1
|
Ye Z, Yang KR, Zhang B, Navid IA, Shen Y, Xiao Y, Pofelski A, Botton GA, Ma T, Mondal S, Norris TB, Batista VS, Mi Z. A synergetic cocatalyst for conversion of carbon dioxide, sunlight, and water into methanol. Proc Natl Acad Sci U S A 2024; 121:e2408183121. [PMID: 39172778 PMCID: PMC11363284 DOI: 10.1073/pnas.2408183121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024] Open
Abstract
The conversion of CO2 into liquid fuels, using only sunlight and water, offers a promising path to carbon neutrality. An outstanding challenge is to achieve high efficiency and product selectivity. Here, we introduce a wireless photocatalytic architecture for conversion of CO2 and water into methanol and oxygen. The catalytic material consists of semiconducting nanowires decorated with core-shell nanoparticles, with a copper-rhodium core and a chromium oxide shell. The Rh/CrOOH interface provides a unidirectional channel for proton reduction, enabling hydrogen spillover at the core-shell interface. The vectorial transfer of protons, electrons, and hydrogen atoms allows for switching the mechanism of CO2 reduction from a proton-coupled electron transfer pathway in aqueous solution to hydrogenation of CO2 with a solar-to-methanol efficiency of 0.22%. The reported findings demonstrate a highly efficient, stable, and scalable wireless system for synthesis of methanol from CO2 that could provide a viable path toward carbon neutrality and environmental sustainability.
Collapse
Affiliation(s)
- Zhengwei Ye
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI48109
| | - Ke R. Yang
- Department of Chemistry, Quantum Institute and Energy Sciences Institute, Yale University, New Haven, CT06520
| | - Bingxing Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI48109
| | - Ishtiaque Ahmed Navid
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI48109
| | - Yifan Shen
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI48109
| | - Yixin Xiao
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI48109
| | - Alexandre Pofelski
- Department of Material Science and Engineering, Canadian Center for Electron Microscopy, McMaster University, Hamilton, ONL8S 4M1, Canada
| | - Gianluigi A. Botton
- Department of Material Science and Engineering, Canadian Center for Electron Microscopy, McMaster University, Hamilton, ONL8S 4M1, Canada
| | - Tao Ma
- Michigan Center for Materials Characterization, University of Michigan, Ann Arbor, MI48109
| | - Shubham Mondal
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI48109
| | - Theodore B. Norris
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI48109
| | - Victor S. Batista
- Department of Chemistry, Quantum Institute and Energy Sciences Institute, Yale University, New Haven, CT06520
| | - Zetian Mi
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
2
|
Su H, Han JT, Miao B, Salehi M, Li CJ. Photosynthesis of CH 3OH via oxygen-atom-grafting from CO 2 to CH 4 enabled by AuPd/GaN. Nat Commun 2024; 15:6435. [PMID: 39085303 PMCID: PMC11291648 DOI: 10.1038/s41467-024-50801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
The direct co-conversion of methane and carbon dioxide into valuable chemicals has been a longstanding scientific pursuit for carbon neutrality and combating climate change. Herein, we present a photo-driven chemical process that reforms these two major greenhouse gases together to generate green methanol and CO, two high-valued industrial chemicals. Isotopic labeling and control experiments indicate an oxygen-atom-graft occurs, wherein CO2 transfers one O into the C-H bond of CH4 via photo-activated interfacial catalysis with AuPd nanoparticles supported on GaN. The photoexcited AuPd/GaN interface effectively orchestrates the CH4 oxidation and the CO2 reduction producing 13.66 mmol g-1 of CH3OH yield over 10 h. This design provides a solid scientific basis for the photo-driven oxygen-atom-grafting process to be further extended to visible light region.
Collapse
Affiliation(s)
- Hui Su
- Department of Chemistry, and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Jing-Tan Han
- Department of Chemistry, and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Botong Miao
- Department of Chemistry, and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Mahdi Salehi
- Department of Chemical Engineering, McGill University, Montreal, QC, H3A 0C5, Canada
| | - Chao-Jun Li
- Department of Chemistry, and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada.
| |
Collapse
|
3
|
Boruah A, Boro B, Paul R, Chang CC, Mandal S, Shrotri A, Pao CW, Mai BK, Mondal J. Site-Selective Zn-Metalation in Poly-Triphenyl Amine-based Porous Organic Polymer for Solid-Gas Phase CO 2 Photoreduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34437-34449. [PMID: 38940318 DOI: 10.1021/acsami.4c06198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Harvesting solar energy to produce value-added chemicals from carbon dioxide (CO2) presents a promising route for addressing the complexities of sustainable energy systems and environmental issues. In this context, the development of metal-coordinated porous organic polymers (POPs) offers a vital avenue for improving the photocatalytic performance of organic motifs. The current study presents a metal-integrated photocatalytic system (namely, Zn@BP-POP) developed via a one-pot Friedel-Crafts (F.C.) acylation strategy, for solid-gas phase photochemical CO2 reduction to CO (CO2RR). The postsynthetic incorporation of metal (Zn) active sites on the host polymeric backbone of BP-POP significantly influences the catalytic activity. Notably, Zn@BP-POP demonstrates good photocatalytic performance in the absence of any cocatalyst and photosensitizer yielding CO while impeding the competitive hydrogen evolution reaction (HER) from water. The experimental findings collectively propose that the observed catalytic activity and selectivity arise from the synergistic interplay between the singular zinc catalytic centers and the light-harvesting capacity of the highly conjugated polymeric backbone. Further, X-ray absorption spectroscopy (XAS) analysis has significantly highlighted the prominent role played by the ZnN2O4 single sites in the polymeric framework for activating the gaseous CO2 molecules. Further, time-dependent density functional theory (DFT) analysis also reveals the thermodynamic feasibility of CO2RR over HER under optimized reaction conditions. This work cumulatively presents an effective strategy to demonstrate the importance of metal-active sites and effectively establish their structure-activity relationship during photocatalysis.
Collapse
Affiliation(s)
- Ankita Boruah
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201001, India
| | - Bishal Boro
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201001, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India
| | - Chia-Che Chang
- National Synchrotron Radiation Research Centre,101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Srayee Mandal
- Department of Chemical Sciences, IISER- Berhampur, Berhampur, Odisha 760010, India
| | - Abhijit Shrotri
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-Ku, Sapporo 001-0021, Japan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Centre,101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 United States
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201001, India
| |
Collapse
|
4
|
Xu J, Roghabadi FA, Luo Y, Ahmadi V, Wang Q, Wang Z, He H. Recent advances in heterogeneous catalysis of solar-driven carbon dioxide conversion. J Environ Sci (China) 2024; 140:165-182. [PMID: 38331498 DOI: 10.1016/j.jes.2023.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 02/10/2024]
Abstract
Solar-driven carbon dioxide (CO2) conversion including photocatalytic (PC), photoelectrochemical (PEC), photovoltaic plus electrochemical (PV/EC) systems, offers a renewable and scalable way to produce fuels and high-value chemicals for environment and energy sustainability. This review summarizes the basic fundament and the recent advances in the field of solar-driven CO2 conversion. Expanding the visible-light absorption is an important strategy to improve solar energy conversion efficiency. The separation and migration of photogenerated charges carriers to surface sites and the surface catalytic processes also determine the photocatalytic performance. Surface engineering including co-catalyst loading, defect engineering, morphology control, surface modification, surface phase junction, and Z-scheme photocatalytic system construction, have become fundamental strategies to obtain high-efficiency photocatalysts. Similar to photocatalysis, these strategies have been applied to improve the conversion efficiency and Faradaic efficiency of typical PEC systems. In PV/EC systems, the electrode surface structure and morphology, electrolyte effects, and mass transport conditions affect the activity and selectivity of electrochemical CO2 reduction. Finally, the challenges and prospects are addressed for the development of solar-driven CO2 conversion system with high energy conversion efficiency, high product selectivity and stability.
