1
|
Pineda M, Stamatakis M. Kinetic Monte Carlo simulations for heterogeneous catalysis: Fundamentals, current status, and challenges. J Chem Phys 2022; 156:120902. [DOI: 10.1063/5.0083251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Kinetic Monte Carlo (KMC) simulations in combination with first-principles (1p)-based calculations are rapidly becoming the gold-standard computational framework for bridging the gap between the wide range of length scales and time scales over which heterogeneous catalysis unfolds. 1p-KMC simulations provide accurate insights into reactions over surfaces, a vital step toward the rational design of novel catalysts. In this Perspective, we briefly outline basic principles, computational challenges, successful applications, as well as future directions and opportunities of this promising and ever more popular kinetic modeling approach.
Collapse
Affiliation(s)
- M. Pineda
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - M. Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
2
|
Achievements and Expectations in the Field of Computational Heterogeneous Catalysis in an Innovation Context. Top Catal 2021. [DOI: 10.1007/s11244-021-01489-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Han Y, Zhang H, Yu Y, Liu Z. In Situ Characterization of Catalysis and Electrocatalysis Using APXPS. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04251] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong Han
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Hui Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
4
|
Zhou B, Huang E, Almeida R, Gurses S, Ungar A, Zetterberg J, Kulkarni A, Kronawitter CX, Osborn DL, Hansen N, Frank JH. Near-Surface Imaging of the Multicomponent Gas Phase above a Silver Catalyst during Partial Oxidation of Methanol. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bo Zhou
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Erxiong Huang
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Raybel Almeida
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Sadi Gurses
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Alexander Ungar
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Johan Zetterberg
- Division of Combustion Physics, Lund University, Lund SE-221 00, Sweden
| | - Ambarish Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Coleman X. Kronawitter
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - David L. Osborn
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Jonathan H. Frank
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
5
|
Kovačič Ž, Likozar B, Huš M. Photocatalytic CO2 Reduction: A Review of Ab Initio Mechanism, Kinetics, and Multiscale Modeling Simulations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02557] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Žan Kovačič
- National Institute of Chemistry, Department of Chemical Reaction Engineering, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, European Union
| | - Blaž Likozar
- National Institute of Chemistry, Department of Chemical Reaction Engineering, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, European Union
| | - Matej Huš
- National Institute of Chemistry, Department of Chemical Reaction Engineering, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, European Union
- Association for Technical Culture of Slovenia (ZOTKS), Zaloška 65, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Kurilovich AA, Alexander CT, Pazhetnov EM, Stevenson KJ. Active learning-based framework for optimal reaction mechanism selection from microkinetic modeling: a case study of electrocatalytic oxygen reduction reaction on carbon nanotubes. Phys Chem Chem Phys 2020; 22:4581-4591. [PMID: 32048660 DOI: 10.1039/c9cp06190h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The elucidation of complex electrochemical reaction mechanisms requires advanced models with many intermediate reaction steps, which are governed by a large number of parameters like reaction rate constants and charge transfer coefficients. Overcomplicated models introduce high uncertainty in the choice of the parameters and cannot be used to obtain meaningful insights on the reaction pathway. We describe a new framework of optimal reaction mechanism selection based on the mean-field microkinetic modeling approach (MF-MKM) and adaptive sampling of model parameters. The optimal model is selected to provide both the accurate fitting of experimental data within the experimental error and low uncertainty of model parameters choice. Generally, this approach can be applied for any complex heterogeneous electrochemical reaction. We use the "2e-" electrocatalytic oxygen reduction reaction (ORR) on carbon nanotubes (CNTs) as a representative example of a sufficiently complex reaction. Rotating disk electrode (RDE) experimental data for both ORR in O2-saturated 0.1 M KOH solution and hydrogen peroxide oxidation/reduction reaction (HPRR/HPOR) in Ar-purged 0.1 M KOH solution with different HO2- concentrations were used to show the dependence of the model parameters uniqueness on the completeness of the experimental dataset. It is demonstrated that the optimal reaction mechanism for ORR on CNT and available experimental data consists of O2 adsorption step on the electrode surface and effective step of two-electron reduction to HO2- combined with its desorption from the electrode. The low uncertainty of estimated model parameters is provided only within the 2-step model being applied to the full available experimental dataset. The assessment of elementary step mechanisms on electro-catalytic materials including carbon-based electrodes requires more diverse experimental data and/or higher precision of experimental measurements to facilitate more precise microkinetic modeling of more complex reaction mechanisms.
