• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4612466)   Today's Articles (4052)   Subscriber (49383)
For: Ertem MZ, Himeda Y, Fujita E, Muckerman JT. Interconversion of Formic Acid and Carbon Dioxide by Proton-Responsive, Half-Sandwich Cp*IrIII Complexes: A Computational Mechanistic Investigation. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01663] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Number Cited by Other Article(s)
1
Mishra A, Srivastava D, Raj D, Patra N, Padhi SK. Formate dehydrogenase activity by a Cu(II)-based molecular catalyst and deciphering the mechanism using DFT studies. Dalton Trans 2024;53:1209-1220. [PMID: 38108489 DOI: 10.1039/d3dt03023g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
2
Johnee Britto N, Jaccob M. Mechanism of formic acid dehydrogenation catalysed by Cp*Co(III) and Cp*Rh(III) complexes with N,N’-bidentate imidazoline-based ligands: A DFT exploration. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
3
Maji B, Kumar A, Bhattacherya A, Bera JK, Choudhury J. Cyclic Amide-Anchored NHC-Based Cp*Ir Catalysts for Bidirectional Hydrogenation–Dehydrogenation with CO2/HCO2H Couple. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
4
Li R, Kodaira T, Kawanami H. In situ formic acid dehydrogenation observation using a UV-vis-diffuse-reflectance spectroscopy system. Chem Commun (Camb) 2022;58:11079-11082. [PMID: 36111686 DOI: 10.1039/d2cc03768h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
5
Cheng S, Lang Z, Du J, Du Z, Li Y, Tan H, Li Y. Engineering of iridium complexes for the efficient hydrogen evolution of formic acid without additives. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
6
Johnee Britto N, Jaccob M. DFT Probe into the Mechanism of Formic Acid Dehydrogenation Catalyzed by Cp*Co, Cp*Rh, and Cp*Ir Catalysts with 4,4'-Amino-/Alkylamino-Functionalized 2,2'-Bipyridine Ligands. J Phys Chem A 2021;125:9478-9488. [PMID: 34702035 DOI: 10.1021/acs.jpca.1c05542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
7
Buil ML, Cabeza JA, Esteruelas MA, Izquierdo S, Laglera-Gándara CJ, Nicasio AI, Oñate E. Alternative Conceptual Approach to the Design of Bifunctional Catalysts: An Osmium Germylene System for the Dehydrogenation of Formic Acid. Inorg Chem 2021;60:16860-16870. [PMID: 34657436 PMCID: PMC8564761 DOI: 10.1021/acs.inorgchem.1c02893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
8
Luque-Gómez A, García-Abellán S, Munarriz J, Polo V, Passarelli V, Iglesias M. Impact of Green Cosolvents on the Catalytic Dehydrogenation of Formic Acid: The Case of Iridium Catalysts Bearing NHC-phosphane Ligands. Inorg Chem 2021;60:15497-15508. [PMID: 34558914 PMCID: PMC8527458 DOI: 10.1021/acs.inorgchem.1c02132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
9
Johnee Britto N, Jaccob M. Deciphering the Mechanistic Details of Manganese-Catalyzed Formic Acid Dehydrogenation: Insights from DFT Calculations. Inorg Chem 2021;60:11038-11047. [PMID: 34240859 DOI: 10.1021/acs.inorgchem.1c00757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
10
Nijamudheen A, Kanega R, Onishi N, Himeda Y, Fujita E, Ertem MZ. Distinct Mechanisms and Hydricities of Cp*Ir-Based CO2 Hydrogenation Catalysts in Basic Water. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
11
Liu H, Wang WH, Xiong H, Nijamudheen A, Ertem MZ, Wang M, Duan L. Efficient Iridium Catalysts for Formic Acid Dehydrogenation: Investigating the Electronic Effect on the Elementary β-Hydride Elimination and Hydrogen Formation Steps. Inorg Chem 2021;60:3410-3417. [PMID: 33560831 DOI: 10.1021/acs.inorgchem.0c03815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
12
Yao W, DeRegnaucourt AR, Shrewsbury ED, Loadholt KH, Silprakob W, Qu F, Brewster TP, Papish ET. Reinvestigating Catalytic Alcohol Dehydrogenation with an Iridium Dihydroxybipyridine Catalyst. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
13
Wang WH, Wang H, Yang Y, Lai X, Li Y, Wang J, Himeda Y, Bao M. Synergistic Effect of Pendant N Moieties for Proton Shuttling in the Dehydrogenation of Formic Acid Catalyzed by Biomimetic IrIII Complexes. CHEMSUSCHEM 2020;13:5015-5022. [PMID: 32662920 DOI: 10.1002/cssc.202001190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/12/2020] [Indexed: 06/11/2023]