Collapse
Affiliation(s)
- Jun Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Farzaneh Arabpour Roghabadi
- Department of Process Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran; Optoelectronics and Nanophotonics Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ying Luo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Vahid Ahmadi
- Optoelectronics and Nanophotonics Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | - Qian Wang
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Zheng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
5
|
Zhu L, Qin C, Wang Y, Cao J. WS 2 supported PtO x clusters for efficient photocatalytic CO 2 reduction: a DFT study. Phys Chem Chem Phys 2023; 25:30014-30022. [PMID: 37905440 DOI: 10.1039/d3cp03592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Platinum (Pt) nanoparticles/nanoclusters are some of the most efficient cocatalysts for photocatalytic CO2 reduction. Nevertheless, the produced CO can lead to a poisoning effect due to the strong adsorption strength of the Pt cocatalysts. Using density functional theory, PtOx clusters with variable sizes (Pt4O6, Pt5O8, Pt7O10, and Pt8O13) are selected to load on WS2 (PtOx-WS2) for photocatalytic CO2 conversion. The calculated results demonstrate that PtOx-WS2 are highly stable, and the electron-rich PtOx clusters are beneficial for the photocatalytic CO2 reduction. All the PtOx-WS2 catalysts exhibit efficient photocatalytic performance for CO2 reduction. Especially, Pt4O6-, Pt5O8-, and Pt8O13-WS2 have acceptable or ultra-low ΔGmax (ΔG for the rate-determining step) of 0.57, 0.23, and 0.48 eV to produce CH3OH, HCOOH, and CH4, respectively. The photocatalytic activities of PtOx-WS2 are correlated with the adsorption strength of the key intermediates, and the strong interactions between PtOx-WS2 and *COOH or *HCOO can lower the free energy changes for the first hydrogenation step. More importantly, PtOx-WS2 can also weaken the adsorption strength of *CO and *HCOOH, which are conducive to forming *CHO. This work gives an in-depth insight to design novel catalysts and promote their catalytic activity for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Linghao Zhu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Cong Qin
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Yan Wang
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Jianliang Cao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo 454000, China.
| |
Collapse
|
6
|
Cai B, Axelsson M, Zhan S, Pavliuk MV, Wang S, Li J, Tian H. Organic Polymer Dots Photocatalyze CO 2 Reduction in Aqueous Solution. Angew Chem Int Ed Engl 2023; 62:e202312276. [PMID: 37728510 DOI: 10.1002/anie.202312276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/21/2023]
Abstract
Developing low-cost and efficient photocatalysts to convert CO2 into valuable fuels is desirable to realize a carbon-neutral society. In this work, we report that polymer dots (Pdots) of poly[(9,9'-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-thiadiazole)] (PFBT), without adding any extra co-catalyst, can photocatalyze reduction of CO2 into CO in aqueous solution, rendering a CO production rate of 57 μmol g-1 h-1 with a detectable selectivity of up to 100 %. After 5 cycles of CO2 re-purging experiments, no distinct decline in CO amount and reaction rate was observed, indicating the promising photocatalytic stability of PFBT Pdots in the photocatalytic CO2 reduction reaction. A mechanistic study reveals that photoexcited PFBT Pdots are reduced by sacrificial donor first, then the reduced PFBT Pdots can bind CO2 and reduce it into CO via their intrinsic active sites. This work highlights the application of organic Pdots for CO2 reduction in aqueous solution, which therefore provides a strategy to develop highly efficient and environmentally friendly nanoparticulate photocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Bin Cai
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20, Uppsala, Sweden
| | - Martin Axelsson
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20, Uppsala, Sweden
| | - Shaoqi Zhan
- Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751, 23, Uppsala, Sweden
| | - Mariia V Pavliuk
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20, Uppsala, Sweden
| | - Sicong Wang
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20, Uppsala, Sweden
| | - Jingguo Li
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20, Uppsala, Sweden
| | - Haining Tian
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE 751 20, Uppsala, Sweden
| |
Collapse
|
7
|
Yanagi R, Zhao T, Cheng M, Liu B, Su H, He C, Heinlein J, Mukhopadhyay S, Tan H, Solanki D, Hu S. Photocatalytic CO 2 Reduction with Dissolved Carbonates and Near-Zero CO 2(aq) by Employing Long-Range Proton Transport. J Am Chem Soc 2023. [PMID: 37399530 DOI: 10.1021/jacs.3c03281] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Photocatalytic CO2 reduction (CO2R) in ∼0 mM CO2(aq) concentration is challenging but is relevant for capturing CO2 and achieving a circular carbon economy. Despite recent advances, the interplay between the CO2 catalytic reduction and the oxidative redox processes that are arranged on photocatalyst surfaces with nanometer-scale distances is less studied. Specifically, mechanistic investigation on interdependent processes, including CO2 adsorption, charge separation, long-range chemical transport (∼100 nm distance), and bicarbonate buffer speciation, involved in photocatalysis is urgently needed. Photocatalytic CO2R in ∼0 mM CO2(aq), which has important applications in integrated carbon capture and utilization (CCU), has rarely been studied. Using 0.1 M KHCO3 (aq) of pH 7 but without continuously bubbling CO2, we achieved ∼0.1% solar-to-fuel conversion efficiency for CO production using Ag@CrOx nanoparticles that are supported on a coating-protected GaInP2 photocatalytic panel. CO is produced at ∼100% selectivity with no detectable H2, even with copious protons co-generated nearby. CO2 flux to the Ag@CrOx CO2R sites enhances CO2 adsorption, probed by in situ Raman spectroscopy. CO is produced with local protonation of dissolved inorganic carbon species in a pH as high as 11.5 when using fast electron donors such as ethanol. Isotopic labeling using KH13CO3 was used to confirm the origin of CO from the bicarbonate solution. We then employed COMSOL Multiphysics modeling to simulate the spatial and temporal pH variation and the local concentrations of bicarbonates and CO2(aq). We found that light-driven CO2R and CO2 reactive transport are mutually dependent, which is important for further understanding and manipulating CO2R activity and selectivity. This study enables direct bicarbonate utilization as the source of CO2, thereby achieving CO2 capture and conversion without purifying and feeding gaseous CO2.