Collapse
Affiliation(s)
- Aleksandr A Kurilovich
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow, 143026, Russian Federation.
| | | | | | | |
Collapse
|
7
|
Inverse temperature hysteresis and self-sustained oscillations in CO oxidation over Pd at elevated pressures of reaction mixture: Experiment and mathematical modeling. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Li Q, Ouyang Y, Lu S, Bai X, Zhang Y, Shi L, Ling C, Wang J. Perspective on theoretical methods and modeling relating to electro-catalysis processes. Chem Commun (Camb) 2020; 56:9937-9949. [DOI: 10.1039/d0cc02998j] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Theoretical methods and models for the description of thermodynamics and kinetics in electro-catalysis, including solvent effects, externally applied potentials, and many-body interactions, are discussed.
Collapse
Affiliation(s)
- Qiang Li
- School of Physics
- Southeast University
- Nanjing 211189
- China
| | - Yixin Ouyang
- School of Physics
- Southeast University
- Nanjing 211189
- China
| | - Shuaihua Lu
- School of Physics
- Southeast University
- Nanjing 211189
- China
| | - Xiaowan Bai
- School of Physics
- Southeast University
- Nanjing 211189
- China
| | - Yehui Zhang
- School of Physics
- Southeast University
- Nanjing 211189
- China
| | - Li Shi
- School of Physics
- Southeast University
- Nanjing 211189
- China
| | - Chongyi Ling
- School of Physics
- Southeast University
- Nanjing 211189
- China
| | - Jinlan Wang
- School of Physics
- Southeast University
- Nanjing 211189
- China
| |
Collapse
|
9
|
Liu H, Zakhtser A, Naitabdi A, Rochet F, Bournel F, Salzemann C, Petit C, Gallet JJ, Jie W. Operando Near-Ambient Pressure X-ray Photoelectron Spectroscopy Study of the CO Oxidation Reaction on the Oxide/Metal Model Catalyst ZnO/Pt(111). ACS Catal 2019. [DOI: 10.1021/acscatal.9b02883] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hang Liu
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, 4 Place Jussieu, 75005 Paris, France
- School of Materials Science and Engineering, Northwestern Polytechnical University, 127, Youyi Road, 710072 Xi’an, Shaanxi, China
| | - Alter Zakhtser
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, 4 Place Jussieu, 75005 Paris, France
- Sorbonne Université, CNRS, MONARIS, UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Ahmed Naitabdi
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, 4 Place Jussieu, 75005 Paris, France
| | - François Rochet
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, 4 Place Jussieu, 75005 Paris, France
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| | - Fabrice Bournel
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, 4 Place Jussieu, 75005 Paris, France
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| | - Caroline Salzemann
- Sorbonne Université, CNRS, MONARIS, UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Christophe Petit
- Sorbonne Université, CNRS, MONARIS, UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Jean-Jacques Gallet
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, 4 Place Jussieu, 75005 Paris, France
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette, France
| | - Wanqi Jie
- School of Materials Science and Engineering, Northwestern Polytechnical University, 127, Youyi Road, 710072 Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Bruix A, Margraf JT, Andersen M, Reuter K. First-principles-based multiscale modelling of heterogeneous catalysis. Nat Catal 2019. [DOI: 10.1038/s41929-019-0298-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Matera S, Schneider WF, Heyden A, Savara A. Progress in Accurate Chemical Kinetic Modeling, Simulations, and Parameter Estimation for Heterogeneous Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01234] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sebastian Matera
- Fachbereich Mathematik and Informatik, Freie Universität, 14195 Berlin, Germany
| | - William F. Schneider
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Andreas Heyden
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Aditya Savara
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
12
|
Combining Planar Laser-Induced Fluorescence with Stagnation Point Flows for Small Single-Crystal Model Catalysts: CO Oxidation on a Pd(100). Catalysts 2019. [DOI: 10.3390/catal9050484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A stagnation flow reactor has been designed and characterized for both experimental and modeling studies of single-crystal model catalysts in heterogeneous catalysis. Using CO oxidation over a Pd(100) single crystal as a showcase, we have employed planar laser-induced fluorescence (PLIF) to visualize the CO2 distribution over the catalyst under reaction conditions and subsequently used the 2D spatially resolved gas phase data to characterize the stagnation flow reactor. From a comparison of the experimental data and the stagnation flow model, it was found that characteristic stagnation flow can be achieved with the reactor. Furthermore, the combined stagnation flow/PLIF/modeling approach makes it possible to estimate the turnover frequency (TOF) of the catalytic surface from the measured CO2 concentration profiles above the surface and to predict the CO2, CO and O2 concentrations at the surface under reaction conditions.
