [Si], [B], [Zr], [U], [Y], [Nb], [Ta] or -R) using various CO2RR systems. These encompass (photo)electro-, bio-, and thermal reduction processes with diverse reductants. Formaldehyde, a versatile C1 product, is challenging to synthesize and isolate from the CO2RR. The review also discusses acetal compounds, emphasizing their significance as pathways to formaldehyde with distinct reactivity. Providing an overview of the state of four-electron CO2 reduction, this review highlights achievements, challenges, and the potential of the produced compounds - formaldehyde and acetals - as sustainable sources for valuable product synthesis, including chiral compounds.
Collapse
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Julien Bonin
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| |
Collapse
|
4
|
Li Z, Zhao J, Wang Y, Yu A. DFT Study of Functional Reduction of CO 2 with BH 3NMe 3: The Real Role of Organic Catalyst TBD. J Org Chem 2024; 89:6149-6158. [PMID: 38635972 DOI: 10.1021/acs.joc.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The detailed mechanism of transition metal-free-catalyzed monomethylation of 2-naphthyl acetonitrile (1a) with CO2 in the presence of triazabicyclodecene (TBD) and BH3NMe3 was investigated using density functional theory. The C-methylation process proved to generate formaldehyde followed by the formation of the product via an alcohol rather than a methoxyborane intermediate. During the reaction, CO2 is activated to form the TBD-CO2 adduct and BH3NMe3 is changed into TBD-BH2 (IM2) in the presence of TBD. IM2 plays a real reducing role within the system due to the unique coordination capability of the B atom. In addition to enhancing the nucleophilicity of 1a through deprotonation by tBuOK, our research also indicates that the generated tBuOH not only assists in proton transfer to generate an alcohol intermediate but also promotes the regeneration of TBD.
Collapse
Affiliation(s)
- Zhaowei Li
- Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jianing Zhao
- Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yongjian Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Ao Yu
- Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
5
|
Maeda C, Cho T, Kumemoto R, Ema T. Cu-catalyzed carboxylation of organoboronic acid pinacol esters with CO 2. Org Biomol Chem 2023; 21:6565-6571. [PMID: 37526922 DOI: 10.1039/d3ob00938f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Chemical fixation of CO2 has received much attention. In particular, catalytic C-C bond formation with CO2 giving carboxylic acids is of great significance. Among the CO2 fixation methods, multiple carboxylation is one of the challenging subjects. Here we investigated the Cu-catalyzed carboxylation of a variety of boronic acid pinacol esters (C(sp2)-, C(sp3)-, and C(sp)-B compounds) with CO2, which efficiently provided the corresponding products, including aryl, alkenyl, alkyl, and alkynyl carboxylic acids. This carboxylation was also applicable to multiple CO2 fixation giving di- and tri-carboxylic acids under robust reaction conditions (totally 29 examples).
Collapse
Affiliation(s)
- Chihiro Maeda
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan.
| | - Takumi Cho
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan.
| | - Ren Kumemoto
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan.
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan.
| |
Collapse
|
6
|
Sun JL, Jiang H, Dixneuf PH, Zhang M. Reductive Coupling of Nitroarenes and HCHO for General Synthesis of Functional Ethane-1,2-diamines by a Cobalt Single-Atom Catalyst. J Am Chem Soc 2023; 145:17329-17336. [PMID: 37418675 DOI: 10.1021/jacs.3c04857] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Despite the extensive applications, selective and diverse access to N,N'-diarylethane-1,2-diamines remains, to date, a challenge. Here, by developing a bifunctional cobalt single-atom catalyst (CoSA-N/NC), we present a general method for direct synthesis of such compounds via selective reductive coupling of cheap and abundant nitroarenes and formaldehyde, featuring good substrate and functionality compatibility, an easily accessible base metal catalyst with excellent reusability, and high step and atom efficiency. Mechanistic studies reveal that the N-anchored cobalt single atoms (CoN4) serve as the catalytically active sites for the reduction processes, the N-doped carbon support enriches the HCHO to timely trap the in situ formed hydroxyamines and affords the requisite nitrones under weak alkaline conditions, and the subsequent inverse electron demand 1,3-dipolar cycloaddition of the nitrones and imines followed by hydrodeoxygenation of the cycloadducts furnishes the products. In this work, the concept of catalyst-controlled nitroarene reduction to in situ create specific building blocks is anticipated to develop more useful chemical transformations.
Collapse
|
7
|
Gautam N, Logdi R, P S, Roy A, Tiwari AK, Mandal SK. Bicyclic (alkyl)(amino)carbene (BICAAC) in a dual role: activation of primary amides and CO 2 towards catalytic N-methylation. Chem Sci 2023; 14:5079-5086. [PMID: 37206403 PMCID: PMC10189868 DOI: 10.1039/d3sc01216f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Herein, we report the first catalytic methylation of primary amides using CO2 as a C1 source. A bicyclic (alkyl)(amino)carbene (BICAAC) exhibits dual role by activating both primary amide and CO2 to carry out this catalytic transformation which enables the formation of a new C-N bond in the presence of pinacolborane. This protocol was applicable to a wide range of substrate scopes, including aromatic, heteroaromatic, and aliphatic amides. We successfully used this procedure in the diversification of drug and bioactive molecules. Moreover, this method was explored for isotope labelling using 13CO2 for a few biologically important molecules. A detailed study of the mechanism was carried out with the help of spectroscopic studies and DFT calculations.