Collapse
Affiliation(s)
- Rito Yanagi
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Tianshuo Zhao
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Matthew Cheng
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Bin Liu
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Haoqing Su
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Chengxing He
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Jake Heinlein
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Shomeek Mukhopadhyay
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
| | - Haiyan Tan
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Devan Solanki
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| | - Shu Hu
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale West Campus, West Haven, Connecticut 06516, United States
| |
Collapse
|
8
|
Detz H, Butera V. In-depth DFT Insights into the Crucial Role of Hydrogen Bonding Network in CO2 Fixation into Propylene Oxide Promoted by Biomass-Derived Deep Eutectic Solvents. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Fang X, Lei S, Feng Z, Ou J. Conductive Polymers‐Confined Metal‐Organic Frameworks with Enhanced Activity for Highly Efficient Photocatalytic CO
2
Reduction. ChemElectroChem 2023. [DOI: 10.1002/celc.202201147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- Xinzuo Fang
- Jiangsu University of Technology Changzhou 213001 P. R. China
| | - Sheng Lei
- Jiangsu University of Technology Changzhou 213001 P. R. China
| | - Zhiwei Feng
- Jiangsu University of Technology Changzhou 213001 P. R. China
| | - Junfei Ou
- Jiangsu University of Technology Changzhou 213001 P. R. China
| |
Collapse
|
10
|
Kawawaki T, Akinaga Y, Yazaki D, Kameko H, Hirayama D, Negishi Y. Promoting Photocatalytic Carbon Dioxide Reduction by Tuning the Properties of Cocatalysts. Chemistry 2023; 29:e202203387. [PMID: 36524615 PMCID: PMC10107262 DOI: 10.1002/chem.202203387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Suppressing the amount of carbon dioxide in the atmosphere is an essential measure toward addressing global warming. Specifically, the photocatalytic CO2 reduction reaction (CRR) is an effective strategy because it affords the conversion of CO2 into useful carbon feedstocks by using sunlight and water. However, the practical application of photocatalyst-promoting CRR (CRR photocatalysts) requires significant improvement of their conversion efficiency. Accordingly, extensive research is being conducted toward improving semiconductor photocatalysts, as well as cocatalysts that are loaded as active sites on the photocatalysts. In this review, we summarize recent research and development trends in the improvement of cocatalysts, which have a significant impact on the catalytic activity and selectivity of photocatalytic CRR. We expect that the advanced knowledge provided on the improvement of cocatalysts for CRR in this review will serve as a general guideline to accelerate the development of highly efficient CRR photocatalysts.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
- Research Institute for Science & TechnologyTokyo University of ScienceShinjuku-kuTokyo162-8601Japan
| | - Yuki Akinaga
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Daichi Yazaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Hinano Kameko
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Daisuke Hirayama
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Yuichi Negishi
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
- Research Institute for Science & TechnologyTokyo University of ScienceShinjuku-kuTokyo162-8601Japan
| |
Collapse
|
11
|
Bao Y, Du S, Shibata K, Guo X, Kamakura Y, Feng Z, Huang Y, Ishitani O, Maeda K, Zhang F. Layered β-ZrNBr Nitro-Halide as Multifunctional Photocatalyst for Water Splitting and CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202214273. [PMID: 36428218 DOI: 10.1002/anie.202214273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Developing mixed-anion semiconductors for solar fuel production has inspired extensive interest, but the nitrohalide-based photocatalyst is still in shortage. Here we report a layered nitro-halide β-ZrNBr with a narrow band gap of ca. 2.3 eV and low defect density to exhibit multifunctionalities for photocatalytic water reduction, water oxidation and CO2 reduction under visible-light irradiation. As confirmed by the results of electron paramagnetic resonance (EPR) and density functional theory (DFT) calculations, the formation of anion vacancies in the nitro-halide photocatalyst was inhibited due to its relatively high formation energy. Furthermore, performance of β-ZrNBr can be effectively promoted by a simple exfoliation into nanosheets to shorten the carrier transfer distance as well as to promote charge separation. Our work extends the territory of functional photocatalysts into the nitro-halide, which opens a new avenue for fabricating efficient artificial photosynthesis.
Collapse
Affiliation(s)
- Yunfeng Bao
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, Liaoning, China
| | - Shiwen Du
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, Liaoning, China
| | - Kengo Shibata
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Xiangyang Guo
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, Liaoning, China
| | - Yoshinobu Kamakura
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Zhaochi Feng
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, Liaoning, China
| | - Yanqiang Huang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, Liaoning, China
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, Liaoning, China
| |
Collapse
|
12
|
One-pot synthesis of sodium-doped willow-shaped graphitic carbon nitride for improved photocatalytic activity under visible-light irradiation. J Colloid Interface Sci 2022; 624:79-87. [PMID: 35660913 DOI: 10.1016/j.jcis.2022.05.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/13/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
Graphitic carbon nitride (g-C3N4) is considered as a promising low-cost polymeric semiconductor as conjugated photocatalyst for energy and environmental application. This study exhibits a Na-doped g-C3N4 with willow-leaf-shaped structure and high degree of crystallinity, which was synthesized with a convenient thermal polymerization using sodium carbonate (Na2CO3) as the sodium source. The π-conjugated systems of g-C3N4 were improved by doping sodium, which could accelerate the electron transport efficiency resulting in outstanding photocatalytic properties. Furthermore, optimum Na-doped g-C3N4 (CN-0.05) attributed its enhanced irradiation efficiency of light energy to its narrower band gap and significant improvement in charge separation. Consequently, the H2 evolution rate catalyzed with CN-0.05 can achieve 3559.8 μmol g-1 h-1, which is about 1.9 times higher than that with pristine g-C3N4. The rate of CN-0.05 for reduction of CO2 to CO (3.66 μmol g-1 h-1) is 6.6 times higher than that of pristine g-C3N4. In experiments of pollutants degradation, the reaction constants of degradation of rhodamine B (RhB) and methyl orange (MO) with CN-0.05 were 0.0271 and 0.0101 min-1, respectively, which are 4.7 and 7.2 times more efficient than pristine g-C3N4, respectively. This work provides a simple preparation method for tailoring effective photocatalyst for the sustainable solution of environmental issues.
Collapse
|
13
|
Ran L, Li Z, Ran B, Cao J, Zhao Y, Shao T, Song Y, Leung MKH, Sun L, Hou J. Engineering Single-Atom Active Sites on Covalent Organic Frameworks for Boosting CO 2 Photoreduction. J Am Chem Soc 2022; 144:17097-17109. [PMID: 36066387 DOI: 10.1021/jacs.2c06920] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Solar carbon dioxide (CO2) conversion is an emerging solution to meet the challenges of sustainable energy systems and environmental/climate concerns. However, the construction of isolated active sites not only influences catalytic activity but also limits the understanding of the structure-catalyst relationship of CO2 reduction. Herein, we develop a universal synthetic protocol to fabricate different single-atom metal sites (e.g., Fe, Co, Ni, Zn, Cu, Mn, and Ru) anchored on the triazine-based covalent organic framework (SAS/Tr-COF) backbone with the bridging structure of metal-nitrogen-chlorine for high-performance catalytic CO2 reduction. Remarkably, the as-synthesized Fe SAS/Tr-COF as a representative catalyst achieved an impressive CO generation rate as high as 980.3 μmol g-1 h-1 and a selectivity of 96.4%, over approximately 26 times higher than that of the pristine Tr-COF under visible light irradiation. From X-ray absorption fine structure analysis and density functional theory calculations, the superior photocatalytic performance is attributed to the synergic effect of atomically dispersed metal sites and Tr-COF host, decreasing the reaction energy barriers for the formation of *COOH intermediates and promoting CO2 adsorption and activation as well as CO desorption. This work not only affords rational design of state-of-the-art catalysts at the molecular level but also provides in-depth insights for efficient CO2 conversion.
Collapse
Affiliation(s)
- Lei Ran
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.,Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, P. R. China
| | - Zhuwei Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Bei Ran
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, P. R. China
| | - Jiaqi Cao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yue Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Teng Shao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yurou Song
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Michael K H Leung
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, P. R. China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, P. R. China.,Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
14
|
Oxynitride-surface engineering of rhodium-decorated gallium nitride for efficient thermocatalytic hydrogenation of carbon dioxide to carbon monoxide. Commun Chem 2022; 5:107. [PMID: 36697953 PMCID: PMC9814893 DOI: 10.1038/s42004-022-00728-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
Upcycling of carbon dioxide towards fuels and value-added chemicals poses an opportunity to overcome challenges faced by depleting fossil fuels and climate change. Herein, combining highly controllable molecular beam epitaxy growth of gallium nitride (GaN) under a nitrogen-rich atmosphere with subsequent air annealing, a tunable platform of gallium oxynitride (GaN1-xOx) nanowires is built to anchor rhodium (Rh) nanoparticles for carbon dioxide hydrogenation. By correlatively employing various spectroscopic and microscopic characterizations, as well as density functional theory calculations, it is revealed that the engineered oxynitride surface of GaN works in synergy with Rh to achieve a dramatically reduced energy barrier. Meanwhile, the potential-determining step is switched from *COOH formation into *CO desorption. As a result, significantly improved CO activity of 127 mmol‧gcat-1‧h-1 is achieved with high selectivity of >94% at 290 °C under atmospheric pressure, which is three orders of magnitude higher than that of commercial Rh/Al2O3. Furthermore, capitalizing on the high dispersion of the Rh species, the architecture illustrates a decent turnover frequency of 270 mol CO per mol Rh per hour over 9 cycles of operation. This work presents a viable strategy for promoting CO2 refining via surface engineering of an advanced support, in collaboration with a suitable metal cocatalyst.