14
Hong D, Shimoyama Y, Ohgomori Y, Kanega R, Kotani H, Ishizuka T, Kon Y, Himeda Y, Kojima T. Cooperative Effects of Heterodinuclear IrIII-MII Complexes on Catalytic H2 Evolution from Formic Acid Dehydrogenation in Water. Inorg Chem 2020;59:11976-11985. [PMID: 32648749 DOI: 10.1021/acs.inorgchem.0c00812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
15
Onishi N, Kanega R, Himeda Y. Development of Proton-responsive Catalysts for Organic Synthesis and Energy Chemistry. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
16
Matsubara Y, Kosaka T, Nagasawa A, Yoshida Y, Sakuma R, Masano N, Ishitani O. Theoretical Insight into the Importance of a Carbamoyl Group in the Hydride Transfer from a Ruthenium Complex to a Pyridinium. CHEM LETT 2020. [DOI: 10.1246/cl.190937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
17
Guan C, Pan Y, Zhang T, Ajitha MJ, Huang K. An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis. Chem Asian J 2020;15:937-946. [DOI: 10.1002/asia.201901676] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/21/2020] [Indexed: 01/03/2023]
18
Kawanami H, Iguchi M, Himeda Y. Ligand Design for Catalytic Dehydrogenation of Formic Acid to Produce High-pressure Hydrogen Gas under Base-free Conditions. Inorg Chem 2020;59:4191-4199. [DOI: 10.1021/acs.inorgchem.9b01624] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
19
Kanega R, Ertem MZ, Onishi N, Szalda DJ, Fujita E, Himeda Y. CO2 Hydrogenation and Formic Acid Dehydrogenation Using Ir Catalysts with Amide-Based Ligands. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00809] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
20
Jia W, Wang Z, Zhi X. Half‐sandwich ruthenium complexes with S chiff base ligands bearing a hydroxyl group: Preparation, characterization and catalytic activities. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
21
Ikeda K, Hori Y, Mahyuddin MH, Shiota Y, Staykov A, Matsumoto T, Yoshizawa K, Ogo S. Dual Catalytic Cycle of H2 and H2O Oxidations by a Half-Sandwich Iridium Complex: A Theoretical Study. Inorg Chem 2019;58:7274-7284. [DOI: 10.1021/acs.inorgchem.9b00307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
22
Yan X, Ge H, Yang X. Hydrogenation of CO2 to Methanol Catalyzed by Cp*Co Complexes: Mechanistic Insights and Ligand Design. Inorg Chem 2019;58:5494-5502. [DOI: 10.1021/acs.inorgchem.8b03214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
23
Shiekh BA. Biomimetic heterobimetallic architecture of Ni(ii) and Fe(ii) for CO2 hydrogenation in aqueous media. A DFT study. RSC Adv 2019;9:33107-33116. [PMID: 35529114 PMCID: PMC9073165 DOI: 10.1039/c9ra07139c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/10/2019] [Indexed: 11/21/2022]  Open
24
Onishi N, Kanega R, Fujita E, Himeda Y. Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation Catalyzed by Iridium Complexes Bearing Pyridyl-pyrazole Ligands: Effect of an Electron-donating Substituent on the Pyrazole Ring on the Catalytic Activity and Durability. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801323] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
25
Esteruelas MA, García-Yebra C, Martín J, Oñate E. Dehydrogenation of Formic Acid Promoted by a Trihydride-Hydroxo-Osmium(IV) Complex: Kinetics and Mechanism. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02370] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
26
Revisiting O–O Bond Formation through Outer‐Sphere Water Molecules versus Bimolecular Mechanisms in Water‐Oxidation Catalysis (WOC) by Cp*Ir Based Complexes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
27
Molecular Rh(III) and Ir(III) Catalysts Immobilized on Bipyridine-Based Covalent Triazine Frameworks for the Hydrogenation of CO2 to Formate. Catalysts 2018. [DOI: 10.3390/catal8070295] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
28
Panneerselvam M, Jaccob M. Role of Anation on the Mechanism of Proton Reduction Involving a Pentapyridine Cobalt Complex: A Theoretical Study. Inorg Chem 2018;57:8116-8127. [PMID: 29969023 DOI: 10.1021/acs.inorgchem.8b00286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
29