Collapse
Affiliation(s)
- Nimisha Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus Nadia 741246 West Bengal India
| | - Ratan Logdi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus Nadia 741246 West Bengal India
| | - Sreejyothi P
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus Nadia 741246 West Bengal India
| | - Antara Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302 West Bengal India
| | - Ashwani K Tiwari
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus Nadia 741246 West Bengal India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus Nadia 741246 West Bengal India
| |
Collapse
|
8
|
Sun Y, Gao K. Aminoguanidine-Catalyzed Reductive Cyclization of o-Phenylenediamines with CO 2 in the Presence of Triethoxysilane. J Org Chem 2023. [PMID: 37126855 DOI: 10.1021/acs.joc.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
An inexpensive and efficient aminoguanidine-catalyzed reductive cyclization of o-phenylenediamines with CO2 in the presence of triethoxysilane is described. Various functionalized benzimidazoles, benzoxazole, and benzothiazole were synthesized in high yields. Mechanistic studies indicate that formic acid as a cocatalyst promotes the cyclization reaction.
Collapse
Affiliation(s)
- Yulin Sun
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Ke Gao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
9
|
Takaishi K, Nishimura R, Toda Y, Morishita H, Ema T. One-Pot Synthesis of Dihydropyrans via CO 2 Reduction and Domino Knoevenagel/oxa-Diels-Alder Reactions. Org Lett 2023; 25:1370-1374. [PMID: 36826404 DOI: 10.1021/acs.orglett.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Catalytic CO2 reduction with phenylsilane under solvent-free conditions was linked with the one-pot synthesis of 3,4-dihydropyrans from β-dicarbonyl compounds and styrenes. The synthesis includes three processes: (1) bis(silyl)acetal formation from CO2 and phenylsilane and a domino reaction of (2) Knoevenagel condensation and (3) inverse-electron-demand oxa-Diels-Alder reaction. The first process was catalyzed by a pentanuclear ZnII complex (0.07 mol %) to generate bis(silyl)acetals, which were hydrolyzed into formaldehyde to be used in the second step.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Ritsuki Nishimura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Yuha Toda
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Hajime Morishita
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| |
Collapse
|
10
|
Hu Y, Yang L, Liu X. Novel MCM-41 Supported Dicationic Imidazolium Ionic Liquids Catalyzed Greener and Efficient Regioselective Synthesis of 2-Oxazolidinones from Aziridines and Carbon Dioxide. Molecules 2022; 28:242. [PMID: 36615437 PMCID: PMC9822182 DOI: 10.3390/molecules28010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
A type of MCM-41 supported dicationic imidazolium ionic liquid nanocatalyst has been synthesized and found to be competent for the synthesis of 2-oxazolidinones through the sustainable chemical conversion of CO2 with aziridines. It was shown that the highest efficiency was achieved in the cycloaddition of a series of aziridines and CO2 in the presence of a catalytic amount of the solid catalyst MCM-41@ILLaCl4 under mild conditions. Merits of this meticulously designed protocol are the use of a novel supported ionic liquid catalyst, the easy work-up process, good to excellent yields, a short reaction time, and purification without column chromatography. Overall, the present protocol of synthesizing 2-oxazolidinones under cocatalyst- and solvent-free conditions using MCM-41@ILLaCl4 is promising for industrial applications.
Collapse
Affiliation(s)
- Yulin Hu
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Lili Yang
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Xiaobing Liu
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an 343009, China
| |
Collapse
|
11
|
Das A, Sarkar P, Maji S, Pati SK, Mandal SK. Mesoionic N-Heterocyclic Imines as Super Nucleophiles in Catalytic Couplings of Amides with CO 2. Angew Chem Int Ed Engl 2022; 61:e202213614. [PMID: 36259383 DOI: 10.1002/anie.202213614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/07/2022]
Abstract
An extended class of stable mesoionic N-heterocyclic imines (mNHIs), containing a highly polarized exocyclic imine moiety, were synthesized. The calculated proton affinities (PA) and experimentally determined Tolman electronic parameters (TEPs) reveal that these synthesized mNHIs have the highest basicity and donor ability among NHIs reported so far. The superior nucleophilicity of newly designed mNHIs was utilized in devising a strategy to incorporate CO2 as a bridging unit under reductive conditions to couple inert primary amides. This strategy was further extended to hetero-couplings between amide and amine using CO2 . These hitherto unknown catalytic transformations were introduced in the diversification of various biologically active drug molecules under metal-free conditions. The underlying mechanism was explored by performing a series of control experiments, characterizing key intermediates using spectroscopic and crystallographic techniques.
Collapse
Affiliation(s)
- Arpan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, India
| | - Pallavi Sarkar
- Department Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Subir Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, India
| | - Swapan K Pati
- Department Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, India
| |
Collapse
|
12
|
Zhao Y, Guo X, Li S, Fan Y, Ji G, Jiang M, Yang Y, Jiang Y. Transient Stabilization Effect of CO
2
in the Electrochemical Hydrogenation of Azo Compounds and the Reductive Coupling of α‐Ketoesters. Angew Chem Int Ed Engl 2022; 61:e202213636. [DOI: 10.1002/anie.202213636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Yulei Zhao
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Xuqiang Guo
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Shuai Li
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Yuhang Fan
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Guo‐Cui Ji
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Mengmeng Jiang
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Yin Yang
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yuan‐Ye Jiang
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| |
Collapse
|
13
|
Zhao S, Liang H, Hu X, Li S, Daasbjerg K. Challenges and Prospects in the Catalytic Conversion of Carbon Dioxide to Formaldehyde. Angew Chem Int Ed Engl 2022; 61:e202204008. [PMID: 36066469 PMCID: PMC9827866 DOI: 10.1002/anie.202204008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 01/12/2023]
Abstract
Formaldehyde (HCHO) is a crucial C1 building block for daily-life commodities in a wide range of industrial processes. Industrial production of HCHO today is based on energy- and cost-intensive gas-phase catalytic oxidation of methanol, which calls for exploring other and more sustainable ways of carrying out this process. Utilization of carbon dioxide (CO2 ) as precursor presents a promising strategy to simultaneously mitigate the carbon footprint and alleviate environmental issues. This Minireview summarizes recent progress in CO2 -to-HCHO conversion using hydrogenation, hydroboration/hydrosilylation as well as photochemical, electrochemical, photoelectrochemical, and enzymatic approaches. The active species, reaction intermediates, and mechanistic pathways are discussed to deepen the understanding of HCHO selectivity issues. Finally, shortcomings and prospects of the various strategies for sustainable reduction of CO2 to HCHO are discussed.