Collapse
|
15
|
Recent advances in 1D nanostructured catalysts for photothermal and photocatalytic reduction of CO2. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Lorenz F, Moustakas NG, Peppel T, Strunk J. Comparative Studies of Oxygen‐Free Semiconductors in Photocatalytic CO
2
Reduction and Alcohol Degradation. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Felix Lorenz
- Leibniz-Institut für Katalyse e. V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Nikolaos G. Moustakas
- Leibniz-Institut für Katalyse e. V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Tim Peppel
- Leibniz-Institut für Katalyse e. V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Jennifer Strunk
- Leibniz-Institut für Katalyse e. V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
17
|
Magnetron sputtering growth of AlN film for photocatalytic CO2 reduction. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Tunable green syngas generation from CO 2 and H 2O with sunlight as the only energy input. Proc Natl Acad Sci U S A 2022; 119:e2121174119. [PMID: 35727969 DOI: 10.1073/pnas.2121174119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The carbon-neutral synthesis of syngas from CO2 and H2O powered by solar energy holds grand promise for solving critical issues such as global warming and the energy crisis. Here we report photochemical reduction of CO2 with H2O into syngas using core/shell Au@Cr2O3 dual cocatalyst-decorated multistacked InGaN/GaN nanowires (NWs) with sunlight as the only energy input. First-principle density functional theory calculations revealed that Au and Cr2O3 are synergetic in deforming the linear CO2 molecule to a bent state with an O-C-O angle of 116.5°, thus significantly reducing the energy barrier of CO2RR compared with that over a single component of Au or Cr2O3. Hydrogen evolution reaction was promoted by the same cocatalyst simultaneously. By combining the cooperative catalytic properties of Au@Cr2O3 with the distinguished optoelectronic virtues of the multistacked InGaN NW semiconductor, the developed photocatalyst demonstrated high syngas activity of 1.08 mol/gcat/h with widely tunable H2/CO ratios between 1.6 and 9.2 under concentrated solar light illumination. Nearly stoichiometric oxygen was evolved from water splitting at a rate of 0.57 mol/gcat/h, and isotopic testing confirmed that syngas originated from CO2RR. The solar-to-syngas energy efficiency approached 0.89% during overall CO2 reduction coupled with water splitting. The work paves a way for carbon-neutral synthesis of syngas with the sole inputs of CO2, H2O, and solar light.
Collapse
|
19
|
Wang SH, Raja R, Hsiow CY, Khurshid F, Yang HR, Chung PW, Lai YY, Jeng RJ, Wang L. Chromatic Fulleropyrrolidine as Long-Lived Metal-Free Catalyst for CO 2 Photoreduction Reaction. CHEMSUSCHEM 2022; 15:e202102476. [PMID: 35023634 DOI: 10.1002/cssc.202102476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Conversion of CO2 into carbonaceous fuels with the aid of solar energy has been an important research subject for decades. Owing to their excellent electron-accepting capacities, fullerene derivatives have been extensively used as n-type semiconductors. This work reports that the fulleropyrrolidine functionalized with 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole, abbreviated as DTBT-C60 , could efficiently catalyze the photoreduction of CO2 to CO. The novel C60 -chromophore dyad structure facilitated better usage of solar light and effective dissociation of excitons. Consequently, the DTBT-C60 exhibited a promising CO yield of 144 μmol gcat -1 under AM1.5G solar illumination for 24 h. Moreover, the isotope experiments demonstrated that water molecules could function as an electron source to reactivate DTBT-C60 . Impressively, DTBT-C60 exhibited an extremely durable catalytic activity for more than one week, facilitating the practical application of photochemical CO2 reaction.
Collapse
Affiliation(s)
- Shih-Hao Wang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Rathinam Raja
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Chuen-Yo Hsiow
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Farheen Khurshid
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Hau-Ren Yang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Po-Wen Chung
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Ying Lai
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ru-Jong Jeng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Leeyih Wang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
20
|
Zhang X, Wang P, Lv X, Niu X, Lin X, Zhong S, Wang D, Lin H, Chen J, Bai S. Stacking Engineering of Semiconductor Heterojunctions on Hollow Carbon Spheres for Boosting Photocatalytic CO2 Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05401] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xingwei Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Peng Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xuyu Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xiangyue Niu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xinyuan Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Shuxian Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Song Bai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
21
|
Volkov R, Borgardt NI, Konovalov OV, Fernández-Garrido S, Brandt O, Kaganer VM. Cross-sectional shape evolution of GaN nanowires during molecular beam epitaxy growth on Si(111). NANOSCALE ADVANCES 2022; 4:562-572. [PMID: 36132694 PMCID: PMC9419090 DOI: 10.1039/d1na00773d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/03/2021] [Indexed: 06/16/2023]
Abstract
We study the cross-sectional shape of GaN nanowires (NWs) by transmission electron microscopy. The shape is examined at different heights of long NWs, as well as at the same height for NWs of different lengths. Two distinct trends in the evolution of the cross-sectional shape along the NW length are observed. At the top, merging NWs develop common {11̄00} side facets. At the bottom, the NWs acquire roundish shapes. This observation is explained by the entirely different NW environments at the top and the bottom of the NWs. At the top, NWs are exposed to the Ga and N atomic fluxes giving rise to axial growth, resulting in the equilibrium growth shape with zero growth rate at the {11̄00} facets. At the bottom, NWs are shadowed from the impinging fluxes and are only annealed, allowing them to eventually approach the equilibrium crystal shape. The study of identical samples by grazing incidence small-angle X-ray scattering independently confirms these trends in the shape evolution of the sidewall facets.
Collapse
Affiliation(s)
- Roman Volkov
- National Research University of Electronic Technology - MIET Bld. 1, Shokin Square, Zelenograd Moscow 124498 Russia
| | - Nikolai I Borgardt
- National Research University of Electronic Technology - MIET Bld. 1, Shokin Square, Zelenograd Moscow 124498 Russia
| | - Oleg V Konovalov
- ESRF - The European Synchrotron 71 avenue des Martyrs 38043 Grenoble France
| | - Sergio Fernández-Garrido
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V. Hausvogteiplatz 5-7 10117 Berlin Germany
| | - Oliver Brandt
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V. Hausvogteiplatz 5-7 10117 Berlin Germany
| | - Vladimir M Kaganer
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V. Hausvogteiplatz 5-7 10117 Berlin Germany
| |
Collapse
|
22
|
Das R, Sarkar S, Kumar R, D. Ramarao S, Cherevotan A, Jasil M, Vinod CP, Singh AK, Peter SC. Noble-Metal-Free Heterojunction Photocatalyst for Selective CO2 Reduction to Methane upon Induced Strain Relaxation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04587] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Risov Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Shreya Sarkar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Ritesh Kumar
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Seethiraju D. Ramarao
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Arjun Cherevotan
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Mohammed Jasil
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Chathakudath. P. Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 410008, India
| | | | - Sebastian C. Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
23
|
Chen P, Zhang Y, Zhou Y, Dong F. Photoelectrocatalytic carbon dioxide reduction: Fundamental, advances and challenges. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Hoang VC, Bui TS, Nguyen HTD, Hoang TT, Rahman G, Le QV, Nguyen DLT. Solar-driven conversion of carbon dioxide over nanostructured metal-based catalysts in alternative approaches: Fundamental mechanisms and recent progress. ENVIRONMENTAL RESEARCH 2021; 202:111781. [PMID: 34333011 DOI: 10.1016/j.envres.2021.111781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/27/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Solar-driven carbon dioxide (CO2) conversion has gained tremendous attention as a prominent strategy to simultaneously reduce the atmospheric CO2 concentration and convert solar energy into solar fuels in the form of chemical bonds. Numerous efforts have been devoted to diverse photo-driven processes for CO2 conversion, which utilized a multidisciplinary strategy. Among them, the architecture of nanostructured metal-based catalysts is emerging as an eminent solution for the design of catalysts of this field. In this work, we first provide fundamental mechanisms of photochemical, photoelectrochemical, photothermal, and photobio(electro)chemical CO2 reduction processes to achieve an in-deep understanding of vital aspects. Importantly, the recent progress in the catalyst design for each reaction system is discussed and highlighted. Based on these analyses, an overview of photo-driven CO2 reduction on metal-based catalysts for solar fuel production is also spotlighted. Finally, we analyze challenges and prospects for the strategic direction of developments in the field.
