1
|
Kubińska L, Szkoda M, Skorupska M, Grabowska P, Gajewska M, Lukaszewicz JP, Ilnicka A. Combined effect of nitrogen-doped carbon and NiCo 2O 4 for electrochemical water splitting. Sci Rep 2024; 14:26930. [PMID: 39505972 PMCID: PMC11541751 DOI: 10.1038/s41598-024-74031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
Electrocatalytic water splitting for green hydrogen production necessitates effective electrocatalysts. Currently, commercial catalysts are primarily platinum-based. Therefore, finding catalysts with comparable catalytic activity but lower cost is essential. This paper describes spinel-structured catalysts containing nickel cobaltite NiCo2O4, graphene, and additionally doped with heteroatoms. The structure and elemental composition of the obtained materials were analyzed by research methods such as TEM, SEM-EDX, XRD, XPS, and Raman spectroscopy. The electrochemical measurements showed that hybrid materials containing nickel cobaltite NiCo2O4 doped with graphene are highly active catalysts in the hydrogen evolution reaction (Tafel slopes = 91 mV dec-1, overpotential = 468 mV and onset potential = -339 mV), while in the oxygen evolution reaction (Tafel slopes = 51 mV dec-1, overpotential = 1752 mV and onset potential = 370 mV), bare NiCo2O4 without the addition of carbon has a worse activity (for HER: Tafel slopes = 120 mV dec-1, overpotential - does not achieve and onset potential = -404 mV, for OER: Tafel slopes = 54 mV dec-1, overpotential = 1796 mV and onset potential = 410 mV). In terms of stability, comparable results were obtained for each synthesized compound for both the HER and OER reactions.
Collapse
Affiliation(s)
- Laura Kubińska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Mariusz Szkoda
- Faculty of Chemistry, Department of Chemistry and Technology of Functional Materials, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Malgorzata Skorupska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Patrycja Grabowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059, Kraków, Poland
| | - Jerzy P Lukaszewicz
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100, Torun, Poland
| | - Anna Ilnicka
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland.
| |
Collapse
|
2
|
Guo J, Haghshenas Y, Jiao Y, Kumar P, Yakobson BI, Roy A, Jiao Y, Regenauer-Lieb K, Nguyen D, Xia Z. Rational Design of Earth-Abundant Catalysts toward Sustainability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407102. [PMID: 39081108 DOI: 10.1002/adma.202407102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/06/2024] [Indexed: 10/18/2024]
Abstract
Catalysis is crucial for clean energy, green chemistry, and environmental remediation, but traditional methods rely on expensive and scarce precious metals. This review addresses this challenge by highlighting the promise of earth-abundant catalysts and the recent advancements in their rational design. Innovative strategies such as physics-inspired descriptors, high-throughput computational techniques, and artificial intelligence (AI)-assisted design with machine learning (ML) are explored, moving beyond time-consuming trial-and-error approaches. Additionally, biomimicry, inspired by efficient enzymes in nature, offers valuable insights. This review systematically analyses these design strategies, providing a roadmap for developing high-performance catalysts from abundant elements. Clean energy applications (water splitting, fuel cells, batteries) and green chemistry (ammonia synthesis, CO2 reduction) are targeted while delving into the fundamental principles, biomimetic approaches, and current challenges in this field. The way to a more sustainable future is paved by overcoming catalyst scarcity through rational design.
Collapse
Affiliation(s)
- Jinyang Guo
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yousof Haghshenas
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yiran Jiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Priyank Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77251, USA
| | - Ajit Roy
- U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Yan Jiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
| | - Klaus Regenauer-Lieb
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6151, Australia
| | | | - Zhenhai Xia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
| |
Collapse
|
3
|
Song K, Jing H, Yang B, Shao J, Tao Y, Zhang W. Enhancing Oxygen Reduction Reaction of Single-Atom Catalysts by Structure Tuning. CHEMSUSCHEM 2024:e202401713. [PMID: 39187438 DOI: 10.1002/cssc.202401713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Deciphering the fine structure has always been a crucial approach to unlocking the distinct advantages of high activity, selectivity, and stability in single-atom catalysts (SACs). However, the complex system and unclear catalytic mechanism have obscured the significance of exploring the fine structure. Therefore, we endeavored to develop a three-component strategy to enhance oxygen reduction reaction (ORR), delving deep into the profound implications of the fine structure, focusing on central atoms, coordinating atoms, and environmental atoms. Firstly, the mechanism by which the chemical state and element type of central atoms influence catalytic performance is discussed. Secondly, the significance of coordinating atoms in SACs is analyzed, considering both the number and type. Lastly, the impact of environmental atoms in SACs is reviewed, encompassing existence state and atomic structure. Thorough analysis and summarization of how the fine structure of SACs influences the ORR have the potential to offer valuable insights for the accurate design and construction of SACs.
Collapse
Affiliation(s)
- Kexin Song
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Haifeng Jing
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Binbin Yang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Jing Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Youkun Tao
- College of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| |
Collapse
|
4
|
Zhao Y, Wang A, Ren S, Zhang Y, Zhang N, Song Y, Zhang Z. Activated carbon fiber as an efficient co-catalyst toward accelerating Fe 2+/Fe 3+ cycling for improved removal of antibiotic cefaclor via electro-Fenton process using a gas diffusion electrode. ENVIRONMENTAL RESEARCH 2024; 249:118254. [PMID: 38301762 DOI: 10.1016/j.envres.2024.118254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
The electro-Fenton (EF) based on gas-diffusion electrodes (GDEs) reveals promising application prospective towards recalcitrant organics degradation because such GDEs often yields superior H2O2 generation efficiency and selectivity. However, the low efficiency of Fe2+/Fe3+ cycle with GDEs is always considered to be the limiting step for the EF process. In this study, activated carbon fiber (ACF) was firstly employed as co-catalyst to facilitate the performance of antibiotic cefaclor (CEC) decomposition in EF process. It was found that the addition of ACF co-catalyst achieved a rapid Fe2+/Fe3+ cycling, which significantly enhanced Fenton's reaction and hydroxyl radicals (•OH) generation. X-ray photoelectron spectroscopy (XPS) results indicated that the functional groups on ACF surface are related to the conversion of Fe3+ into Fe2+. Moreover, DMSO probing experiment confirmed the enhanced •OH production in EF + ACF system compared to conventional EF system. When inactive BDD and Ti4O7/Ti anodes were paired to EF system, the addition of ACF could significantly improve mineralization degree. However, a large amount of toxic byproducts, including chlorate (ClO3-) and perchlorate (ClO4-), were generated in these EF processes, especially for BDD anode, due to their robust oxidation capacity. Higher mineralization efficiency and less toxic ClO4- generation were obtained in the EF + ACF process with Ti4O7/Ti anode. This presents a novel alternative for efficient chloride-containing organic removal during wastewater remediation.