Collapse
Affiliation(s)
- Siqi Zhao
- Novo Nordisk Foundation (NNF) CO2 Research CenterDepartment of Chemistry/Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | - Hong‐Qing Liang
- Leibniz-Institut für KatalyseAlbert-Einstein-Strasse 29a18059RostockGermany
| | - Xin‐Ming Hu
- Environment Research InstituteShandong UniversityBinhai Road 72Qingdao266237China
| | - Simin Li
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083P.R. China
| | - Kim Daasbjerg
- Novo Nordisk Foundation (NNF) CO2 Research CenterDepartment of Chemistry/Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| |
Collapse
|
14
|
Ratanasak M, Murata T, Adachi T, Hasegawa J, Ema T. Mechanism of BPh
3
‐Catalyzed N‐Methylation of Amines with CO
2
and Phenylsilane: Cooperative Activation of Hydrosilane. Chemistry 2022; 28:e202202210. [DOI: 10.1002/chem.202202210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Manussada Ratanasak
- Institute for Catalysis Hokkaido University Kita 21, Nishi 10, Kita-ku, Sapporo Hokkaido 001-0021 Japan
| | - Takumi Murata
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima-naka 3-1-1 Okayama 700-8530 Japan
| | - Taishin Adachi
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima-naka 3-1-1 Okayama 700-8530 Japan
| | - Jun‐ya Hasegawa
- Institute for Catalysis Hokkaido University Kita 21, Nishi 10, Kita-ku, Sapporo Hokkaido 001-0021 Japan
| | - Tadashi Ema
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima-naka 3-1-1 Okayama 700-8530 Japan
| |
Collapse
|
15
|
Shinohara K, Tsurugi H, Mashima K. N-Methylation of Aniline Derivatives with CO 2 and Phenylsilane Catalyzed by Lanthanum Hydridotriarylborate Complexes bearing a Nitrogen Tridentate Ligand. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Koichi Shinohara
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
16
|
Zhao Y, Wang H, Kang X, Zhang R, Feng N, Su Q. Controllable methylenation with ethylene glycol as the methylene source: bridging enaminones and synthesis of tetrahydropyrimidines. Org Chem Front 2022. [DOI: 10.1039/d2qo01187e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controllable methylenation using renewable ethylene glycol as the methylene source has been developed for the introduction of one or two methylene building blocks.
Collapse
Affiliation(s)
- Yulei Zhao
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Huimin Wang
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xin Kang
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ruihua Zhang
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Nan Feng
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Qi Su
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
17
|
Maciá M, Porcar R, Martí-Centelles V, García-Verdugo E, Burguete MI, Luis SV. Rational Design of Simple Organocatalysts for the HSiCl 3 Enantioselective Reduction of (E)- N-(1-Phenylethylidene)aniline. Molecules 2021; 26:6963. [PMID: 34834055 PMCID: PMC8625272 DOI: 10.3390/molecules26226963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Prolinamides are well-known organocatalysts for the HSiCl3 reduction of imines; however, custom design of catalysts is based on trial-and-error experiments. In this work, we have used a combination of computational calculations and experimental work, including kinetic analyses, to properly understand this process and to design optimized catalysts for the benchmark (E)-N-(1-phenylethylidene)aniline. The best results have been obtained with the amide derived from 4-methoxyaniline and the N-pivaloyl protected proline, for which the catalyzed process is almost 600 times faster than the uncatalyzed one. Mechanistic studies reveal that the formation of the component supramolecular complex catalyst-HSiCl3-substrate, involving hydrogen bonding breaking and costly conformational changes in the prolinamide, is an important step in the overall process.
Collapse
Affiliation(s)
- María Maciá
- Department of Inorganic and Organic Chemistry, Jaume I University, Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain; (M.M.); (R.P.); (V.M.-C.); (M.I.B.)
| | - Raúl Porcar
- Department of Inorganic and Organic Chemistry, Jaume I University, Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain; (M.M.); (R.P.); (V.M.-C.); (M.I.B.)
- Department of Organic and Bio-Organic Chemistry, Faculty of Science, UNED—Universidad Nacional de Educación a Distancia, Avenida de Esparta s/n, 28232 Las Rozas-Madrid, Spain
| | - Vicente Martí-Centelles
- Department of Inorganic and Organic Chemistry, Jaume I University, Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain; (M.M.); (R.P.); (V.M.-C.); (M.I.B.)