Collapse
Affiliation(s)
- Van Chinh Hoang
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Thanh-Son Bui
- Department of Environmental Engineering, International University, Vietnam National University-Ho Chi Minh (VNU-HCM), Ho Chi Minh City, Viet Nam
| | - Huong T D Nguyen
- University of Science, Vietnam National University-Ho Chi Minh (VNU-HCM), Ho Chi Minh City, 721337, Viet Nam
| | - Thanh T Hoang
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City (IUH), Viet Nam
| | - Gul Rahman
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dang Le Tri Nguyen
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
25
|
Singh P, Srivastava R. Utilization of bio-inspired catalyst for CO2 reduction into green fuels: Recent advancement and future perspectives. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Huang W, Zhou D, Lee J, Sun J, Zhang S, Xu H, Luo J, Liu X. Ag-decorated GaN for high-efficiency photoreduction of carbon dioxide into tunable syngas under visible light. NANOTECHNOLOGY 2021; 32:505722. [PMID: 34547735 DOI: 10.1088/1361-6528/ac28d7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Visible light-driven photoreduction of CO2and H2O to tunable syngas is an appealing strategy for both artificial carbon neutral and Fischer-Tropsch processes. However, the development of photocatalysts with high activity and selectivity remains challenging. For this case, we here design a hybrid catalyst, synthesized byin situdeposition of Ag crystals on GaN nanobelts, that delivers a tunable H2/CO ratio between 0.5 and 3 under visible light irradiation (λ > 400 nm). The obtained photocatalyst delivers a maximal turnover frequency value of 3.85 h-1and a corresponding yield rate of 2.12 mmol h-1g-1for CO production, while the photocatalytic activity keeps stable during five cycling tests. Additionally, syngas can be detected even atλ > 600 nm. Experiments and mechanistic studies reveal that the existence of Ag crystals not only extends the light absorption region but also promotes the charge transfer efficiency, and thereby leading to a photocatalytic improvement. Accordingly, the present work affords an opportunity for developing an efficient photo-driven system by using solar energy to alleviate CO2emissions.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Dejin Zhou
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
- Wuxi Research Institute of Applied Technologies, Tsinghua University, Wuxi 214072, People's Republic of China
| | - John Lee
- Qianxun Spatial Intelligence Inc., Shanghai 200438, People's Republic of China
| | - Jiaqiang Sun
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, People's Republic of China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Hong Xu
- Wuxi Research Institute of Applied Technologies, Tsinghua University, Wuxi 214072, People's Republic of China
| | - Jun Luo
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xijun Liu
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| |
Collapse
|
27
|
Tian L, Xin Q, Zhao C, Xie G, Akram MZ, Wang W, Ma R, Jia X, Guo B, Gong JR. Nanoarray Structures for Artificial Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006530. [PMID: 33896110 DOI: 10.1002/smll.202006530] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/25/2021] [Indexed: 05/14/2023]
Abstract
Conversion and storage of solar energy into fuels and chemicals by artificial photosynthesis has been considered as one of the promising methods to address the global energy crisis. However, it is still far from the practical applications on a large scale. Nanoarray structures that combine the advantages of nanosize and array alignment have demonstrated great potential to improve solar energy conversion efficiency, stability, and selectivity. This article provides a comprehensive review on the utilization of nanoarray structures in artificial photosynthesis of renewable fuels and high value-added chemicals. First, basic principles of solar energy conversion and superiorities of using nanoarray structures in this field are described. Recent research progress on nanoarray structures in both abiotic and abiotic-biotic hybrid systems is then outlined, highlighting contributions to light absorption, charge transport and transfer, and catalytic reactions (including kinetics and selectivity). Finally, conclusions and outlooks on future research directions of nanoarray structures for artificial photosynthesis are presented.
Collapse
Affiliation(s)
- Liangqiu Tian
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Qi Xin
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chang Zhao
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Guancai Xie
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Muhammad Zain Akram
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Wenrong Wang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Renping Ma
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xinrui Jia
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Beidou Guo
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| | - Jian Ru Gong
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of CAS, Beijing, 100049, P. R. China
| |
Collapse
|
28
|
Fan Y, Song X, Ai H, Li W, Zhao M. Highly Efficient Photocatalytic CO 2 Reduction in Two-Dimensional Ferroelectric CuInP 2S 6 Bilayers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34486-34494. [PMID: 34282882 DOI: 10.1021/acsami.1c10983] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photocatalytic CO2 conversion into reproducible chemical fuels (e.g., CO, CH3OH, or CH4) provides a promising scheme to solve the increasing environmental problems and energy demands simultaneously. However, the efficiency is severely restricted by the high overpotential of the CO2 reduction reaction (CO2RR) and rapid recombination of photoexcited carriers. Here, we propose that a novel type-II photocatalytic mechanism based on two-dimensional (2D) ferroelectric multilayers would be ideal for addressing these issues. Using density-functional theory and nonadiabatic molecular dynamics calculations, we find that the ferroelectric CuInP2S6 bilayers exhibit a staggered band structure induced by the vertical intrinsic electric fields. Different from the traditional type-II band alignment, the unique structure of the CuInP2S6 bilayer not only effectively suppresses the recombination of photogenerated electron-hole (e-h) pairs but also produces a sufficient photovoltage to drive the CO2RR. The predicted recombination time of photogenerated e-h pairs, 1.03 ns, is much longer than the transferring times of photoinduced electrons and holes, 5.45 and 0.27 ps, respectively. Moreover, the overpotential of the CO2RR will decrease by substituting an S atom with a Cu atom, making the redox reaction proceed spontaneously under solar radiation. The solar-to-fuel efficiency with an upper limit of 8.40% is achieved in the CuInP2S6 bilayer and can be further improved to 32.57% for the CuInP2S6 five-layer. Our results indicate that this novel type-II photocatalytic mechanism would be a promising way to achieve highly efficient photocatalytic CO2 conversion based on the 2D ferroelectric multilayers.