Collapse
Affiliation(s)
- Yue Zhao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| | - Aimin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| | - Songyu Ren
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Yanyu Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Ni Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Yongjun Song
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, China
| |
Collapse
|
5
|
Ghosh D, Banerjee R, Bhaduri SN, Chatterjee R, Ghosh AB, Das S, Pramanick I, Bhaumik A, Biswas P. Fe 3 C/Fe Decorated N-doped Carbon Derived from Tetrabutylammonium tetrachloroferrate Complex as Bifunctional Electrocatalysts for ORR, OER and Zn-Air Batteries in Alkaline Medium. Chem Asian J 2024; 19:e202300933. [PMID: 38241138 DOI: 10.1002/asia.202300933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
The emergence of non-precious metal-based robust and economic bifunctional oxygen electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for the rational design of commercial rechargeable Zn-air batteries (RZAB) with safe energy conversion and storage systems. Herein, a facile strategy to fabricate a cost-efficient, bifunctional oxygen electrocatalyst Fe3 C/Fe decorated N doped carbon (FeC-700, the catalyst prepared at carbinization temperature of 700 °C) with a unique structure has been developed by carbonization of a single source precursor, tetrabutylammonium tetrachloroferrate(III) complex. The ORR and OER activity revealed excellent performance (ΔE=0.77 V) of the FeC-700 electrocatalyst, comparable to commercial Pt/C and RuO2, respectively. The designed temperature-tuneable structure provided sufficiently accessible active sites for the continuous passage of electrons by shortening the mass transfer pathway, leading to extremely durable electrocatalysts with high ECSA and amazing charge transfer performance. Remarkably, the assembled Zn-air batteries with the FeC-700 catalyst as the bifunctional air electrode delivers gratifying charging-discharging ability with an impressive power density of 134 mW cm-2 with a long lifespan, demonstrating prodigious possibilities for practical application.
Collapse
Affiliation(s)
- Debojit Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, 711 103, West Bengal, India
| | - Rumeli Banerjee
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, 711 103, West Bengal, India
| | - Samanka Narayan Bhaduri
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, 711 103, West Bengal, India
| | - Rupak Chatterjee
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, West Bengal, India
| | - Abhisek Brata Ghosh
- Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Samarpita Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, 711 103, West Bengal, India
| | - Indrani Pramanick
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, 711 103, West Bengal, India
| | - Asim Bhaumik
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, West Bengal, India
| | - Papu Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, 711 103, West Bengal, India
| |
Collapse
|
6
|
Dou B, Wang G, Dong X, Zhang X. Improved H 2O 2 Electrosynthesis on S-doped Co-N-C through Cooperation of Co-S and Thiophene S. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7374-7383. [PMID: 38315023 DOI: 10.1021/acsami.3c18879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Co-N-C based catalysts have emerged as a prospective alternative for H2O2 electrosynthesis via a selective 2e- oxygen reduction reaction (ORR). However, conventional Co-N-C with Co-N4 configurations usually exhibits low selectivity toward 2e- ORR for H2O2 production. In this study, the S-doped Co-N-C (Co-N-C@S) catalysts were designed and synthesized for enhancing the electrosynthesis of H2O2, and their S doping levels and species were tuned to investigate their relationship with the H2O2 yield. The results showed that the S doping greatly enhanced the activity and selectivity of Co-N-C@S for H2O2 production. The optimal Co-N-C@S(12) displayed a high H2O2 production rate of 395 mmol gcat-1 h-1, H2O2 selectivity of 76.06%, and Faraday efficiency of 91.66% at 0.2 V, which were obviously better than those of Co-N-C (H2O2 production rate of 44 mmol gcat-1 h-1, H2O2 selectivity of 26.63%, and Faraday efficiency of 17.37%). Moreover, the Co-N-C@S(12) based electron-Fenton system displayed effective rhodamine B (RhB) removal, significantly outperforming the Co-N-C-based system. Experimental results combined with density functional theory unveiled that the enhanced performance of Co-N-C@S(12) stemmed from the combined effect of Co-S and thiophene S, which jointly enhanced electron density of the Co center, reduced the desorption energy of the *OOH intermediate, and then promoted the production of H2O2.
Collapse
Affiliation(s)
- Bingxin Dou
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiufang Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
7
|
Wang M, Hu Y, Pu J, Zi Y, Huang W. Emerging Xene-Based Single-Atom Catalysts: Theory, Synthesis, and Catalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303492. [PMID: 37328779 DOI: 10.1002/adma.202303492] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the emergence of novel 2D monoelemental materials (Xenes), e.g., graphdiyne, borophene, phosphorene, antimonene, bismuthene, and stanene, has exhibited unprecedented potentials for their versatile applications as well as addressing new discoveries in fundamental science. Owing to their unique physicochemical, optical, and electronic properties, emerging Xenes have been regarded as promising candidates in the community of single-atom catalysts (SACs) as single-atom active sites or support matrixes for significant improvement in intrinsic activity and selectivity. In order to comprehensively understand the relationships between the structure and property of Xene-based SACs, this review represents a comprehensive summary from theoretical predictions to experimental investigations. Firstly, theoretical calculations regarding both the anchoring of Xene-based single-atom active sites on versatile support matrixes and doping/substituting heteroatoms at Xene-based support matrixes are briefly summarized. Secondly, controlled synthesis and precise characterization are presented for Xene-based SACs. Finally, current challenges and future opportunities for the development of Xene-based SACs are highlighted.
Collapse
Affiliation(s)
- Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Junmei Pu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| |
Collapse
|
8
|
Dong J, Wang S, Xi P, Zhang X, Zhu X, Wang H, Huang T. Reduced Graphene Oxide-Supported Iron-Cobalt Alloys as High-Performance Catalysts for Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2735. [PMID: 37836376 PMCID: PMC10574026 DOI: 10.3390/nano13192735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Exploring non-precious metal-based catalysts for oxygen reduction reactions (ORR) as a substitute for precious metal catalysts has attracted great attention in recent times. In this paper, we report a general methodology for preparing nitrogen-doped reduced graphene oxide (N-rGO)-supported, FeCo alloy (FeCo@N-rGO)-based catalysts for ORR. The structure of the FeCo@N-rGO based catalysts is investigated using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and transition electron microscopy, etc. Results show that the FeCo alloy is supported by the rGO and carbon that derives from the organic ligand of Fe and Co ions. The eletrocatalytic performance is examined by cyclic voltammetry, linear scanning voltammetry, Tafel, electrochemical spectroscopy impedance, rotate disc electrode, and rotate ring disc electrode, etc. Results show that FeCo@N-rGO based catalysts exhibit an onset potential of 0.98 V (vs. RHE) and a half-wave potential of 0.93 V (vs. RHE). The excellent catalytic performance of FeCo@N-rGO is ascribed to its large surface area and the synergistic effect between FeCo alloy and N-rGO, which provides a large number of active sites and a sufficient surface area.