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| | - Eduardo García-Verdugo
- Department of Inorganic and Organic Chemistry, Jaume I University, Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain; (M.M.); (R.P.); (V.M.-C.); (M.I.B.)
| | - Maria Isabel Burguete
- Department of Inorganic and Organic Chemistry, Jaume I University, Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain; (M.M.); (R.P.); (V.M.-C.); (M.I.B.)
| | - Santiago V. Luis
- Department of Inorganic and Organic Chemistry, Jaume I University, Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain; (M.M.); (R.P.); (V.M.-C.); (M.I.B.)
| |
Collapse
|
18
|
Desmons S, Grayson-Steel K, Nuñez-Dallos N, Vendier L, Hurtado J, Clapés P, Fauré R, Dumon C, Bontemps S. Enantioselective Reductive Oligomerization of Carbon Dioxide into l-Erythrulose via a Chemoenzymatic Catalysis. J Am Chem Soc 2021; 143:16274-16283. [PMID: 34546049 DOI: 10.1021/jacs.1c07872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A cell-free enantioselective transformation of the carbon atom of CO2 has never been reported. In the urgent context of transforming CO2 into products of high value, the enantiocontrolled synthesis of chiral compounds from CO2 would be highly desirable. Using an original hybrid chemoenzymatic catalytic process, we report herein the reductive oligomerization of CO2 into C3 (dihydroxyacetone, DHA) and C4 (l-erythrulose) carbohydrates, with perfect enantioselectivity of the latter chiral product. This was achieved with the key intermediacy of formaldehyde. CO2 is first reduced selectively by 4e- by an iron-catalyzed hydroboration reaction, leading to the isolation and complete characterization of a new bis(boryl)acetal compound derived from dimesitylborane. In an aqueous buffer solution at 30 °C, this compound readily releases formaldehyde, which is then involved in selective enzymatic transformations, giving rise either (i) to DHA using a formolase (FLS) catalysis or (ii) to l-erythrulose with a cascade reaction combining FLS and d-fructose-6-phosphate aldolase (FSA) A129S variant. Finally, the nature of the synthesized products is noteworthy, since carbohydrates are of high interest for the chemical and pharmaceutical industries. The present results prove that the cell-free de novo synthesis of carbohydrates from CO2 as a sustainable carbon source is a possible alternative pathway in addition to the intensely studied biomass extraction and de novo syntheses from fossil resources.
Collapse
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France.,TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | | | - Nelson Nuñez-Dallos
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France.,Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France
| | - John Hurtado
- Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Pere Clapés
- Biological Chemistry Department, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Claire Dumon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
19
|
Luzi F, Gee AD, Bongarzone S. Silicon compounds in carbon-11 radiochemistry: present use and future perspectives. Org Biomol Chem 2021; 19:6916-6925. [PMID: 34319335 PMCID: PMC8372417 DOI: 10.1039/d1ob01202a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Positron emission tomography (PET) is a powerful functional imaging technique that requires the use of positron emitting nuclides. Carbon-11 (11C) radionuclide has several advantages related to the ubiquity of carbon atoms in biomolecules and the conservation of pharmacological properties of the molecule upon isotopic exchange of carbon-12 with carbon-11. However, due to the short half-life of 11C (20.4 minutes) and the low scale with which it is produced by the cyclotron (sub-nanomolar concentrations), quick, robust and chemospecific radiolabelling strategies are required to minimise activity loss during incorporation of the 11C nuclide into the final product. To address some of the constraints of working with 11C, the use of silicon-based chemistry for 11C-labelling was proposed as a rapid and effective route for radiopharmaceutical production due to the broad applicability and high efficiency showed in organic chemistry. In the past years several organic chemistry methodologies have been successfully applied to 11C-chemistry. In this short review, we examine silicon-based 11C-chemistry, with a particular emphasis on the radiotracers that have been successfully produced and potential improvements to further expand the applicability of silicon in radiochemistry. The use of silicon-based reagents and precursors for carbon-11 labelling has shown wide applicability and robustness with short reaction times using mild conditions. In this review, recent advances and future perspectives are examined.![]()
Collapse
Affiliation(s)
- Federico Luzi
- School of Biomedical Engineering and Imaging Sciences, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, UK.
| | | | | |
Collapse
|
20
|
Zhang D, Jarava-Barrera C, Bontemps S. Selective Reductive Dimerization of CO2 into Glycolaldehyde. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Dan Zhang
- LCC-CNRS, Université de Toulouse, CNRS, 205 Route de Narbonne, Toulouse 31077, Cedex 04, France
| | - Carlos Jarava-Barrera
- LCC-CNRS, Université de Toulouse, CNRS, 205 Route de Narbonne, Toulouse 31077, Cedex 04, France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS, 205 Route de Narbonne, Toulouse 31077, Cedex 04, France
| |
Collapse
|
21
|
Li W, Chen J, Zhu D, Xia J. Fe‐Catalyzed Pictet‐Spengler‐Type
Cyclization
via
Selective
Four‐Electron
Reductive Functionalization of
CO
2. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wen‐Duo Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou Gansu 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jie Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou Gansu 730000 China
| | - Dao‐Yong Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou Gansu 730000 China
| | - Ji‐Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou Gansu 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
22
|
Caise A, Hicks J, Ángeles Fuentes M, Goicoechea JM, Aldridge S. Partnering a Three-Coordinate Gallium Cation with a Hydroborate Counter-Ion for the Catalytic Hydrosilylation of CO 2. Chemistry 2021; 27:2138-2148. [PMID: 33169886 DOI: 10.1002/chem.202004408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Indexed: 12/16/2022]
Abstract
A novel β-diketiminate stabilized gallium hydride, (Dipp L)Ga(Ad)H (where (Dipp L)={HC(MeCDippN)2 }, Dipp=2,6-diisopropylphenyl and Ad=1-adamantyl), has been synthesized and shown to undergo insertion of carbon dioxide into the Ga-H bond under mild conditions. In this case, treatment of the resulting κ1 -formate complex with triethylsilane does not lead to regeneration of the hydride precursor. However, when combined with B(C6 F5 )3 , (Dipp L)Ga(Ad)H catalyses the reductive hydrosilylation of CO2 . Under stoichiometric conditions, the addition of one equivalent of B(C6 F5 )3 to (Dipp L)Ga(Ad)H leads to the formation of a 3-coordinate cationic gallane complex, partnered with a hydroborate anion, [(Dipp L)Ga(Ad)][HB(C6 F5 )3 ]. This complex rapidly hydrometallates carbon dioxide and catalyses the selective reduction of CO2 to the formaldehyde oxidation level at 60 °C in the presence of Et3 SiH (yielding H2 C(OSiEt3 )2 ). When catalysis is undertaken in the presence of excess B(C6 F5 )3 , appreciable enhancement of activity is observed, with a corresponding reduction in selectivity: the product distribution includes H2 C(OSiEt3 )2 , CH4 and O(SiEt3 )2 . While this system represents proof-of-concept in CO2 hydrosilylation by a gallium hydride system, the TOF values obtained are relatively modest (max. 10 h-1 ). This is attributed to the strength of binding of the formatoborate anion to the gallium centre in the catalytic intermediate (Dipp L)Ga(Ad){OC(H)OB(C6 F5 )3 }, and the correspondingly slow rate of the turnover-limiting hydrosilylation step. In turn, this strength of binding can be related to the relatively high Lewis acidity measured for the [(Dipp L)Ga(Ad)]+ cation (AN=69.8).