Collapse
Affiliation(s)
- Yingcai Fan
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiaohan Song
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Haoqiang Ai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Weifeng Li
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Mingwen Zhao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- School of Physics and Electrical Engineering, Kashgar University, Kashi 844006, China
| |
Collapse
|
29
|
Wang S, Bai X, Li Q, Ouyang Y, Shi L, Wang J. Selective visible-light driven highly efficient photocatalytic reduction of CO 2 to C 2H 5OH by two-dimensional Cu 2S monolayers. NANOSCALE HORIZONS 2021; 6:661-668. [PMID: 34046657 DOI: 10.1039/d1nh00196e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solar-driven highly-efficient photocatalytic reduction of CO2 into value-added fuels has been regarded as a promising strategy to assuage the current global warming and energy crisis, but developing highly product-selective, long-term stable and low-cost photocatalysts for C2 production remains a grand challenge. Herein, we demonstrate that two-dimensional β- and δ-phase Cu2S monolayers are promising photocatalysts for the reduction of CO2 into C2H5OH. The calculated potential-limiting steps for the CO2 reduction reaction (CO2RR) are less than 0.50 eV, while those for the hydrogen evolution reaction are as high as 1.53 and 0.87 eV. Most strikingly, the C-C coupling only needs to overcome an ultra-low kinetic barrier of ∼0.30 eV, half of that on the Cu surface, indicating that they can boost the C2H5OH conversion efficiency greatly. Besides, these catalysts also exhibit satisfactory band edge positions and suitable visible light absorption, rendering them ideal for the visible light driven CO2RR. Our work not only provides a promising photocatalyst for achieving the efficient and selective CO2RR, but also brings new opportunities for advanced sustainable C2H5OH product.
Collapse
Affiliation(s)
- Shiyan Wang
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Xiaowan Bai
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Qiang Li
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Yixin Ouyang
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Li Shi
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China.
| |
Collapse
|
30
|
A coating strategy to achieve effective local charge separation for photocatalytic coevolution. Proc Natl Acad Sci U S A 2021; 118:2023552118. [PMID: 33558245 DOI: 10.1073/pnas.2023552118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Semiconductors of narrow bandgaps and high quantum efficiency have not been broadly utilized for photocatalytic coevolution of H2 and O2 via water splitting. One prominent issue is to develop effective protection strategies, which not only mitigate photocorrosion in an aqueous environment but also facilitate charge separation. Achieving local charge separation is especially challenging when these reductive and oxidative sites are placed only nanometers apart compared to two macroscopically separated electrodes in a photoelectrochemical cell. Additionally, the driving force of charge separation, namely the energetic difference in the barrier heights across the two type of sites, is small. Herein, we used conformal coatings attached by nanoscale cocatalysts to transform two classes of tunable bandgap semiconductors, i.e., CdS and GaInP2, into stable and efficient photocatalysts. We used hydrogen evolution and redox-mediator oxidation for model study, and further constructed a two-compartment solar fuel generator that separated stoichiometric H2 and O2 products. Distinct from the single charge-transfer direction reported for conventional protective coatings, the coating herein allows for concurrent injection of photoexcited electrons and holes through the coating. The energetic difference between reductive and oxidative catalytic sites was regulated by selectivity and local kinetics. Accordingly, the charge separation behavior was validated using numerical simulations. Following this design principle, the CdS/TiO2/Rh@CrOx photocatalysts evolved H2 while oxidizing reversible polysulfide redox mediators at a maximum rate of 90.6 μmol⋅h-1⋅cm-2 by stacking three panels. Powered by a solar cell, the redox-mediated solar water-splitting reactor regenerated the polysulfide repeatedly and achieved solar-to-hydrogen efficiency of 1.7%.
Collapse
|
31
|
Le QV, Nguyen VH, Nguyen TD, Sharma A, Rahman G, Nguyen DLT. Light-driven reduction of carbon dioxide: Altering the reaction pathways and designing photocatalysts toward value-added and renewable fuels. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116547] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Fast operando spectroscopy tracking in situ generation of rich defects in silver nanocrystals for highly selective electrochemical CO 2 reduction. Nat Commun 2021; 12:660. [PMID: 33510153 PMCID: PMC7844229 DOI: 10.1038/s41467-021-20960-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/05/2021] [Indexed: 01/31/2023] Open
Abstract
Electrochemical CO2 reduction (ECR) is highly attractive to curb global warming. The knowledge on the evolution of catalysts and identification of active sites during the reaction is important, but still limited. Here, we report an efficient catalyst (Ag-D) with suitable defect concentration operando formed during ECR within several minutes. Utilizing the powerful fast operando X-ray absorption spectroscopy, the evolving electronic and crystal structures are unraveled under ECR condition. The catalyst exhibits a ~100% faradaic efficiency and negligible performance degradation over a 120-hour test at a moderate overpotential of 0.7 V in an H-cell reactor and a current density of ~180 mA cm-2 at -1.0 V vs. reversible hydrogen electrode in a flow-cell reactor. Density functional theory calculations indicate that the adsorption of intermediate COOH could be enhanced and the free energy of the reaction pathways could be optimized by an appropriate defect concentration, rationalizing the experimental observation.
Collapse
|
33
|
Li Y, Hui D, Sun Y, Wang Y, Wu Z, Wang C, Zhao J. Boosting thermo-photocatalytic CO 2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators. Nat Commun 2021; 12:123. [PMID: 33402672 PMCID: PMC7785748 DOI: 10.1038/s41467-020-20444-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Natural photosynthesis proceeded by sequential water splitting and CO2 reduction reactions is an efficient strategy for CO2 conversion. Here, mimicking photosynthesis to boost CO2-to-CO conversion is achieved by using plasmonic Bi as an electron-proton-transfer mediator. Electroreduction of H2O with a Bi electrode simultaneously produces O2 and hydrogen-stored Bi (Bi-Hx). The obtained Bi-Hx is subsequently used to generate electron-proton pairs under light irradiation to reduce CO2 to CO; meanwhile, Bi-Hx recovers to Bi, completing the catalytic cycle. This two-step strategy avoids O2 separation and enables a CO production efficiency of 283.8 μmol g-1 h-1 without sacrificial reagents and cocatalysts, which is 9 times that on pristine Bi in H2 gas. Theoretical/experimental studies confirm that such excellent activity is attributed to the formed Bi-Hx intermediate that improves charge separation and reduces reaction barriers in CO2 reduction.
Collapse
Affiliation(s)
- Yingxuan Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Danping Hui
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuqing Sun
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Zhijian Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
34
|
Yuan R, Luo Q, Zhang Z, Zheng Y, Feng D, Wang D, Hu YL. Orientation-tunable In xGa 1−xN nanowires with a high density of basal stacking faults for photoelectrochemical/photocatalytic applications. CrystEngComm 2021. [DOI: 10.1039/d1ce00070e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
InxGa1−xN nanowires grew along the m-direction (A-NWs) or semipolar-direction (B-NWs) with the presence of a high density of BSFs.
Collapse
Affiliation(s)
- Ronghuo Yuan
- Fujian Provincial Key Laboratory of Functional Materials and Applications
- School of Materials Science and Engineering
- Xiamen University of Technology
- Xiamen
- P.R. China
| | - Qingyuan Luo
- TJU-NIMS International Collaboration Laboratory
- School of Materials Science and Engineering
- Tianjin University
- Tianjin
- China
| | - Zenghui Zhang
- Fujian Provincial Key Laboratory of Functional Materials and Applications
- School of Materials Science and Engineering
- Xiamen University of Technology
- Xiamen
- P.R. China
| | - Yufan Zheng
- Fujian Provincial Key Laboratory of Functional Materials and Applications
- School of Materials Science and Engineering
- Xiamen University of Technology
- Xiamen
- P.R. China
| | - Dengtang Feng
- Fujian Provincial Key Laboratory of Functional Materials and Applications
- School of Materials Science and Engineering
- Xiamen University of Technology
- Xiamen
- P.R. China
| | - Defa Wang
- TJU-NIMS International Collaboration Laboratory
- School of Materials Science and Engineering
- Tianjin University
- Tianjin
- China
| | - Yan-Ling Hu
- Fujian Provincial Key Laboratory of Functional Materials and Applications
- School of Materials Science and Engineering
- Xiamen University of Technology
- Xiamen
- P.R. China
| |
Collapse
|
35
|
Mateo D, Cerrillo JL, Durini S, Gascon J. Fundamentals and applications of photo-thermal catalysis. Chem Soc Rev 2021; 50:2173-2210. [DOI: 10.1039/d0cs00357c] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Photo-thermal catalysis has recently emerged as an alternative route to drive chemical reactions using light as an energy source.