Collapse
Affiliation(s)
- Jun Dong
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Shanshan Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (S.W.); (X.Z.); (H.W.)
| | - Peng Xi
- Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
| | - Xinggao Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China;
| | - Xinyu Zhu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (S.W.); (X.Z.); (H.W.)
| | - Huining Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (S.W.); (X.Z.); (H.W.)
| | - Taizhong Huang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (S.W.); (X.Z.); (H.W.)
| |
Collapse
|
9
|
Cencerrero J, Sánchez P, de Lucas-Consuegra A, de la Osa A, Romero A. Influence of boron doping level and calcination temperature on hydrogen evolution reaction in acid medium of metal-free graphene aerogels. Heliyon 2023; 9:e20748. [PMID: 37876428 PMCID: PMC10590791 DOI: 10.1016/j.heliyon.2023.e20748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023] Open
Abstract
In this work, metal-free boron-doped graphene-based aerogels were successfully synthesized via a one-step autoclave assembly followed by freeze-drying and used as electrocatalysts for the hydrogen evolution reaction (HER) in acidic media. The synthesized reduced graphene oxide aerogels (rGOA) showed improved electrocatalytic activity by introducing boron and structural defects. The amount of boric acid used both as a dopant and reducing agent in the synthesis was optimized (boric acid/GO mass ratio = 17.5) to practically reach the crystallization limit of boric acid (boric acid/GO mass ratio = 20). It was observed that the higher the amount of boric acid added, the more boron was incorporated into the carbonaceous structure, improving the electrocatalytic activity of the final aerogel. Furthermore, calcination of the boron-doped electrocatalyst at 600 °C resulted in final aerogels with low oxygen content, moderate surface area, bimodal pore size distribution, and a high electrochemical active surface area. The final 3D graphene aerogel developed in this work, showed such outstanding electrocatalytic activity in HER as to replace noble metal-based electrocatalysts in the future.
Collapse
Affiliation(s)
- J. Cencerrero
- Department of Chemical Engineering, Technical School of Agronomic Engineers. University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071, Ciudad Real, Spain
| | - P. Sánchez
- Department of Chemical Engineering, Technical School of Agronomic Engineers. University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071, Ciudad Real, Spain
| | - A. de Lucas-Consuegra
- Department of Chemical Engineering, Technical School of Agronomic Engineers. University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071, Ciudad Real, Spain
| | - A.R. de la Osa
- Department of Chemical Engineering, Technical School of Agronomic Engineers. University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071, Ciudad Real, Spain
| | - A. Romero
- Faculty of Chemical Sciences and Technologies, Technical School of Agronomic Engineers. University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071, Ciudad Real, Spain
| |
Collapse
|
10
|
Tan Z, Qin X, Cao P, Chen S, Yu H, Su Y, Quan X. Enhanced electrochemical-activation of H 2O 2 to produce •OH by regulating the adsorption of H 2O 2 on nitrogen-doped porous carbon for organic pollutants removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131925. [PMID: 37385100 DOI: 10.1016/j.jhazmat.2023.131925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
The heterogeneous Fenton oxidation is regarded as a promising technology for refractory organic pollutants removal relying on highly active •OH generated via the decomposition of H2O2 catalyzed by iron-based catalyst that overcomes the issues of pH limitation and iron sludge discharge encountered in conventional Fenton reaction. However, the efficiency of •OH production in heterogeneous Fenton remains low as the limited mass transfer between H2O2 and catalysts caused by the poor H2O2 adsorption. Here, a nitrogen-doped porous carbon (NPC) catalyst with tunable N configuration was prepared for electrochemical-activation of H2O2 to •OH by enhancing the H2O2 adsorption on catalysts. The resultant •OH production yield on NPC reached 0.83 mM in 120 min. Notably, the NPC catalyst could be more energy-efficient for actual coking wastewater treatment with an energy consumption of 10.3 kWh kgCOD-1 than other electro-Fenton catalysts reported (20-29.7 kWh kgCOD-1). Density function theory (DFT) revealed that highly efficient •OH production was ascribed to the graphitic N which enhances the adsorption energy of H2O2 on NPC catalyst. This study provides new insight into the fabrication of efficient carbonaceous catalysts by rationally modulating electronic structures for refractory organic pollutants degradation.
Collapse
Affiliation(s)
- Zijun Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Peike Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
11
|
Prekob Á, Hajdu V, Fejes Z, Kristály F, Viskolcz B, Vanyorek L. Preparation and Testing of a Palladium-Decorated Nitrogen-Doped Carbon Foam Catalyst for the Hydrogenation of Benzophenone. Int J Mol Sci 2023; 24:12211. [PMID: 37569588 PMCID: PMC10418342 DOI: 10.3390/ijms241512211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Catalytic activity of a palladium catalyst with a porous carbon support was prepared and tested for benzophenone hydrogenation. The selectivity and yields toward the two possible reaction products (benzhydrol and diphenylmethane) can be directed by the applied solvent. It was found that in isopropanol, the prepared support was selective towards diphenylmethane with high conversion (99% selectivity and 99% benzophenone conversion on 323 K after 240 min). This selectivity might be explained by the presence of the incorporated structural nitrogens in the support.
Collapse
Affiliation(s)
- Ádám Prekob
- Institute of Chemistry, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary; (V.H.); (Z.F.); (B.V.)
| | - Viktória Hajdu
- Institute of Chemistry, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary; (V.H.); (Z.F.); (B.V.)
| | - Zsolt Fejes
- Institute of Chemistry, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary; (V.H.); (Z.F.); (B.V.)
| | - Ferenc Kristály
- Institute of Mineralogy and Geology, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary;
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary; (V.H.); (Z.F.); (B.V.)
| | - László Vanyorek
- Institute of Chemistry, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary; (V.H.); (Z.F.); (B.V.)
| |
Collapse
|
12
|
Iqbal A, Hamdan NM. Microstructure of 2D/2D Nanosheets Interface for Improved ORR Electrochemical Kinetics. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1352-1353. [PMID: 37613126 DOI: 10.1093/micmic/ozad067.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Anum Iqbal
- Material Science and Engineering Program, the American University of Sharjah, Sharjah, United Arab Emirates
| | - Nasser M Hamdan
- Material Science and Engineering Program, the American University of Sharjah, Sharjah, United Arab Emirates
- Physics Department, the American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
13
|
Wang F, Han Y, Feng X, Xu R, Li A, Wang T, Deng M, Tong C, Li J, Wei Z. Mesoporous Carbon-Based Materials for Enhancing the Performance of Lithium-Sulfur Batteries. Int J Mol Sci 2023; 24:ijms24087291. [PMID: 37108464 PMCID: PMC10138428 DOI: 10.3390/ijms24087291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
The most promising energy storage devices are lithium-sulfur batteries (LSBs), which offer a high theoretical energy density that is five times greater than that of lithium-ion batteries. However, there are still significant barriers to the commercialization of LSBs, and mesoporous carbon-based materials (MCBMs) have attracted much attention in solving LSBs' problems, due to their large specific surface area (SSA), high electrical conductivity, and other unique advantages. The synthesis of MCBMs and their applications in the anodes, cathodes, separators, and "two-in-one" hosts of LSBs are reviewed in this study. Most interestingly, we establish a systematic correlation between the structural characteristics of MCBMs and their electrochemical properties, offering recommendations for improving performance by altering the characteristics. Finally, the challenges and opportunities of LSBs under current policies are also clarified. This review provides ideas for the design of cathodes, anodes, and separators for LSBs, which could have a positive impact on the performance enhancement and commercialization of LSBs. The commercialization of high energy density secondary batteries is of great importance for the achievement of carbon neutrality and to meet the world's expanding energy demand.