Collapse
Affiliation(s)
- Alexa Caise
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jamie Hicks
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - M Ángeles Fuentes
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jose M Goicoechea
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
23
|
Puleo TR, Sujansky SJ, Wright SE, Bandar JS. Organic Superbases in Recent Synthetic Methodology Research. Chemistry 2021; 27:4216-4229. [DOI: 10.1002/chem.202003580] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas R. Puleo
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Stephen J. Sujansky
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Shawn E. Wright
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Jeffrey S. Bandar
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|
24
|
Sable DA, Vadagaonkar KS, Kapdi AR, Bhanage BM. Carbon dioxide based methodologies for the synthesis of fine chemicals. Org Biomol Chem 2021; 19:5725-5757. [PMID: 34132318 DOI: 10.1039/d1ob00755f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rapid environmental changes triggered by the increase in the concentration of heat-absorbing gases such as CO2 in the atmosphere have become a major cause of concern. One of the ways to counter this growing threat will be to efficiently convert atmospheric CO2 into value-added products via the development of efficient transition-metal-catalyzed processes. Conversion of CO2 into bulk products such as CH3OH and methane as well as its incorporation into commercial polyurethane synthesis has been achieved and reviewed extensively. However, the efficient transformation of CO2 into fine chemicals and value-added chemicals has many fold advantages. Recent years have seen a rapid rise in the number of metal-mediated protocols to achieve this goal of converting CO2 into fine chemicals. These are essential developments given the requirement of several commodities and fine chemicals in various industrial processes and the utilization of atmospheric CO2 will help provide a sustainable solution to the current environmental problems. Accordingly, we present here a comprehensive compilation of catalytic processes, involving CO2 as the C1 source for reacting with substrates such as alkanes, alkenes, alkynes, amines, acid chlorides, alcohols, allyl boronates, alkenyl triflates, and many others to provide easy access to a wide variety of useful molecules. Such a technology would certainly prove to be beneficial in solving the problems associated with the environmental accumulation of CO2.
Collapse
Affiliation(s)
- Dhanashri A Sable
- Institute of Chemical Technology, Department of Chemistry, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India. and Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
| | - Kamlesh S Vadagaonkar
- Institute of Chemical Technology, Department of Chemistry, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India.
| | - Anant R Kapdi
- Institute of Chemical Technology, Department of Chemistry, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India.
| | - Bhalchandra M Bhanage
- Institute of Chemical Technology, Department of Chemistry, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India.
| |
Collapse
|
25
|
Takaishi K, Kosugi H, Nishimura R, Yamada Y, Ema T. C-Methylenation of anilines and indoles with CO 2 and hydrosilane using a pentanuclear zinc complex catalyst. Chem Commun (Camb) 2021; 57:8083-8086. [PMID: 34302161 DOI: 10.1039/d1cc03675k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The one-step C-methylenation of anilines and indoles with CO2 and phenylsilane was catalyzed by a pentanuclear ZnII complex to give diarylmethanes via geminal C-H and C-C bond formation. It is proposed that the zinc-hydride complex generated in situ is a catalytically active species and that bis(silyl)acetal is a key intermediate. When aniline was used as a substrate, both the C-methylenation and N-methylation proceeded.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan.
| | - Hiroyasu Kosugi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan.
| | - Ritsuki Nishimura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan.
| | - Yuya Yamada
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan.
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan.
| |
Collapse
|
26
|
Leong BX, Teo YC, Condamines C, Yang MC, Su MD, So CW. A NHC-Silyliumylidene Cation for Catalytic N-Formylation of Amines Using Carbon Dioxide. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03795] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bi-Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yeow-Chuan Teo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Cloé Condamines
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheuk-Wai So
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| |
Collapse
|
27
|
Xiong TK, Li XJ, Zhang M, Liang Y. Organic synthesis of fixed CO 2 using nitrogen as a nucleophilic center. Org Biomol Chem 2020; 18:7774-7788. [PMID: 32966496 DOI: 10.1039/d0ob01590c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this review, recent progress in the application of CO2 as an electrophilic reagent and nitrogen as a nucleophilic center under different catalytic conditions in organic synthesis is summarized. The used catalytic methods in the reactions of CO2 and nitrogen are classified as metal catalysis, metal-free catalysis, photocatalysis and electrocatalysis. Various catalytic conditions have been used to solve the problems of thermodynamic properties and stability of CO2. The transformation mechanisms of these reactions are discussed.