Collapse
|
13
|
Mehar V, Kim M, Shipilin M, Van den Bossche M, Gustafson J, Merte LR, Hejral U, Grönbeck H, Lundgren E, Asthagiri A, Weaver JF. Understanding the Intrinsic Surface Reactivity of Single-Layer and Multilayer PdO(101) on Pd(100). ACS Catal 2018. [DOI: 10.1021/acscatal.8b02191] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vikram Mehar
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Minkyu Kim
- William G. Lowrie Chemical & Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mikhail Shipilin
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - Maxime Van den Bossche
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Johan Gustafson
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - Lindsay R. Merte
- Materials Science and Applied Mathematics, Malmö University, SE-205 06 Malmö, Sweden
| | - Uta Hejral
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Edvin Lundgren
- Division of Synchrotron Radiation Research, Lund University, SE-22100 Lund, Sweden
| | - Aravind Asthagiri
- William G. Lowrie Chemical & Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jason F. Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
14
|
Döpking S, Plaisance CP, Strobusch D, Reuter K, Scheurer C, Matera S. Addressing global uncertainty and sensitivity in first-principles based microkinetic models by an adaptive sparse grid approach. J Chem Phys 2018; 148:034102. [PMID: 29352783 DOI: 10.1063/1.5004770] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the last decade, first-principles-based microkinetic modeling has been developed into an important tool for a mechanistic understanding of heterogeneous catalysis. A commonly known, but hitherto barely analyzed issue in this kind of modeling is the presence of sizable errors from the use of approximate Density Functional Theory (DFT). We here address the propagation of these errors to the catalytic turnover frequency (TOF) by global sensitivity and uncertainty analysis. Both analyses require the numerical quadrature of high-dimensional integrals. To achieve this efficiently, we utilize and extend an adaptive sparse grid approach and exploit the confinement of the strongly non-linear behavior of the TOF to local regions of the parameter space. We demonstrate the methodology on a model of the oxygen evolution reaction at the Co3O4 (110)-A surface, using a maximum entropy error model that imposes nothing but reasonable bounds on the errors. For this setting, the DFT errors lead to an absolute uncertainty of several orders of magnitude in the TOF. We nevertheless find that it is still possible to draw conclusions from such uncertain models about the atomistic aspects controlling the reactivity. A comparison with derivative-based local sensitivity analysis instead reveals that this more established approach provides incomplete information. Since the adaptive sparse grids allow for the evaluation of the integrals with only a modest number of function evaluations, this approach opens the way for a global sensitivity analysis of more complex models, for instance, models based on kinetic Monte Carlo simulations.
Collapse
Affiliation(s)
- Sandra Döpking
- Institute for Mathematics, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany
| | - Craig P Plaisance
- Chair of Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Daniel Strobusch
- Chair of Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Karsten Reuter
- Chair of Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Christoph Scheurer
- Chair of Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Sebastian Matera
- Institute for Mathematics, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany
| |
Collapse
|
15
|
Sutton JE, Lorenzi JM, Krogel JT, Xiong Q, Pannala S, Matera S, Savara A. Electrons to Reactors Multiscale Modeling: Catalytic CO Oxidation over RuO2. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00713] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan E. Sutton
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Juan M. Lorenzi
- Theoretical Chemistry and Catalysis Research Center, Technische Universität München, 85748 Garching, Germany
| | - Jaron T. Krogel
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Qingang Xiong
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sreekanth Pannala
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sebastian Matera
- Fachbereich Mathematik & Informatik, Free University, 14195 Berlin, Germany
| | - Aditya Savara
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
16
|
Lorenzi JM, Stecher T, Reuter K, Matera S. Local-metrics error-based Shepard interpolation as surrogate for highly non-linear material models in high dimensions. J Chem Phys 2017; 147:164106. [PMID: 29096493 DOI: 10.1063/1.4997286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many problems in computational materials science and chemistry require the evaluation of expensive functions with locally rapid changes, such as the turn-over frequency of first principles kinetic Monte Carlo models for heterogeneous catalysis. Because of the high computational cost, it is often desirable to replace the original with a surrogate model, e.g., for use in coupled multiscale simulations. The construction of surrogates becomes particularly challenging in high-dimensions. Here, we present a novel version of the modified Shepard interpolation method which can overcome the curse of dimensionality for such functions to give faithful reconstructions even from very modest numbers of function evaluations. The introduction of local metrics allows us to take advantage of the fact that, on a local scale, rapid variation often occurs only across a small number of directions. Furthermore, we use local error estimates to weigh different local approximations, which helps avoid artificial oscillations. Finally, we test our approach on a number of challenging analytic functions as well as a realistic kinetic Monte Carlo model. Our method not only outperforms existing isotropic metric Shepard methods but also state-of-the-art Gaussian process regression.