Collapse
Affiliation(s)
- Diego Mateo
- King Abdullah University of Science and Technology
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- Thuwal 23955-6900
- Saudi Arabia
| | - Jose Luis Cerrillo
- King Abdullah University of Science and Technology
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- Thuwal 23955-6900
- Saudi Arabia
| | - Sara Durini
- King Abdullah University of Science and Technology
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- Thuwal 23955-6900
- Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- Thuwal 23955-6900
- Saudi Arabia
| |
Collapse
|
36
|
Chen P, Lei B, Dong X, Wang H, Sheng J, Cui W, Li J, Sun Y, Wang Z, Dong F. Rare-Earth Single-Atom La-N Charge-Transfer Bridge on Carbon Nitride for Highly Efficient and Selective Photocatalytic CO 2 Reduction. ACS NANO 2020; 14:15841-15852. [PMID: 33142059 DOI: 10.1021/acsnano.0c07083] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Photocatalytic CO2 conversion into valuable solar fuels is highly appealing, but lack of directional charge-transfer channel and insufficient active sites resulted in limited CO2 reduction efficiency and selectivity for most photocatalytic systems. Herein, we designed and fabricated rare-earth La single-atoms on carbon nitride with La-N charge-transfer bridge as the active center for photocatalytic CO2 reaction. The formation of La single-atoms was certified by spherical aberration-corrected HAADF-STEM, STEM-EELS, EXAFS, and theoretical calculations. The electronic structure of the La-N bridge enables a high CO-yielding rate of 92 μmol·g-1·h-1 and CO selectivity of 80.3%, which is superior to most g-C3N4-based photocatalytic CO2 reductions. The CO production rate remained nearly constant under light irradiation for five cycles of 20 h, indicating its stability. The closely combined experimental and DFT calculations clearly elucidated that the variety of electronic states induced by 4f and 5d orbitals of the La single atom and the p-d orbital hybridization of La-N atoms enabled the formation of charge-transfer channel. The La-N charge bridges are found to function as the key active center for CO2 activation, rapid COOH* formation, and CO desorption. The present work would provide a mechanistic understanding into the utilization of rare-earth single-atoms in photocatalysis for solar energy conversion.
Collapse
Affiliation(s)
- Peng Chen
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- The Center of New Energy Materials and Technology, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Ben Lei
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xing'an Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hong Wang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianping Sheng
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wen Cui
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- The Center of New Energy Materials and Technology, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Jieyuan Li
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhiming Wang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
37
|
Wang H, Rong H, Wang D, Li X, Zhang E, Wan X, Bai B, Xu M, Liu J, Liu J, Chen W, Zhang J. Highly Selective Photoreduction of CO 2 with Suppressing H 2 Evolution by Plasmonic Au/CdSe-Cu 2 O Hierarchical Nanostructures under Visible Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000426. [PMID: 32270917 DOI: 10.1002/smll.202000426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 05/21/2023]
Abstract
Here, the photocatalytic CO2 reduction reaction (CO2 RR) with the selectivity of carbon products up to 100% is realized by completely suppressing the H2 evolution reaction under visible light (λ > 420 nm) irradiation. To target this, plasmonic Au/CdSe dumbbell nanorods enhance light harvesting and produce a plasmon-enhanced charge-rich environment; peripheral Cu2 O provides rich active sites for CO2 reduction and suppresses the hydrogen generation to improve the selectivity of carbon products. The middle CdSe serves as a bridge to transfer the photocharges. Based on synthesizing these Au/CdSe-Cu2 O hierarchical nanostructures (HNSs), efficient photoinduced electron/hole (e- /h+ ) separation and 100% of CO selectivity can be realized. Also, the 2e- /2H+ products of CO can be further enhanced and hydrogenated to effectively complete 8e- /8H+ reduction of CO2 to methane (CH4 ), where a sufficient CO concentration and the proton provided by H2 O reduction are indispensable. Under the optimum condition, the Au/CdSe-Cu2 O HNSs display high photocatalytic activity and stability, where the stable gas generation rates are 254 and 123 µmol g-1 h-1 for CO and CH4 over a 60 h period.
Collapse
Affiliation(s)
- Hongzhi Wang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Dong Wang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xinyuan Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Erhuan Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaodong Wan
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Bing Bai
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Meng Xu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiajia Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jia Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
38
|
Liang J, Chen D, Yao X, Zhang K, Qu F, Qin L, Huang Y, Li J. Recent Progress and Development in Inorganic Halide Perovskite Quantum Dots for Photoelectrochemical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903398. [PMID: 31583803 DOI: 10.1002/smll.201903398] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Inorganic halide perovskite quantum dots (IHPQDs) have recently emerged as a new class of optoelectronic nanomaterials that can outperform the existing hybrid organometallic halide perovskite (OHP), II-VI and III-V groups semiconductor nanocrystals, mainly due to their relatively high stability, excellent photophysical properties, and promising applications in wide-ranging and diverse fields. In particular, IHPQDs have attracted much recent attention in the field of photoelectrochemistry, with the potential to harness their superb optical and charge transport properties as well as spectacular characteristics of quantum confinement effect for opening up new opportunities in next-generation photoelectrochemical (PEC) systems. Over the past few years, numerous efforts have been made to design and prepare IHPQD-based materials for a wide range of applications in photoelectrochemistry, ranging from photocatalytic degradation, photocatalytic CO2 reduction and PEC sensing, to photovoltaic devices. In this review, the recent advances in the development of IHPQD-based materials are summarized from the standpoint of photoelectrochemistry. The prospects and further developments of IHPQDs in this exciting field are also discussed.
Collapse
Affiliation(s)
- Junhui Liang
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Da Chen
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Xin Yao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Kaixiang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Laishun Qin
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Yuexiang Huang
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
39
|
Utilization of La<sub>2</sub>O<sub>3</sub> as a Support of Ga<sub>2</sub>O<sub>3</sub> Photocatalyst to Enhance Activity on CO<sub>2</sub> Reduction with Water. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2020. [DOI: 10.1380/ejssnt.2020.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Liu Y, Guo L. On factors limiting the performance of photoelectrochemical CO 2 reduction. J Chem Phys 2020; 152:100901. [PMID: 32171218 DOI: 10.1063/1.5141390] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The photoelectrochemical CO2 reduction reaction (PEC-CO2RR) is a promising artificial photosynthetic system for storing solar energy as the energy of chemical bonds and stabilizing the atmospheric CO2 level. An applicable PEC-CO2RR is expected to have broad light absorption, high selectivity to a single product, and high solar to fuel efficiency. However, the PEC-CO2RR still faces challenges from complex reaction pathways, obstructed mass transfer, and large photovoltage requirements. The goal of this perspective is to point out some of the limitations of PEC-CO2RR to a practical application. In brief, we discuss the basic concepts of PEC-CO2RR and summarize state-of-the-art progress. Moreover, we highlight the remaining challenges to both science and engineering and propose the key steps in developing a fully functional PEC-CO2RR system. Finally, an ideal PEC-CO2RR system is proposed for future studies, which is essentially wireless and combines the advantages of minimized polarization loss and broad light absorption.
Collapse
Affiliation(s)
- Ya Liu
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Liejin Guo
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
41
|
Gaiser HF, Popescu R, Gerthsen D, Feldmann C. Ionic-liquid-based synthesis of GaN nanoparticles. Chem Commun (Camb) 2020; 56:2312-2315. [PMID: 31989136 DOI: 10.1039/c9cc09133e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GaN nanoparticles, 3-8 nm in diameter, are prepared by a microwave-assisted reaction of GaCl3 and KNH2 in ionic liquids. Instantaneously after the liquid-phase synthesis, the β-GaN nanoparticles are single-crystalline. The band gap is blue-shifted by 0.6 eV in comparison to bulk-GaN indicating quantum confinement effects. The GaN nanoparticles show intense green emission with a quantum yield of 55 ± 3%.