Collapse
Affiliation(s)
- Ting-Kai Xiong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China.
| | | | | | | |
Collapse
|
28
|
Zhao Y, Guo X, Ding X, Zhou Z, Li M, Feng N, Gao B, Lu X, Liu Y, You J. Reductive CO2 Fixation via the Selective Formation of C–C Bonds: Bridging Enaminones and Synthesis of 1,4-Dihydropyridines. Org Lett 2020; 22:8326-8331. [DOI: 10.1021/acs.orglett.0c02963] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yulei Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xuqiang Guo
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xin Ding
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Zheng Zhou
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Man Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Nan Feng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Bowen Gao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xu Lu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Yunlin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jinmao You
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| |
Collapse
|
29
|
Li XY, Fu HC, Liu XF, Yang SH, Chen KH, He LN. Design of Lewis base functionalized ionic liquids for the N-formylation of amines with CO2 and hydrosilane: The cation effects. Catal Today 2020. [DOI: 10.1016/j.cattod.2020.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Gopakumar A, Lombardo L, Fei Z, Shyshkanov S, Vasilyev D, Chidambaram A, Stylianou K, Züttel A, Dyson PJ. A polymeric ionic liquid catalyst for the N-formylation and N-methylation of amines using CO2/PhSiH3. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101240] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Tolzmann M, Schürmann L, Hepp A, Uhl W, Layh M. Hydrosilylation and Hydrogermylation of CO
2
and CS
2
by Al and Ga Functionalized Silanes and Germanes – Cooperative Reactivity with Formation of Silyl Formates and Disilylacetals. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Michael Tolzmann
- Institut für Anorganische und Analytische Chemie Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Lina Schürmann
- Institut für Anorganische und Analytische Chemie Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Werner Uhl
- Institut für Anorganische und Analytische Chemie Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Marcus Layh
- Institut für Anorganische und Analytische Chemie Universität Münster Corrensstraße 30 48149 Münster Germany
| |
Collapse
|
32
|
P S, Mandal SK. From CO 2 activation to catalytic reduction: a metal-free approach. Chem Sci 2020; 11:10571-10593. [PMID: 34094313 PMCID: PMC8162374 DOI: 10.1039/d0sc03528a] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Over exploitation of natural resources and human activities are relentlessly fueling the emission of CO2 in the atmosphere. Accordingly, continuous efforts are required to find solutions to address the issue of excessive CO2 emission and its potential effects on climate change. It is imperative that the world looks towards a portfolio of carbon mitigation solutions, rather than a single strategy. In this regard, the use of CO2 as a C1 source is an attractive strategy as CO2 has the potential to be a great asset for the industrial sector and consumers across the globe. In particular, the reduction of CO2 offers an alternative to fossil fuels for various organic industrial feedstocks and fuels. Consequently, efficient and scalable approaches for the reduction of CO2 to products such as methane and methanol can generate value from its emissions. Accordingly, in recent years, metal-free catalysis has emerged as a sustainable approach because of the mild reaction conditions by which CO2 can be reduced to various value-added products. The metal-free catalytic reduction of CO2 offers the development of chemical processes with low cost, earth-abundant, non-toxic reagents, and low carbon-footprint. Thus, this perspective aims to present the developments in both the reduction and reductive functionalization chemistry of CO2 during the last decade using various metal-free catalysts.
Collapse
Affiliation(s)
- Sreejyothi P
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India
| |
Collapse
|
33
|
Delaude L. The Chemistry of Azolium‐Carboxylate Zwitterions and Related Compounds: a Survey of the Years 2009–2020. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lionel Delaude
- Laboratory of CatalysisMolSys Research UnitInstitut de Chimie Organique (B6a)Université de Liège Allée du six Août 13 4000 Liège Belgium
| |
Collapse
|
34
|
Long G, Wu D, Pan H, Zhao T, Hu X. Imidazolium hydrogen carbonate ionic liquids: Versatile organocatalysts for chemical conversion of CO2 into valuable chemicals. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101155] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
35
|
Han LH, Li JY, Song QW, Zhang K, Zhang QX, Sun XF, Liu P. Thermodynamic favorable CO2 conversion via vicinal diols and propargylic alcohols: A metal-free catalytic method. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Murata T, Hiyoshi M, Ratanasak M, Hasegawa JY, Ema T. Synthesis of silyl formates, formamides, and aldehydes via solvent-free organocatalytic hydrosilylation of CO 2. Chem Commun (Camb) 2020; 56:5783-5786. [PMID: 32322865 DOI: 10.1039/d0cc01371d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Carbon dioxide (CO2) was used as a C1 source to prepare silyl formates, formamides, and aldehydes. Tetrabutylammonium acetate (TBAA) catalyzed the solvent-free N-formylation of amines with CO2 and hydrosilane to give formamides including Weinreb formamide, Me(MeO)NCHO, which was successively converted into aldehydes by one-pot reactions with Grignard reagents.
Collapse
Affiliation(s)
- Takumi Murata
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan.
| | - Mahoko Hiyoshi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan.
| | - Manussada Ratanasak
- Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| | - Jun-Ya Hasegawa
- Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan.
| |
Collapse
|
37
|
Zhao Y, Guo X, Du Y, Shi X, Yan S, Liu Y, You J. Synthesis of fused-tetrahydropyrimidines: one-pot methylenation–cyclization utilizing two molecules of CO2. Org Biomol Chem 2020; 18:6881-6888. [DOI: 10.1039/d0ob01504k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A methylenation–cyclization reaction employing cyclic enaminones with primary aromatic amines and two molecules of CO2 to furnish fused-tetrahydropyrimidines has been developed.