Collapse
Affiliation(s)
- Fangzheng Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Yuying Han
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Xin Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Rui Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Ang Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Mingming Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Cheng Tong
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| |
Collapse
|
14
|
Ha SJ, Hwang J, Kwak MJ, Yoon JC, Jang JH. Graphene-Encapsulated Bifunctional Catalysts with High Activity and Durability for Zn-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300551. [PMID: 37052488 DOI: 10.1002/smll.202300551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Carbon-based electrocatalysts with both high activity and high stability are desirable for use in Zn-air batteries. However, the carbon corrosion reaction (CCR) is a critical obstacle in rechargeable Zn-air batteries. In this study, a cost-effective carbon-based novel material is reported with a high catalytic effect and good durability for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), prepared via a simple graphitization process. In situ growth of graphene is utilized in a 3D-metal-coordinated hydrogel by introducing a catalytic lattice of transition metal alloys. Due to the direct growth of few-layer graphene on the metal alloy decorated 3d-carbon network, greatly reduced CCR is observed in a repetitive OER test. As a result, an efficient bifunctional electrocatalytic performance is achieved with a low ΔE value of 0.63 V and good electrochemical durability for 83 h at a current density of 10 mA cm-2 in an alkaline media. Moreover, graphene-encapsulated transition metal alloys on the nitrogen-doped carbon supporter exhibit an excellent catalytic effect and good durability in a Zn-air battery system. This study suggests a straightforward way to overcome the CCR of carbon-based materials for an electrochemical catalyst with wide application in energy conversion and energy storage devices.
Collapse
Affiliation(s)
- Seong-Ji Ha
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan, 44919, Republic of Korea
| | - Jongha Hwang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan, 44919, Republic of Korea
| | - Myung-Jun Kwak
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan, 44919, Republic of Korea
| | - Jong-Chul Yoon
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan, 44919, Republic of Korea
| | - Ji-Hyun Jang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan, 44919, Republic of Korea
| |
Collapse
|
15
|
Cui P, Zhao L, Long Y, Dai L, Hu C. Carbon-Based Electrocatalysts for Acidic Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202218269. [PMID: 36645824 DOI: 10.1002/anie.202218269] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Oxygen reduction reaction (ORR) is vital for clean and renewable energy technologies, which require no fossil fuel but catalysts. Platinum (Pt) is the best-known catalyst for ORR. However, its high cost and scarcity have severely hindered renewable energy devices (e.g., fuel cells) for large-scale applications. Recent breakthroughs in carbon-based metal-free electrochemical catalysts (C-MFECs) show great potential for earth-abundant carbon materials as low-cost metal-free electrocatalysts towards ORR in acidic media. This article provides a focused, but critical review on C-MFECs for ORR in acidic media with an emphasis on advances in the structure design and synthesis, fundamental understanding of the structure-property relationship and electrocatalytic mechanisms, and their applications in proton exchange membrane fuel cells. Current challenges and future perspectives in this emerging field are also discussed.
Collapse
Affiliation(s)
- Pengbo Cui
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Linjie Zhao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongde Long
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liming Dai
- ARC Centre of Excellence for Carbon Science and Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
16
|
Ehlert C, Piras A, Schleicher J, Gryn'ova G. Metal-Free Molecular Catalysts for the Oxygen Reduction Reaction: Electron Affinity as an Activity Descriptor. J Phys Chem Lett 2023; 14:476-480. [PMID: 36625580 DOI: 10.1021/acs.jpclett.2c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Heteroatom-doped polyaromatic hydrocarbons (or nanographenes) are promising molecular electrocatalysts for the oxygen reduction reaction (ORR). Here, we use density functional theory to investigate the first step of the ORR pathway (chemisorption) for a set of molecules with experimentally determined catalytic activities. Weak chemisorption is found for only negatively charged catalysts, and a strong correlation is observed between the computed electron affinities and experimental catalytic activities for a range of B- and B,N-doped polyaromatic hydrocarbons. The electron affinity is put forward as a simple activity descriptor of charged (activated) catalysts on an electrode.
Collapse
Affiliation(s)
- Christopher Ehlert
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Anna Piras
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Juliette Schleicher
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ganna Gryn'ova
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Xia W, Cheng X, Wu J, Gou W, Xue H, Qu Y, Dong Q. A molecular strategy to Ni45Pt55@NC nanoparticles as efficient and robust Electrocatalyst for hydrogen evolution reaction. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2022.122558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Tian Y, Wu H, Hanif A, Niu Y, Yin Y, Gu Y, Chen Z, Gu Q, Ng YH, Shang J, Li L, Liu M. N-doped graphitic carbon encapsulating cobalt nanoparticles derived from novel metal–organic frameworks for electrocatalytic oxygen evolution reaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Iron-tin based nanoparticles anchored on N-doped carbon as high-efficiency oxygen electrocatalyst for rechargeable Zn-air batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Investigation of the adsorption of a DNA based purine derivative on N/B-doped coronene and coronene by means of DFT and NCI interaction analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Adsorption of Pyrimidin-2-amine (PA) on Graphene Quantum Dots (GQDs): Non-Covalent Interaction Study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Wang K, Zhang X, Xiang X, Wang Y, Lyu D, Xi S, Tian ZQ. In Situ S-Doping Strategy of Promoting Iron Coordinated by Nitrogen-Doped Carbon Nanosheets for Efficient Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46548-46561. [PMID: 36205626 DOI: 10.1021/acsami.2c12317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Improving transition metal-nitrogen-carbon (M-N-C) as a noble-metal-free catalyst for the oxygen reduction reaction (ORR) is critical to achieve low-cost electrochemical energy conversion. Herein, an in situ S doping strategy of enhancing Fe-N-C activity for ORR was developed by newly designed Fe(II) ion coordinated S-containing bis(imino)-pyridine-based polymers as precursors, which were synthesized through copolymerizing three monomers of 2, 6-diacetylpyridine (DAP), triamterene (TIT), and 2,5-dithiobiurea (DTB) as both N and S sources. All samples derived from various molar ratios of the three monomers possess a self-supporting structure of nanosheets. Additionally, incorporating DTB into the copolymer can not only strongly affect the derived coordinative species of N dopants to Fe atom but also effectively induce the synergistic effect between S dopants and FeNx moieties, resulting a significant improvement for ORR. The S-doped Fe-N-C nansheets with Fe coordinated by 4 pyrrolic N dopants exhibit the highest ORR activity and stability in alkaline media with a higher power output of Zn-air battery than that of the same loading of Pt/C. Theoretical calculation identifies that the thiophenic S dopant adjacent to Fe-pyrrolic N moiety can decrease the d band center of Fe atom, greatly weakening the energy profiles of oxygenated intermediates and thus enhancing ORR. In addition, because of the designability of transition metal coordinated S-containing bis(imino)-pyridine based polymers in the work, therefore, it is believable that this strategy would open a wide space to explore the structural relationship between precursors and MNx active sites with S dopants for the purpose of achieving highly efficient and robust M-N-C catalysts for energy-related electrocatalysis.