Collapse
Affiliation(s)
- Hannah F Gaiser
- Institut für Anorganische Chemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany.
| | - Radian Popescu
- Laboratorium für Elektronenmikroskopie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 7, 76131 Karlsruhe, Germany.
| | - Dagmar Gerthsen
- Laboratorium für Elektronenmikroskopie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 7, 76131 Karlsruhe, Germany.
| | - Claus Feldmann
- Institut für Anorganische Chemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
42
|
Abstract
Among all greenhouse gases, CO2 is considered the most potent and the largest contributor to global warming. In this review, photocatalysis is presented as a promising technology to address the current global concern of industrial CO2 emissions. Photocatalysis utilizes a semiconductor material under renewable solar energy to reduce CO2 into an array of high-value fuels including methane, methanol, formaldehyde and formic acid. Herein, the kinetic and thermodynamic principles of CO2 photoreduction are thoroughly discussed and the CO2 reduction mechanism and pathways are described. Methods to enhance the adsorption of CO2 on the surface of semiconductors are also presented. Due to its efficient photoactivity, high stability, low cost, and safety, the semiconductor TiO2 is currently being widely investigated for its photocatalytic ability in reducing CO2 when suitably modified. The recent TiO2 synthesis and modification strategies that may be employed to enhance the efficiency of the CO2 photoreduction process are described. These modification techniques, including metal deposition, metal/non-metal doping, carbon-based material loading, semiconductor heterostructures, and dispersion on high surface area supports, aim to improve the light absorption, charge separation, and active surface of TiO2 in addition to increasing product yield and selectivity.
Collapse
|
43
|
Wang ZJ, Song H, Liu H, Ye J. Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects. Angew Chem Int Ed Engl 2020; 59:8016-8035. [PMID: 31309678 DOI: 10.1002/anie.201907443] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 11/06/2022]
Abstract
Enormous efforts have been devoted to the reduction of carbon dioxide (CO2 ) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo-mediated activity/selectivity, and mechanism studies in photo-thermo CO2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO2 .
Collapse
Affiliation(s)
- Zhou-Jun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hui Song
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan
| | - Huimin Liu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,TJU-NIMS International Collaboration Laboratory, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.,School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan.,TJU-NIMS International Collaboration Laboratory, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| |
Collapse
|
44
|
Wang Z, Song H, Liu H, Ye J. Kopplung von Solarenergie und Wärmeenergie zur Kohlendioxidreduktion: Aktueller Stand und Perspektiven. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201907443] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhou‐jun Wang
- State Key Laboratory of Chemical Resource EngineeringBeijing Key Laboratory of Energy Environmental CatalysisBeijing University of Chemical Technology Beijing 100029 P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Hui Song
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Chemical Sciences and EngineeringHokkaido University Sapporo 060-0814 Japan
| | - Huimin Liu
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- TJU-NIMS International Collaboration LaboratorySchool of Material Science and EngineeringTianjin University Tianjin 300072 P. R. China
- School of Chemical and Biomolecular EngineeringThe University of Sydney Sydney NSW 2006 Australien
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Chemical Sciences and EngineeringHokkaido University Sapporo 060-0814 Japan
- TJU-NIMS International Collaboration LaboratorySchool of Material Science and EngineeringTianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| |
Collapse
|
45
|
Li XB, Xin ZK, Xia SG, Gao XY, Tung CH, Wu LZ. Semiconductor nanocrystals for small molecule activation via artificial photosynthesis. Chem Soc Rev 2020; 49:9028-9056. [DOI: 10.1039/d0cs00930j] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The protocol of artificial photosynthesis using semiconductor nanocrystals shines light on green, facile and low-cost small molecule activation to produce solar fuels and value-added chemicals.
Collapse
Affiliation(s)
- Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Zhi-Kun Xin
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Shu-Guang Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xiao-Ya Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
46
|
Construction of titanium dioxide/cadmium sulfide heterojunction on carbon fibers as weavable photocatalyst for eliminating various contaminants. J Colloid Interface Sci 2019; 561:307-317. [PMID: 31767392 DOI: 10.1016/j.jcis.2019.10.105] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 11/22/2022]
Abstract
Semiconductor heterojunction powders have exhibited the enhanced photocatalytic activities, but their practical applications have been limited due to their poor recycling performance from flowing wastewater. To solve these problems, with carbon fibers (CFs) as the fixing substrate, we constructed TiO2/CdS heterojunction as a model on CF surface by utilizing a hydrothermal-chemical bath deposition method. CFs/TiO2/CdS bundles display a wide photoabsorption with two photoabsorption edges (~410 and 520 nm). Furthermore, CFs/TiO2/CdS bundles can be weaved into macroscopical cloth (such as weight: 0.1 g, area: 4 × 4 cm2) which have considerable photocurrent density of 5.75 × 10-6 A/cm2. Under visible light irradiation (λ > 400 nm), macroscopic CFs/TiO2/CdS cloth can degrade 95.44% methylene blue (MB), 64.95% acid orange 7 (AO7), 91.37% tetracycline hydrochloride (TC) and remove 90.70% hexavalent chromium (Cr(VI)) after 120 min, higher than those by CFs/CdS (43.42% MB, 37.42% AO7, 31.76% TC and 30.45% Cr(VI)) or CFs/TiO2 (12.84% MB, 10.48% AO7, 11.85% TC and 15.58% Cr(VI)). Thus, CFs/TiO2/CdS can act as a weavable and efficient photocatalyst for eliminating various pollutants from wastewater.
Collapse
|
47
|
|
48
|
Poudyal S, Parker M, Laursen S. Control of Selectivity through a New Hydrogen-Transfer Mechanism in Photocatalytic Reduction Reactions: Electronically Relaxed Neutral H and the Role of Electron-Phonon Coupling. J Phys Chem Lett 2019; 10:4603-4608. [PMID: 31356085 DOI: 10.1021/acs.jpclett.9b01614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controlling the fate of hydrogen in photocatalytic synthesis reactions has been an ongoing challenge in CO2 reduction by H2O and nitrogen fixation efforts. Our studies have identified catalysts (SiC) that exhibit dramatically improved selectivity toward hydrogenation and a photocatalytically active ground-state neutral H that is transferred via vibrational excitation through electronic-vibrational coupling with excited states. This new species and mechanism have been directly connected to the fate of H by comparing GaN and SiC and purposefully manipulated over a single catalyst (SiC) to illustrate generality. Studies included surface reaction modeling using density functional theory (DFT), experimental performance, 1H NMR spectroscopy, and deuterium kinetic isotope effect. The discovery of this mechanism may have considerable impact on the direction of photocatalytic synthesis, the understanding of the coupling of thermal and photoelectrochemical reaction steps, and electronic-vibrational spectrum coupling in energy sequestration.
Collapse
Affiliation(s)
- Samiksha Poudyal
- Department of Chemical and Biomolecular Engineering , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Morghan Parker
- Department of Chemical and Biomolecular Engineering , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Siris Laursen
- Department of Chemical and Biomolecular Engineering , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
49
|
Affiliation(s)
- Jiao Deng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yude Su
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Dong Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
50
|
Zhao S, Wang R, Chu S, Mi Z. Molecular Beam Epitaxy of III-Nitride Nanowires: Emerging Applications From Deep-Ultraviolet Light Emitters and Micro-LEDs to Artificial Photosynthesis. IEEE NANOTECHNOLOGY MAGAZINE 2019. [DOI: 10.1109/mnano.2019.2891370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|