Collapse
Affiliation(s)
- Yulei Zhao
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Xuqiang Guo
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Yulan Du
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Xinrui Shi
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Shina Yan
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Yunlin Liu
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou
- China
| | - Jinmao You
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
- Northwest Institute of Plateau Biology
| |
Collapse
|
38
|
Zhao Y, Liu X, Zheng L, Du Y, Shi X, Liu Y, Yan Z, You J, Jiang Y. One-Pot Methylenation–Cyclization Employing Two Molecules of CO2 with Arylamines and Enaminones. J Org Chem 2019; 85:912-923. [DOI: 10.1021/acs.joc.9b02858] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yulei Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xu Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lijun Zheng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yulan Du
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xinrui Shi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yunlin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhengquan Yan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jinmao You
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| | - Yuanye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
39
|
Franz D, Jandl C, Stark C, Inoue S. Catalytic CO 2 Reduction with Boron- and Aluminum Hydrides. ChemCatChem 2019; 11:5275-5281. [PMID: 31894189 PMCID: PMC6919925 DOI: 10.1002/cctc.201901255] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Indexed: 12/11/2022]
Abstract
The previously reported dimeric NHI aluminum dihydrides 1 a,b, as well as the bis(NHI) aluminum dihydride salt 9 +[OTs]-, the bis(NHI) boron dihydride salt 10 +[OTs]-, and the "free" bis(NHI) ligand 12 were investigated with regard to their activity as a homogenous (pre)catalyst in the hydroboration (i. e. catalytic reduction) of carbon dioxide (CO2) in chloroform under mild conditions (i. e. room temperature, 1 atm; NHI=N-heterocyclic imine, Ts=tosyl). Borane dimethylsulfide complex and catecholborane were used as a hydride source. Surprisingly, the less sterically hindered 1 a exhibited lower catalytic activity than the bulkier 1 b. A similarly unexpected discrepancy was found with the lower catalytic activity of 10 + in comparison to the one of the bis(NHI) 12. The latter is incorporated as the ligand to the boron center in 10 +. To elucidate possible mechanisms for CO2 reduction the compounds were subjected to stoichiometric reactivity studies with the borane or CO2. Aluminum carboxylates 4, 6, and 7 + with two, four, and one formate group per two aluminum centers were isolated. Also, the boron formate salt 11 +[OTs]- was characterized. Selected metal formates were subjected to stoichiometric reactions with boranes and/or tested as a catalyst. We conclude that each type of catalyst (1 a,b, 9 +, 10 +, 12) follows an individual mechanistic pathway for CO2 reduction.
Collapse
Affiliation(s)
- Daniel Franz
- Department of Chemistry Catalysis Research Center and Institute of Silicon ChemistryTechnische Universität MünchenLichtenbergstr. 4Garching bei München85748Germany
| | - Christian Jandl
- Department of Chemistry Catalysis Research Center and Institute of Silicon ChemistryTechnische Universität MünchenLichtenbergstr. 4Garching bei München85748Germany
| | - Claire Stark
- Department of Chemistry Catalysis Research Center and Institute of Silicon ChemistryTechnische Universität MünchenLichtenbergstr. 4Garching bei München85748Germany
| | - Shigeyoshi Inoue
- Department of Chemistry Catalysis Research Center and Institute of Silicon ChemistryTechnische Universität MünchenLichtenbergstr. 4Garching bei München85748Germany
| |
Collapse
|
40
|
Ojeda‐Amador AI, Munarriz J, Alamán‐Valtierra P, Polo V, Puerta‐Oteo R, Jiménez MV, Fernández‐Alvarez FJ, Pérez‐Torrente JJ. Mechanistic Insights on the Functionalization of CO
2
with Amines and Hydrosilanes Catalyzed by a Zwitterionic Iridium Carboxylate‐Functionalized Bis‐NHC Catalyst. ChemCatChem 2019. [DOI: 10.1002/cctc.201901687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ana I. Ojeda‐Amador
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Julen Munarriz
- Departamento de Química Física Instituto de Biocomputación y Física de Sistemas complejos (BIFI) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Pablo Alamán‐Valtierra
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Víctor Polo
- Departamento de Química Física Instituto de Biocomputación y Física de Sistemas complejos (BIFI) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Raquel Puerta‐Oteo
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - M. Victoria Jiménez
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Francisco J. Fernández‐Alvarez
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| | - Jesús J. Pérez‐Torrente
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Facultad de CienciasUniversidad de Zaragoza Zaragoza 50009 Spain
| |
Collapse
|
41
|
Rhodium-catalyzed formation of silylcarbamates from the reaction of secondary amines with CO2 and hydrosilanes. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Hulla M, Dyson PJ. Pivotal Role of the Basic Character of Organic and Salt Catalysts in C−N Bond Forming Reactions of Amines with CO
2. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906942] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Martin Hulla
- Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| |
Collapse
|
43
|
Hulla M, Dyson PJ. Pivotal Role of the Basic Character of Organic and Salt Catalysts in C-N Bond Forming Reactions of Amines with CO 2. Angew Chem Int Ed Engl 2019; 59:1002-1017. [PMID: 31364789 DOI: 10.1002/anie.201906942] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Indexed: 01/12/2023]
Abstract
Organocatalysts promote a range of C-N bond forming reactions of amines with CO2 . Herein, we review these reactions and attempt to identify the unifying features of the catalysts that allows them to promote a multitude of seemingly unrelated reactions. Analysis of the literature shows that these reactions predominantly proceed by carbamate salt formation in the form [BaseH][RR'NCOO]. The anion of the carbamate salt acts as a nucleophile in hydrosilane reductions of CO2 , internal cyclization reactions or after dehydration as an electrophile in the synthesis of urea derivatives. The reactions are enhanced by polar aprotic solvents and can be either promoted or hindered by H-bonding interactions. The predominant role of all types of organic and salt catalysts (including ionic liquids, ILs) is the stabilization of the carbamate salt, mostly by acting as a base. Catalytic enhancement depends on the combination of the amine, the base strength, the solvent, steric factors, ion pairing and H-bonding. A linear relationship between the base strength and the reaction yield has been demonstrated with IL catalysts in the synthesis of formamides and quinazoline-2,4-diones. The role of organocatalysts in the reactions indicates that all bases of sufficient strength should be able to catalyze the reactions. However, a physical limit to the extent of a purely base catalyzed reaction mechanism should exist, which needs to be identified, understood and overcome by synergistic or alternative methods.