Collapse
Affiliation(s)
- Kun Wang
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University; Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials of Ministry of Education, Nanning, 530004, China
| | - Xiaoran Zhang
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University; Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials of Ministry of Education, Nanning, 530004, China
| | - Xue Xiang
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University; Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials of Ministry of Education, Nanning, 530004, China
| | - Yunqiu Wang
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University; Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials of Ministry of Education, Nanning, 530004, China
| | - Dandan Lyu
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University; Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials of Ministry of Education, Nanning, 530004, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals Energy and Environment, Jurong Island, Singapore627833, Singapore
| | - Zhi Qun Tian
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University; Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials of Ministry of Education, Nanning, 530004, China
| |
Collapse
|
23
|
Jain D, Hightower J, Basu D, Gustin V, Zhang Q, Co AC, Asthagiri A, Ozkan US. Highly active nitrogen – doped carbon nanostructures as electrocatalysts for bromine evolution reaction: A combined experimental and DFT study. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Electrochemical behavior of heteroatom doped on reduced graphene oxide with RuO2 for HER, OER, and supercapacitor applications. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Yang W, Zhu M, Li W, Liu G, Zeng EY. Surface-catalyzed electro-Fenton with flexible nanocatalyst for removal of plasticizers from secondary wastewater effluent. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129023. [PMID: 35650739 DOI: 10.1016/j.jhazmat.2022.129023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Activation of H2O2 with metal-free catalysts is an efficient and environmentally benign alternative to electron-Fenton (EF) for organics degradation. In the present study, flexible nanocatalysts were synthesized with self-regulated metal oxide nanoparticles (FeOx NPs) for efficient removal of plasticizers from secondary wastewater effluent (SWE). Compared with NGr/EF and FeOx@Gr/EF systems, FeOx@NGr/EF could enhance the decay kinetics of plasticizers by 3.9-4.4 times and reduce 48-59% of the disposal cost. Reactive oxygen species tests and trapping experiments proved that the surface-catalyzed EF effectively broadened the range of solution pH. Density functional theory calculations coupled with electrochemical measurements indicated that the electron transfer rates between Fe-O-C atoms were enhanced with N-doping due to strong interactions between N-Fe bond. The synergistic effects of FeOx and N could improve the oxygen reduction activity for H2O2 generation, and accelerate electron transfer between FeOx/NGr and H2O2 for •OH generation, offering an alternative for wastewater treatment.
Collapse
Affiliation(s)
- Weilu Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Wanbin Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Guoqiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
26
|
Szwabińska K, Lota G. Tuning the course of the oxygen reduction reaction at a carbon electrode using alkaline electrolytes based on binary DMSO–water solvent mixtures. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
27
|
High-Performance of Electrocatalytic CO2 Reduction on Defective Graphene-Supported Cu4S2 Cluster. Catalysts 2022. [DOI: 10.3390/catal12050454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Electrochemical CO2 reduction reaction (CO2RR) to high-value chemicals is one of the most splendid approaches to mitigating environmental threats and energy shortage. In this study, the catalytic performance of CO2RR on defective graphene-supported Cu4S2 clusters as well as isolated Cu4Xn (X = O, S, Se; n = 2, 4) was systematically investigated based on density functional theory (DFT) computations. Calculation results revealed that the most thermodynamically feasible product is CH3OH among the C1 products on Cu4X2 clusters, in which the Cu4S2 cluster has the best activity concerning CH3OH synthesis with a limiting potential of −0.48 V. When the Cu4S2 cluster was further supported on defective graphene, the strong interaction between cluster and substrate could greatly improve the performance via tuning the electronic structure and improving the stability of the Cu4S2 cluster. The calculated free energy diagram indicated that it is also more energetically preferable for CH3OH production with a low limiting potential of −0.35 V. Besides, the defective graphene support has a significant ability to suppress the competing reactions, such as the hydrogen evolution reaction (HER) and CO and HCOOH production. Geometric structures, limiting potentials, and reduction pathways were also discussed to gain insight into the reaction mechanism and to find the minimum-energy pathway for C1 products. We hope this work will provide theoretical reference for designing and developing advanced supported Cu-based electrocatalysts for CO2 reduction.
Collapse
|
28
|
Park JH, Shin JH, Ju JM, Lee JH, Choi C, So Y, Lee H, Kim JH. Modulating the electrocatalytic activity of N-doped carbon frameworks via coupling with dual metals for Zn-air batteries. NANO CONVERGENCE 2022; 9:17. [PMID: 35415763 PMCID: PMC9005593 DOI: 10.1186/s40580-022-00308-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
N-Doped carbon electrocatalysts are a promising alternative to precious metal catalysts to promote oxygen reduction reaction (ORR). However, it remains a challenge to design the desired active sites on carbon skeletons in a controllable manner for ORR. Herein, we developed a facile approach based on oxygen-mediated solvothermal radical reaction (OSRR) for preparation of N-doped carbon electrocatalysts with a pre-designed active site and modulated catalytic activity for ORR. In the OSRR, 2-methylimidazole reacted with Co and Mn salts to form an active site precursor (MnCo-MIm) in N-methyl-2-pyrrolidone (NMP) at room temperature. Then, the reaction temperature increased to 140 °C under an oxygen atmosphere to generate NMP radicals, followed by their polymerization with the pre-formed MnCo-MIm to produce Mn-coupled Co nanoparticle-embedded N-doped carbon framework (MnCo-NCF). The MnCo-NCF showed uniform dispersion of nitrogen atoms and Mn-doped Co nanoparticles on the carbon skeleton with micropores and mesopores. The MnCo-NCF exhibited higher electrocatalytic activity for ORR than did a Co nanoparticle only-incorporated carbon framework due to the improved charge transfer from the Mn-doped Co nanoparticles to the carbon skeleton. In addition, the Zn-air battery assembled with MnCo-NCF had superior performance and durability to the battery using commercial Pt/C. This facile approach can be extended for designing carbon electrocatalysts with desired active sites to promote specific reactions.