Collapse
Affiliation(s)
- Juan M Lorenzi
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Thomas Stecher
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Sebastian Matera
- Fachbereich für Mathematik und Informatik, Freie Universität Berlin, Otto-von-Simson-Str. 19, D-14195 Berlin, Germany
| |
Collapse
|
17
|
Weaver JF, Choi J, Mehar V, Wu C. Kinetic Coupling among Metal and Oxide Phases during CO Oxidation on Partially Reduced PdO(101): Influence of Gas-Phase Composition. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02570] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jason F. Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Juhee Choi
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Vikram Mehar
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Chengjun Wu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
18
|
Lundgren E, Zhang C, Merte LR, Shipilin M, Blomberg S, Hejral U, Zhou J, Zetterberg J, Gustafson J. Novel in Situ Techniques for Studies of Model Catalysts. Acc Chem Res 2017; 50:2326-2333. [PMID: 28880530 DOI: 10.1021/acs.accounts.7b00281] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Motivated mainly by catalysis, gas-surface interaction between single crystal surfaces and molecules has been studied for decades. Most of these studies have been performed in well-controlled environments and have been instrumental for the present day understanding of catalysis, providing information on surface structures, adsorption sites, and adsorption and desorption energies relevant for catalysis. However, the approach has been criticized for being too far from a catalyst operating under industrial conditions at high temperatures and pressures. To this end, a significant amount of effort over the years has been used to develop methods to investigate catalysts at more realistic conditions under operating conditions. One result from this effort is a vivid and sometimes heated discussion concerning the active phase for the seemingly simple CO oxidation reaction over the Pt-group metals in the literature. In recent years, we have explored the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures and temperatures. In this contribution, results from catalytic CO oxidation over a Pd(100) single crystal surface using Near Ambient Pressure X-ray Photo emission Spectroscopy (NAPXPS), Planar Laser-Induced Fluorescence (PLIF), and High Energy Surface X-ray Diffraction (HESXRD) are presented, and the strengths and weaknesses of the experimental techniques are discussed. Armed with structural knowledge from ultrahigh vacuum experiments, the presence of adsorbed molecules and gas-phase induced surface structures can be identified and related to changes in the reactivity or to reaction induced gas-flow limitations. In particular, the application of PLIF to catalysis allows one to visualize how the catalyst itself changes the gas composition close to the model catalyst surface upon ignition, and relate this to the observed surface structures. The effect obscures a straightforward relation between the active phase and the activity, since in the case of CO oxidation, the gas-phase close to the model catalyst surface is shown to be significantly more oxidizing than far away from the catalyst. We show that surface structural knowledge from UHV experiments and the composition of the gas phase close to the catalyst surface are crucial to understand structure-function relationships at semirealistic conditions. In the particular case of Pd, we argue that the surface structure of the PdO(101) has a significant influence on the activity, due to the presence of Coordinatively Unsaturated Sites (CUS) Pd atoms, similar to undercoordinated Ru and Ir atoms found for RuO2(110) and IrO2(110), respectively.