Collapse
Affiliation(s)
- Martin Hulla
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
44
|
Molecular Catalysis for Utilizing CO2 in Fuel Electro-Generation and in Chemical Feedstock. Catalysts 2019. [DOI: 10.3390/catal9090760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Processes for the conversion of CO2 to valuable chemicals are highly desired as a result of the increasing CO2 levels in the atmosphere and the subsequent elevating global temperature. However, CO2 is thermodynamically and kinetically inert to transformation and, therefore, many efforts were made in the last few decades. Reformation/hydrogenation of CO2 is widely used as a means to access valuable products such as acetic acids, CH4, CH3OH, and CO. The electrochemical reduction of CO2 using hetero- and homogeneous catalysts recently attracted much attention. In particular, molecular CO2 reduction catalysts were widely studied using transition-metal complexes modified with various ligands to understand the relationship between various catalytic properties and the coordination spheres above the metal centers. Concurrently, the coupling of CO2 with various electrophiles under homogeneous conditions is also considered an important approach for recycling CO2 as a renewable C-1 substrate in the chemical industry. This review summarizes some recent advances in the conversion of CO2 into valuable chemicals with particular focus on the metal-catalyzed reductive conversion and functionalization of CO2.
Collapse
|
45
|
Zhang X, Wang S, Xi C. α-Methylation of 2-Arylacetonitrile by a Trimethylamine-Borane/CO2 System. J Org Chem 2019; 84:9744-9749. [DOI: 10.1021/acs.joc.9b01587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xiaowei Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sheng Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
46
|
Catalytic Reductive N‐Alkylations Using CO
2
and Carboxylic Acid Derivatives: Recent Progress and Developments. Angew Chem Int Ed Engl 2019; 58:12820-12838. [DOI: 10.1002/anie.201810121] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 12/12/2022]
|
47
|
Cabrero‐Antonino JR, Adam R, Beller M. Katalytische reduktive N‐Alkylierungen unter Verwendung von CO
2
und Carbonsäurederivaten: Aktuelle Entwicklungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jose R. Cabrero‐Antonino
- Leibniz-Institut für Katalyse Homogeneous Catalysis Albert-Einstein-Straße 29a Rostock 18059 Deutschland
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC) Avda. de los Naranjos s/n València 46022 Spanien
| | - Rosa Adam
- Leibniz-Institut für Katalyse Homogeneous Catalysis Albert-Einstein-Straße 29a Rostock 18059 Deutschland
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC) Avda. de los Naranjos s/n València 46022 Spanien
| | - Matthias Beller
- Leibniz-Institut für Katalyse Homogeneous Catalysis Albert-Einstein-Straße 29a Rostock 18059 Deutschland
| |
Collapse
|
48
|
Han H, Fang L, Chen J, Yang SD, Xia JB. Tetramethylguanidine (TMG)-catalyzed reductive spirocyclization of tryptamine derivatives with formic acid as a C1 synthon. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Noh H, An Y, Lee S, Jung J, Son SU, Jang H. Metal‐free Carbon Monoxide (CO) Capture and Utilization: Formylation of Amines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hyeong‐Wan Noh
- Department of Energy Systems ResearchAjou University Suwon 16499 South Korea
| | - Youngjoon An
- Department of ChemistryUniversity of Ulsan Ulsan 44610 South Korea
| | - Seulchan Lee
- Department of Energy Systems ResearchAjou University Suwon 16499 South Korea
| | - Jaehoon Jung
- Department of ChemistryUniversity of Ulsan Ulsan 44610 South Korea
| | - Seung Uk Son
- Department of ChemistrySungkyunkwan Universiy Suwon 16419 South Korea
| | - Hye‐Young Jang
- Department of Energy Systems ResearchAjou University Suwon 16499 South Korea
| |
Collapse
|
50
|
Li JY, Song QW, Zhang K, Liu P. Catalytic Conversion of Carbon Dioxide through C-N Bond Formation. Molecules 2019; 24:molecules24010182. [PMID: 30621311 PMCID: PMC6337678 DOI: 10.3390/molecules24010182] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023] Open
Abstract
From the viewpoint of green chemistry and sustainable development, it is of great significance to synthesize chemicals from CO₂ as C₁ source through C-N bond formation. During the past several decade years, many studies on C-N bond formation reaction were involved, and many efforts have been made on the theory. Nevertheless, several great challenges such as thermodynamic limitation, low catalytic efficiency and selectivity, and high pressure etc. are still suffered. Herein, recent advances are highlighted on the development of catalytic methods for chemical fixation of CO₂ to various chemicals through C-N bond formation. Meanwhile, the catalytic systems (metal and metal-free catalysis), strategies and catalytic mechanism are summarized and discussed in detail. Besides, this review also covers some novel synthetic strategies to urethanes based on amines and CO₂. Finally, the regulatory strategies on functionalization of CO₂ for N-methylation/N-formylation of amines with phenylsilane and heterogeneous catalysis N-methylation of amines with CO₂ and H₂ are emphasized.
Collapse
Affiliation(s)
- Jing-Yuan Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| | - Qing-Wen Song
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| | - Kan Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| | - Ping Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| |
Collapse
|