Collapse
Affiliation(s)
- Jung Hyun Park
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Jae-Hoon Shin
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jong-Min Ju
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jun-Hyeong Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Chanhee Choi
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Yoonhee So
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyunji Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jong-Ho Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
29
|
Unravelling the functional complexity of oxygen-containing groups on carbon for the reduction of NO with NH3. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Yu L, Huang Q, Wu J, Song E, Xiao B. Spatial-five coordination promotes the high efficiency of CoN4 moiety in graphene-based bilayer for oxygen reduction electrocatalysis: A density functional theory study. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Chen Y, Yang C, Huang X, Li L, Yu N, Xie H, Zhu Z, Yuan Y, Zhou L. Two-dimensional MXene enabled carbon quantum dots@Ag with enhanced catalytic activity towards the reduction of p-nitrophenol. RSC Adv 2022; 12:4836-4842. [PMID: 35425493 PMCID: PMC8981249 DOI: 10.1039/d1ra09177h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
A composite of cuttlefish ink-based carbon quantum dots@Ag/MXene (CQD@Ag/MXene) was firstly synthesized by solvothermal method as a catalyst for reduction of p-nitrophenol (PNP) to p-aminophenol (PAP). CQD@Ag/MXene was characterized by scanning electron microscopy (SEM), field emission transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman. The results show that loading on 2D material MXene can prevent the aggregation of CQD@Ag and expose more active sites, which contributes to a superior catalytic activity with a pseudo-first-order rate constant k (2.28 × 10-2 s-1) and mass-normalized rate constant k m (5700 s-1 g-1), nearly 2 times higher than CQD@Ag without MXene (k = 1.09 × 10-2 s-1 and k m = 2725 s-1 g-1). Besides, CQD@Ag/MXene showed excellent reusability which even retained about 65% activity in successive 10 cycles. The high adsorption rate to PNP and the promotion of forming H radicals may be the reason for the outstanding catalytic activity of CQD@Ag/MXene. CQD@Ag/MXene can be a potential candidate in the removal of environmental pollutants due to its facile synthesis and high catalytic efficiency.
Collapse
Affiliation(s)
- Yingxin Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006 P.R. China
| | - Chunli Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006 P.R. China
| | - Xiaotong Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006 P.R. China
| | - Lu Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006 P.R. China
| | - Na Yu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006 P.R. China
| | - Huan Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006 P.R. China
| | - Zebin Zhu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006 P.R. China
| | - Yong Yuan
- School of Environmental Science and Engineering, Guangdong University of Technology Guangzhou 510006 P.R. China
| | - Lihua Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006 P.R. China
| |
Collapse
|
32
|
Wu X, Xiao S, Long Y, Ma T, Shao W, Cao S, Xiang X, Ma L, Qiu L, Cheng C, Zhao C. Emerging 2D Materials for Electrocatalytic Applications: Synthesis, Multifaceted Nanostructures, and Catalytic Center Design. SMALL 2022; 18:e2105831. [PMID: 35102688 DOI: 10.1002/smll.202105831] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/23/2021] [Indexed: 02/05/2023]
Abstract
Currently, the development of advanced 2D nanomaterials has become an interdisciplinary subject with extensive studies due to their extraordinary physicochemical performances. Beyond graphene, the emerging 2D-material-derived electrocatalysts (2D-ECs) have aroused great attention as one of the best candidates for heterogeneous electrocatalysis. The tunable physicochemical compositions and characteristics of 2D-ECs enable rational structural engineering at the molecular/atomic levels to meet the requirements of different catalytic applications. Due to the lack of instructive and comprehensive reviews, here, the most recent advances in the nanostructure and catalytic center design and the corresponding structure-function relationships of emerging 2D-ECs are systematically summarized. First, the synthetic pathways and state-of-the-art strategies in the multifaceted structural engineering and catalytic center design of 2D-ECs to promote their electrocatalytic activities, such as size and thickness, phase and strain engineering, heterojunctions, heteroatom doping, and defect engineering, are emphasized. Then, the representative applications of 2D-ECs in electrocatalytic fields are depicted and summarized in detail. Finally, the current breakthroughs and primary challenges are highlighted and future directions to guide the perspectives for developing 2D-ECs as highly efficient electrocatalytic nanoplatforms are clarified. This review provides a comprehensive understanding to engineer 2D-ECs and may inspire many novel attempts and new catalytic applications across broad fields.
Collapse
Affiliation(s)
- Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Sutong Xiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yanping Long
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Wenjie Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Sujiao Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Xi Xiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Li Qiu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China.,College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.,College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
33
|
Zhang T, Yu C, Zhu X, Yang Y, Ye D, Chen R, Liao Q. Elimination of Fuel Crossover in a Single-Flow Microfluidic Fuel Cell with a Selective Catalytic Cathode. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tong Zhang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Chuhe Yu
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Yang Yang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Dingding Ye
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Rong Chen
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
34
|
Proposal of a Facile Method to Fabricate a Multi-Dope Multiwall Carbon Nanotube as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. SUSTAINABILITY 2022. [DOI: 10.3390/su14020965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, a one-pot, low-temperature synthesis method is considered for the fabrication of heteroatom dope multiwall carbon nanotubes (MWCNT). Doped MWCNT is utilized as an effective electrocatalyst for oxygen reduction reaction (ORR). Single, double, and triple doping of boron, nitrogen and sulfur elements are utilized as the dopants. A reflux system with temperature of 180 °C is implemented in the doping procedure. Actually, unlike the previous studies in which doping on the carbon structures was performed using a furnace at temperatures above 700 °C, in this green and sustainable method, the triple doping on MWCNT is conducted at atmospheric pressure and low temperature. The morphology and structure of the fabricated catalysts were evaluated by Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Raman spectroscopy. According to the results, the nanoparticles were encapsulated in the carbon nanotubes. Aggregated clusters of the sulfur in the case of S-MWCNT are considerable. Cyclic voltammetry (CV), rotating disk electrode, linear sweep voltammetry (LSV), and chronoamperometry electrochemical tests are employed for assessing the oxygen reduction activity of the catalysts. The results illustrate that by using this doping method, the onset potential shifts to positive values towards the oxidized MWCNT. It can be deduced that by doping the N, B, and S atoms on MWCNTs, the defects in the CNT structure, which serve as active sites for ORR application, increase. The N/S/B-doped graphitic layers have a more rapid electron transfer rate at the electrode/electrolyte interface. Thus, this can improve the electrochemistry performance and electron transfer of the MWCNTs. The best performance and electrochemical activity belonged to the NB-MWCNT catalyst (−0.122 V vs. Ag/AgCl). Also, based on the results gained from the Koutecky–Levich (KL) plot, it can be said that the ORR takes place through the 4 e− pathway.