Collapse
Affiliation(s)
- Edvin Lundgren
- Division of Synchrotron Radiation Research, Lund University, Box 118, Lund S-221 00, Sweden
| | - Chu Zhang
- Division of Synchrotron Radiation Research, Lund University, Box 118, Lund S-221 00, Sweden
| | - Lindsay R. Merte
- Division of Synchrotron Radiation Research, Lund University, Box 118, Lund S-221 00, Sweden
| | - Mikhail Shipilin
- Division of Synchrotron Radiation Research, Lund University, Box 118, Lund S-221 00, Sweden
| | - Sara Blomberg
- Division of Synchrotron Radiation Research, Lund University, Box 118, Lund S-221 00, Sweden
| | - Uta Hejral
- Division of Synchrotron Radiation Research, Lund University, Box 118, Lund S-221 00, Sweden
| | - Jianfeng Zhou
- Division of Combustion Physics, Lund University, Box 118, Lund S-221 00, Sweden
| | - Johan Zetterberg
- Division of Combustion Physics, Lund University, Box 118, Lund S-221 00, Sweden
| | - Johan Gustafson
- Division of Synchrotron Radiation Research, Lund University, Box 118, Lund S-221 00, Sweden
| |
Collapse
|
19
|
Visualization of Gas Distribution in a Model AP-XPS Reactor by PLIF: CO Oxidation over a Pd(100) Catalyst. Catalysts 2017. [DOI: 10.3390/catal7010029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Ambient-Pressure X-ray Photoelectron Spectroscopy (APXPS). SPRINGER SERIES IN CHEMICAL PHYSICS 2017. [DOI: 10.1007/978-3-319-44439-0_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
van Spronsen MA, Frenken JWM, Groot IMN. Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts. Chem Soc Rev 2017; 46:4347-4374. [DOI: 10.1039/c7cs00045f] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Application of surface-science techniques, such as XPS, SXRD, STM, and IR spectroscopy under catalytic reactions conditions yield new structural and chemical information. Recent experiments focusing on CO oxidation over Pt and Pd model catalysts were reviewed.
Collapse
Affiliation(s)
| | - Joost W. M. Frenken
- Advanced Research Center for Nanolithography
- 1090 BA Amsterdam
- The Netherlands
| | - Irene M. N. Groot
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- The Netherlands
| |
Collapse
|
22
|
Blomberg S, Zhou J, Gustafson J, Zetterberg J, Lundgren E. 2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:453002. [PMID: 27619414 DOI: 10.1088/0953-8984/28/45/453002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be applied to a large number of molecules thanks to the technical development of lasers and detectors over the last decades, and is a complementary and visual alternative to traditional MS to be used in environments difficult to asses with MS. In this article we will review general considerations when performing PLIF experiments, our experimental set-up for PLIF and discuss relevant examples of PLIF applied to catalysis.
Collapse
Affiliation(s)
- Sara Blomberg
- Division of Synchrotron Radiation Research, Lund University, Box 118, S-221 00, Sweden
| | | | | | | | | |
Collapse
|
23
|
Three-way catalytic converter reactions aspects at near-ambient temperatures on modified Pd-surfaces. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Lorenzi JM, Matera S, Reuter K. Synergistic Inhibition of Oxide Formation in Oxidation Catalysis: A First-Principles Kinetic Monte Carlo Study of NO + CO Oxidation at Pd(100). ACS Catal 2016. [DOI: 10.1021/acscatal.6b01344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan M. Lorenzi
- Chair
for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Sebastian Matera
- Fachbereich
f. Mathematik u. Informatik, Freie Universität Berlin, Otto-von-Simson-Str.
19, D-14195 Berlin, Germany
| | - Karsten Reuter
- Chair
for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
25
|
Morgan K, Touitou J, Choi JS, Coney C, Hardacre C, Pihl JA, Stere CE, Kim MY, Stewart C, Goguet A, Partridge WP. Evolution and Enabling Capabilities of Spatially Resolved Techniques for the Characterization of Heterogeneously Catalyzed Reactions. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02602] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin Morgan
- School
of Mechanical and Aerospace Engineering, Queen’s University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, United Kingdom
| | - Jamal Touitou
- Department
of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jae-Soon Choi
- Fuels,
Engines and Emissions Research Center, Oak Ridge National Laboratory, P.O. Box 2008,
MS-6472, Oak Ridge, Tennessee 37831-6472, United States
| | - Ciarán Coney
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast BT9 5AG, United Kingdom
| | - Christopher Hardacre
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast BT9 5AG, United Kingdom
| | - Josh A. Pihl
- Fuels,
Engines and Emissions Research Center, Oak Ridge National Laboratory, P.O. Box 2008,
MS-6472, Oak Ridge, Tennessee 37831-6472, United States
| | - Cristina E. Stere
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast BT9 5AG, United Kingdom
| | - Mi-Young Kim
- Fuels,
Engines and Emissions Research Center, Oak Ridge National Laboratory, P.O. Box 2008,
MS-6472, Oak Ridge, Tennessee 37831-6472, United States
| | - Caomhán Stewart
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast BT9 5AG, United Kingdom
| | - Alexandre Goguet
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast BT9 5AG, United Kingdom
| | - William P. Partridge
- Fuels,
Engines and Emissions Research Center, Oak Ridge National Laboratory, P.O. Box 2008,
MS-6472, Oak Ridge, Tennessee 37831-6472, United States
| |
Collapse
|
26
|
|