1
|
|
2
|
Tang X, Zhang F, Zeng T, Li W, Yin S, Wu R. Enzymatic Plasticity Inspired by the Diterpene Cyclase CotB2. ACS Chem Biol 2020; 15:2820-2832. [PMID: 32986400 DOI: 10.1021/acschembio.0c00645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymatic plasticity, as a modern term referring to the functional conversion of an enzyme, is significant for enzymatic activity redesign. The bacterial diterpene cyclase CotB2 is a typical plastic enzyme by which its native form precisely conducts a chemical reaction while its mutants diversify the catalytic functions drastically. Many efforts have been made to disclose the mysteries of CotB2 enzyme catalysis. However, the catalytic details and regulatory mechanism toward the precise chemo- and stereoselectivity are still elusive. In this work, multiscale simulations are employed to illuminate the biocyclization mechanisms of the linear substrate into the final product cyclooctat-9-en-7-ol with a 5-8-5 fused ring scaffold, and the derailment products arising from the premature quenching of reactive carbocation intermediates are also discussed. The two major regulatory factors, local electrostatic stabilization effects from aromatic residues or polar residue in pocket and global features of active site including pocket-contour and pocket-hydrophobicity, are responsible for the enzymatic plasticity of CotB2. Further comparative studies of representative Euphorbiaceae and fungal diterpene cyclase (RcCS and PaFS) show a correlation between pocket plasticity and product diversity, which inspires a tentative enzyme product prediction and the rational diterpene cyclases' reengineering in the future.
Collapse
Affiliation(s)
- Xiaowen Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zeng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sheng Yin
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Wang YH, Zhang F, Diao H, Wu R. Covalent Inhibition Mechanism of Antidiabetic Drugs—Vildagliptin vs Saxagliptin. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yong-Heng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Fan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hongjuan Diao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
Lao YM, Jin H, Zhou J, Zhang HJ, Zhu XS, Cai ZH. A Novel Hydrolytic Activity of Tri-Functional Geranylgeranyl Pyrophosphate Synthase in Haematococcus pluvialis. PLANT & CELL PHYSIOLOGY 2018; 59:2536-2548. [PMID: 30137453 DOI: 10.1093/pcp/pcy173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Under environmental stresses, Haematococcus pluvialis accumulates large amounts of carotenoids. Scale of carotenoid biosynthesis depends on availability of geranylgeranyl pyrophosphate (GGPP) precursor, which is supplied by GGPP synthase (GGPPS) through sequential 1'-4 condensation of three isopentenyl pyrophosphates (IPPs) into dimethylallyl pyrophosphate (DMAPP). Using IPP and DMAPP as substrates, a tri-functional HpGGPPS was identified in this study to promiscuously synthesize allylic prenyl pyrophosphates (PPPs), e.g. C10 geranyl pyrophosphate (GPP), C15 farnesyl pyrophosphate (FPP), and C20 GGPP. Intriguingly, HpGGPPS can utilize GPP or FPP as a single substrate to synthesize GGPP by hydrolyzing the allylic PPP substrate into C5 IPP. Transcription of HpGGPPS and key carotenogenesis genes, morphological transformation, and carotenoid biosynthesis were differentially induced by environmental stresses, while HpGGPPS's products were low in vivo, implying that most of PPP flux had been shunted into carotenoid biosynthesis. Hydrolyzing allylic PPP intermediates into C5 building blocks by promiscuous HpGGPPS may be a fail safe for carotenoid accumulation against environmental stress.
Collapse
Affiliation(s)
- Yong Min Lao
- Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen Tsinghua University, Shenzhen, China
- The Division of Ocean Science and Technology, Graduate School at Shenzhen Tsinghua University, Shenzhen, China
| | - Hui Jin
- Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen Tsinghua University, Shenzhen, China
- The Division of Ocean Science and Technology, Graduate School at Shenzhen Tsinghua University, Shenzhen, China
| | - Jin Zhou
- Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen Tsinghua University, Shenzhen, China
- The Division of Ocean Science and Technology, Graduate School at Shenzhen Tsinghua University, Shenzhen, China
| | - Huai Jin Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiao Shan Zhu
- The Division of Ocean Science and Technology, Graduate School at Shenzhen Tsinghua University, Shenzhen, China
| | - Zhong Hua Cai
- Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen Tsinghua University, Shenzhen, China
- The Division of Ocean Science and Technology, Graduate School at Shenzhen Tsinghua University, Shenzhen, China
| |
Collapse
|
5
|
Yao J, Chen F, Guo H. QM/MM free energy simulations of the reaction catalysed by (4S)-limonene synthase involving linalyl diphosphate (LPP) substrate. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1447106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jianzhuang Yao
- School of Biological Science and Technology, University of Jinan , Jinan, P.R. China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee , Knoxville, TN, USA
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
6
|
Wang YH, Zhang F, Zhou J, Xie H, Wu R. Reply to Comment on “Substrate Folding Modes in Trichodiene Synthase: A Determinant of Chemo- and Stereoselectivity”. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yong-Heng Wang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Fan Zhang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jingwei Zhou
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hujun Xie
- Department
of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310035, P. R. China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
7
|
Zhang F, Wang YH, Tang X, Wu R. Catalytic promiscuity of the non-native FPP substrate in the TEAS enzyme: non-negligible flexibility of the carbocation intermediate. Phys Chem Chem Phys 2018; 20:15061-15073. [DOI: 10.1039/c8cp02262c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
By QM(DFT)/MM MD simulations, it has been revealed that the non-native substrate catalytic promiscuity of TEAS (one of the sesquiterpene cyclases) is mostly attributable to its notable conformational flexibility of the branching intermediate bisabolyl cation.