Collapse
|
35
|
Charles V, Zhang X, Yuan M, Zhang K, Cui K, Zhang J, Zhao T, Li Y, Liu Z, Li B, Zhang G. CoNi nano-alloy anchored on biomass-derived N-doped carbon frameworks for enhanced oxygen reduction and evolution reactions. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
36
|
Wang M, Wang B, Song W, Wang X, Peng X, Long X, Xia Y. Oxygen Reduction Activity of B←N-Containing Organic Molecule Affected by Asymmetric Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105524. [PMID: 34837332 DOI: 10.1002/smll.202105524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Organic molecular catalysts have received great attention as they have the merits of well-controlled molecular structures for the development of catalytic chemistry. Herein, the electronic distribution of active sites is regulated by asymmetrically introducing S-heterocycle on one side of the molecular core. As a result, the asymmetric as-PYT and as-BNT show higher oxygen reduction performance than their symmetric counterparts without (s-PY, s-PY2T) or with two S-heterocycle units (s-BN, s-BN2T). Density functional theory calculations reveal that the carbon atoms (site-12) at symmetric s-BN and s-BN2T are the catalytic active sites, while for asymmetric as-BNT, it has changed to amino-N atom (site-14). Due to the non-uniform charge distribution and increased dipole moment of as-BNT caused by asymmetric molecular configuration, the kinetics of catalytic reaction has changed significantly. The catalytically active sites of specific N atoms are further verified experimentally and theoretically by using sterically hindered phenyl groups. This work provides a simple but efficient method to design metal-free oxygen reduction electrocatalysts.
Collapse
Affiliation(s)
- Meilong Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Bingbing Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Weichen Song
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xuchao Wang
- Department of Environmental and Chemical Engineering, Tangshan University, Tangshan, 063000, P. R. China
| | - Xudong Peng
- Department of Ophthalmology, University of Washington, 325 Ninth Ave, Box 359607, Seattle, WA, 98104, USA
| | - Xiaojing Long
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yanzhi Xia
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
37
|
Yan S, Jiao L, He C, Jiang H. Pyrolysis of ZIF-67/Graphene Composite to Co Nanoparticles Confined in N-Doped Carbon for Efficient Electrocatalytic Oxygen Reduction. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
CoP/Co2P hollow spheres embedded in porous N-doped carbon as highly efficient multifunctional electrocatalyst for Zn–air battery driving water splitting device. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Zhang H, Cai A, He H, Zhang Q, Zhang F, Zhang G, Fan X, Peng W, Li Y. Nitrogen-doped 3D hollow carbon spheres for efficient selective oxidation of C–H bonds under mild conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj01495e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen-doped hollow mesoporous carbon spheres present excellent conversion and selectivity in the selective oxidation of ethylbenzene at 50 °C.
Collapse
Affiliation(s)
- Huan Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - An Cai
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Hongwei He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Qicheng Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Guoliang Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| |
Collapse
|
40
|
Velayudham P, P. V. S, Menon RS, Panda SK, Sahu AK. In-situ fabrication of cobalt sulfide decorated N, S co-doped mesoporous carbon and its application as electrocatalyst for efficient oxygen reduction reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj00403h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Designing an efficient electrocatalyst for facile oxygen reduction reaction (ORR) is essential to achieve higher fuel cell performance. Herein, we demonstrate the simple in-situ process to synthesize cobalt sulfide decorated...
Collapse
|
41
|
Li L, Wu Z, Zhang J, Zhao Y, Shao G. Watermelon Peel‐Derived Nitrogen‐Doped Porous Carbon as a Superior Oxygen Reduction Electrocatalyst for Zinc‐Air Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202101339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Lu Li
- State Center for International Cooporation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| | - Zhiheng Wu
- State Center for International Cooporation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| | - Jin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Yige Zhao
- State Center for International Cooporation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| | - Guosheng Shao
- State Center for International Cooporation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
42
|
Centi G, Perathoner S. Nanocarbon for Energy Material Applications: N 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007055. [PMID: 33682312 DOI: 10.1002/smll.202007055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Nanocarbons are an important class of energy materials and one relevant application is for the nitrogen reduction reaction, i.e., the direct synthesis of NH3 from N2 and H2 O via photo- and electrocatalytic approaches. Ammonia is also a valuable energy or hydrogen vector. This perspective paper analyses developments in the field, limiting discussion to nanocarbon-based electrodes. These aspects are discussed: i) active sites related to charge density differences on C atoms associated to defects/strains, ii) doping with heteroatoms, iii) introduction of isolated metal ions, iv) creation and in situ dynamics of metal oxide(hydroxide)/nanocarbon boundaries, and v) nanocarbon characteristics to control the interface. Discussion is focused on the performances and mechanistic aspects. Aim is not a systematic state-of-the-art report but to highlight the need to use a different perspective in studying this challenging reaction by using selected papers. Notwithstanding the large differences in the proposed nature of the active sites, fall all within a restricted range of performances, far from the targets. A holistic approach is emphasized to make a breakthrough advance.
Collapse
Affiliation(s)
- Gabriele Centi
- Departments ChiBioFarAm and MIFT, University of Messina and ERIC aisbl, V.le F. Stagno D'Alcontres 31, Messina, 98166, Italy
| | - Siglinda Perathoner
- Departments ChiBioFarAm and MIFT, University of Messina and ERIC aisbl, V.le F. Stagno D'Alcontres 31, Messina, 98166, Italy
| |
Collapse
|
43
|
Asefa T, Tang C, Ramírez-Hernández M. Nanostructured Carbon Electrocatalysts for Energy Conversions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007136. [PMID: 33856111 DOI: 10.1002/smll.202007136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The growing energy demand worldwide has led to increased use of fossil fuels. This, in turn, is making fossil fuels dwindle faster and cause more negative environmental impacts. Thus, alternative, environmentally friendly energy sources such as fuel cells and electrolyzers are being developed. While significant progress has already been made in this area, such energy systems are still hard to scale up because of their noble metal catalysts. In this concept paper, first, various scalable nanocarbon-based electrocatalysts that are being synthesized for energy conversions in these energy systems are introduced. Next, notable heteroatom-doping and nanostructuring strategies that are applied to produce different nanostructured carbon materials with high electrocatalytic activities for energy conversions are discussed. The concepts used to develop such materials with different structures and large density of dopant-based catalytic functional groups in a sustainable way, and the challenges therein, are emphasized in the discussions. The discussions also include the importance of various analytical, theoretical, and computational methods to probe the relationships between the compositions, structures, dopants, and active catalytic sites in such materials. These studies, coupled with experimental studies, can further guide innovative synthetic routes to efficient nanostructured carbon electrocatalysts for practical, large-scale energy conversion applications.
Collapse
Affiliation(s)
- Tewodros Asefa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Chaoyun Tang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen, 518060, P. R. China
| | - Maricely Ramírez-Hernández
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
44
|
Tang J, Su C, Shao Z. Covalent Organic Framework (COF)-Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. SMALL METHODS 2021; 5:e2100945. [PMID: 34928017 DOI: 10.1002/smtd.202100945] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/25/2021] [Indexed: 06/14/2023]
Abstract
Developing highly efficient electrocatalysts for renewable energy conversion and environment purification has long been a research priority in the past 15 years. Covalent organic frameworks (COFs) have emerged as a burgeoning family of organic materials internally connected by covalent bonds and have been explored as promising candidates in electrocatalysis. The reticular geometry of COFs can provide an excellent platform for precise incorporation of the active sites in the framework, and the fine-tuning hierarchical porous architectures can enable efficient accessibility of the active sites and mass transportation. Considerable advances are made in rational design and controllable fabrication of COF-based organic-inorganic hybrids, that containing organic frameworks and inorganic electroactive species to induce novel physicochemical properties, and take advantage of the synergistic effect for targeted electrocatalysis with the hybrid system. Branches of COF-based hybrids containing a diversity form of metals, metal compounds, as well as metal-free carbons have come to the fore as highly promising electrocatalysts. This review aims to provide a systematic and profound understanding of the design principles behind the COF-based hybrids for electrocatalysis applications. Particularly, the structure-activity relationship and the synergistic effects in the COF-based hybrid systems are discussed to shed some light on the future design of next-generation electrocatalysts.
Collapse
Affiliation(s)
- Jiayi Tang
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA6102, Australia
| | - Chao Su
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA6102, Australia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
45
|
Qiao Z, Wang C, Zeng Y, Spendelow JS, Wu G. Advanced Nanocarbons for Enhanced Performance and Durability of Platinum Catalysts in Proton Exchange Membrane Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006805. [PMID: 34061449 DOI: 10.1002/smll.202006805] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Insufficient stability of current carbon supported Pt and Pt alloy catalysts is a significant barrier for proton-exchange membrane fuel cells (PEMFCs). As a primary degradation cause to trigger Pt nanoparticle migration, dissolution, and aggregation, carbon corrosion remains a significant challenge. Compared with enhancing Pt and PtM alloy particle stability, improving support stability is rather challenging due to carbon's thermodynamic instability under fuel cell operation. In recent years, significant efforts have been made to develop highly durable carbon-based supports concerning innovative nanostructure design and synthesis along with mechanistic understanding. This review critically discusses recent progress in developing carbon-based materials for Pt catalysts and provides synthesis-structure-performance correlations to elucidate underlying stability enhancement mechanisms. The mechanisms and impacts of carbon support degradation on Pt catalyst performance are first discussed. The general strategies are summarized to tailor the carbon structures and strengthen the metal-support interactions, followed by discussions on how these designs lead to enhanced support stability. Based on current experimental and theoretical studies, the critical features of carbon supports are analyzed concerning their impacts on the performance and durability of Pt catalysts in fuel cells. Finally, the perspectives are shared on future directions to develop advanced carbon materials with favorable morphologies and nanostructures to increase Pt utilization, strengthen metal-support interactions, facilitate mass/charge transfer, and enhance corrosion resistance.
Collapse
Affiliation(s)
- Zhi Qiao
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Chenyu Wang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jacob S Spendelow
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
46
|
Zhang Q, Chen S, Yu YB, Hong JM. Paracetamol Degradation and Disinfection Via Electrocatalytic Oxidation by Using N-doped Graphene as Anode. Catal Letters 2021. [DOI: 10.1007/s10562-021-03853-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Kan D, Wang D, Cheng Y, Lian R, Sun B, Chen K, Huo W, Wang Y, Chen G, Wei Y. Designing of Efficient Bifunctional ORR/OER Pt Single-Atom Catalysts Based on O-Terminated MXenes by First-Principles Calculations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52508-52518. [PMID: 34699189 DOI: 10.1021/acsami.1c12893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MXenes have been used as substrate materials for single-atom catalysts (SACs) due to their unique two-dimensional (2D) structure, high surface area, and high electronic conductivity. Oxygen is the primary terminating group of MXenes; however, all of the reported Pt SACs till now are fabricated with F-terminated MXenes. According to the first-principles calculations of this work, the failure of using O-terminated MXenes as substrates is due to the low charge density around Pt and C, which weakens the catalytic activity of Pt. By adjusting the electronic structure of M2C using a second submetal with a lower work function than M, 18 potential bifunctional Pt SACs are constructed based on O-terminated bimetal MXenes. After further consideration of some important practical application factors such as overpotential, solvation effect, and reaction barriers, only four of them, i.e., Cr2Nb2C3O2-VO-Pt, Cr2Ta2C3O2-VO-Pt, Cr2NbC2O2-VO-Pt, and Cr2TaC2O2-VO-Pt, are screened as bifunctional oxygen reduction reaction/oxygen evolution reaction (ORR/OER) catalysts. All of these screened SACs are originated from Cr-based MXenes, implying the significance of Cr-based MXenes in designing bifunctional Pt SACs.
Collapse
Affiliation(s)
- Dongxiao Kan
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Engineering Laboratory of New Energy Materials and Technology, College of Physics, Jilin University, Changchun 130012, China
- Advanced Materials Research Central, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Dashuai Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Engineering Laboratory of New Energy Materials and Technology, College of Physics, Jilin University, Changchun 130012, China
| | - Yingjie Cheng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Engineering Laboratory of New Energy Materials and Technology, College of Physics, Jilin University, Changchun 130012, China
| | - Ruqian Lian
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Engineering Laboratory of New Energy Materials and Technology, College of Physics, Jilin University, Changchun 130012, China
| | - Bo Sun
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Engineering Laboratory of New Energy Materials and Technology, College of Physics, Jilin University, Changchun 130012, China
| | - Kaiyun Chen
- Advanced Materials Research Central, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Wangtu Huo
- Advanced Materials Research Central, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
| | - Yizhan Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Engineering Laboratory of New Energy Materials and Technology, College of Physics, Jilin University, Changchun 130012, China
| | - Gang Chen
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Engineering Laboratory of New Energy Materials and Technology, College of Physics, Jilin University, Changchun 130012, China
| | - Yingjin Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin Engineering Laboratory of New Energy Materials and Technology, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
48
|
Co-catalysis of metal sulfides accelerating Fe2+/Fe3+ cycling for the removal of tetracycline in heterogeneous electro-Fenton using an novel rolled NPC/CB cathodes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Cao P, Quan X, Zhao K, Zhao X, Chen S, Yu H. Durable and Selective Electrochemical H 2O 2 Synthesis under a Large Current Enabled by the Cathode with Highly Hydrophobic Three-Phase Architecture. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Peike Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Kun Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xueyang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
50
|
Zafar N, Yun S, Sun M, Shi J, Arshad A, Zhang Y, Wu Z. Cobalt-Based Incorporated Metals in Metal–Organic Framework-Derived Nitrogen-Doped Carbon as a Robust Catalyst for Triiodide Reduction in Photovoltaics. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nosheen Zafar
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China
| | - Menglong Sun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China
| | - Jing Shi
- Department of Physics, Xi’an Jiaotong University City College, Xi’an, Shaanxi 710018, China
| | - Asim Arshad
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China
| | - Yongwei Zhang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China
| | - Zhanbo Wu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China
| |
Collapse
|