Collapse
Affiliation(s)
- Fan Zhang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Yong-Heng Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xiaowen Tang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ruibo Wu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
8
|
Wang YH, Xie H, Zhou J, Zhang F, Wu R. Substrate Folding Modes in Trichodiene Synthase: A Determinant of Chemo- and Stereoselectivity. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong-Heng Wang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hujun Xie
- Department
of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310035, P. R. China
| | - Jingwei Zhou
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Fan Zhang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
9
|
Zhang X, Zhao Y, Duan X, Zhang HN, Cao Z, Mo Y. Mechanisms for the deamination reaction of 8-oxoguanine catalyzed by 8-oxoguanine deaminase: A combined QM/MM molecular dynamics study. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2016. [DOI: 10.1142/s0219633616500668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The deamination reaction of 8-oxoguanine (8-oxoG) catalyzed by 8-oxoguanine deaminase (8-oxoGD) plays a critically important role in the DNA repair activity for oxidative damage. In order to elucidate the complete enzymatic catalysis mechanism at the stages of 8-oxoguanine binding, departure of 2-hydroxy-1H-purine-6,8(7H,9H)-dione from the active site, and formation of 8-oxoxanthine, extensive combined QM(PM3)/MM molecular dynamics simulations have been performed. Computations show that the rate-limiting step corresponds to the nucleophilic attack from zinc-coordinate hydroxide group to free 8-oxoguanine. Through conformational analyses, we demonstrate that Trp115, Trp123 and Leu119 connect to O8@8-oxoguanine with hydrogen bonds, and we suggest that mutations of tryptophan (115 and 123) to histidine or phenylalanine and mutation of leucine (119) to alanine could potentially lead to a mutant with enhanced activity. On this ground, a proton transfer mechanism for the formation of 8-oxoxanthine was further discussed. Both Glu218 and water molecule could be used as proton shuttles, and water molecule plays a major role in proton transfer in substrate. On the other hand, comparative simulations on the deamination of guanine and isocytosine reveal that, for the helping of hydrogen bonds between O8@8-oxoguanine and enzyme, O8@8-oxoguanine is the fastest to be deaminated among the three substrates which are also supported by the experimental kinetic constants.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Yuan Zhao
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Xinli Duan
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hui N. Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Yirong Mo
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA
| |
Collapse
|
10
|
Zhang F, Chen N, Zhou J, Wu R. Protonation-Dependent Diphosphate Cleavage in FPP Cyclases and Synthases. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fan Zhang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Nanhao Chen
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Jingwei Zhou
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
11
|
Zhang F, Chen N, Wu R. Molecular Dynamics Simulations Elucidate Conformational Dynamics Responsible for the Cyclization Reaction in TEAS. J Chem Inf Model 2016; 56:877-85. [PMID: 27082764 DOI: 10.1021/acs.jcim.6b00091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Mg-dependent 5-epi-aristolochene synthase from Nicotiana tabacum (called TEAS) could catalyze the linear farnesyl pyrophosphate (FPP) substrate to form bicyclic hydrocarbon 5-epi-aristolochene. The cyclization reaction mechanism of TEAS was proposed based on static crystal structures and quantum chemistry calculations in a few previous studies, but substrate FPP binding kinetics and protein conformational dynamics responsible for the enzymatic catalysis are still unclear. Herein, by elaborative and extensive molecular dynamics simulations, the loop conformation change and several crucial residues promoting the cyclization reaction in TEAS are elucidated. It is found that the unusual noncatalytic NH2-terminal domain is essential to stabilize Helix-K and the adjoining J-K loop of the catalytic COOH-terminal domain. It is also illuminated that the induce-fit J-K/A-C loop dynamics is triggered by Y527 and the optimum substrate binding mode in a "U-shape" conformation. The U-shaped ligand binding pose is maintained well with the cooperative interaction of the three Mg(2+)-containing coordination shell and conserved residue W273. Furthermore, the conserved Arg residue pair R264/R266 and aromatic residue pair Y527/W273, whose spatial orientations are also crucial to promote the closure of the active site to a hydrophobic pocket, as well as to form π-stacking interactions with the ligand, would facilitate the carbocation migration and electrophilic attack involving the catalytic reaction. Our investigation more convincingly proves the greater roles of the protein local conformational dynamics than do hints from the static crystal structure observations. Thus, these findings can act as a guide to new protein engineering strategies on diversifying the sesquiterpene products for drug discovery.
Collapse
Affiliation(s)
- Fan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, Guangdong, P.R. China
| | - Nanhao Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, Guangdong, P.R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, Guangdong, P.R. China
| |
Collapse
|