Yan X, Yang X. Mechanistic Insights into Iridium Catalyzed Disproportionation of Formic Acid to CO2 and Methanol: A DFT Study. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00913] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
30
Wang L, Ertem MZ, Murata K, Muckerman JT, Fujita E, Himeda Y. Highly Efficient and Selective Methanol Production from Paraformaldehyde and Water at Room Temperature. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
31
Gunasekar GH, Shin J, Jung KD, Park K, Yoon S. Design Strategy toward Recyclable and Highly Efficient Heterogeneous Catalysts for the Hydrogenation of CO2 to Formate. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00392] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
32
Fang S, Chen H, Wei H. Insight into catalytic reduction of CO2 to methane with silanes using Brookhart's cationic Ir(iii) pincer complex. RSC Adv 2018;8:9232-9242. [PMID: 35541860 PMCID: PMC9078678 DOI: 10.1039/c7ra13486j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/22/2018] [Indexed: 12/15/2022]  Open
33
Jiang L, Huang F, Wang Q, Sun C, Liu J, Chen D. Mechanistic insight into Ni-mediated decarbonylation of unstrained ketones: the origin of decarbonylation catalytic activity. Org Chem Front 2018. [DOI: 10.1039/c8qo00335a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
34
Wonglakhon T, Surawatanawong P. Mechanistic insights into HCO2H dehydrogenation and CO2 hydrogenation catalyzed by Ir(Cp*) containing tetrahydroxy bipyrimidine ligand: the role of sodium and proton shuttle. Dalton Trans 2018;47:17020-17031. [DOI: 10.1039/c8dt03283a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
35
Geri JB, Ciatti JL, Szymczak NK. Charge effects regulate reversible CO2 reduction catalysis. Chem Commun (Camb) 2018;54:7790-7793. [DOI: 10.1039/c8cc04370a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
36
Rawat KS, Pathak B. Flexible proton-responsive ligand-based Mn(i) complexes for CO2 hydrogenation: a DFT study. Phys Chem Chem Phys 2018;20:12535-12542. [DOI: 10.1039/c7cp08637g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
37
Suna Y, Himeda Y, Fujita E, Muckerman JT, Ertem MZ. Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO2 Hydrogenation. CHEMSUSCHEM 2017;10:4535-4543. [PMID: 28985455 DOI: 10.1002/cssc.201701676] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/03/2017] [Indexed: 06/07/2023]
38
Broicher C, Foit SR, Rose M, Hausoul PJ, Palkovits R. A Bipyridine-Based Conjugated Microporous Polymer for the Ir-Catalyzed Dehydrogenation of Formic Acid. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02425] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
39
Cohen S, Borin V, Schapiro I, Musa S, De-Botton S, Belkova NV, Gelman D. Ir(III)-PC(sp3)P Bifunctional Catalysts for Production of H2 by Dehydrogenation of Formic Acid: Experimental and Theoretical Study. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02482] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
40
Iguchi M, Zhong H, Himeda Y, Kawanami H. Kinetic Studies on Formic Acid Dehydrogenation Catalyzed by an Iridium Complex towards Insights into the Catalytic Mechanism of High‐Pressure Hydrogen Gas Production. Chemistry 2017;23:17017-17021. [DOI: 10.1002/chem.201702969] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 01/10/2023]
41
Gerlach DL, Siek S, Burks DB, Tesh JM, Thompson CR, Vasquez RM, White NJ, Zeller M, Grotjahn DB, Papish ET. Ruthenium (II) and Iridium (III) Complexes of N-Heterocyclic Carbene and Pyridinol Derived Bidentate Chelates: Synthesis, Characterization, and Reactivity. Inorganica Chim Acta 2017;466:442-450. [PMID: 29217867 PMCID: PMC5714516 DOI: 10.1016/j.ica.2017.06.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
42
Kanega R, Onishi N, Szalda DJ, Ertem MZ, Muckerman JT, Fujita E, Himeda Y. CO2 Hydrogenation Catalysts with Deprotonated Picolinamide Ligands. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02280] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
43
Ono T, Qu S, Gimbert-Suriñach C, Johnson MA, Marell DJ, Benet-Buchholz J, Cramer CJ, Llobet A. Hydrogenative Carbon Dioxide Reduction Catalyzed by Mononuclear Ruthenium Polypyridyl Complexes: Discerning between Electronic and Steric Effects. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
44
Development of Proton-Responsive Catalysts. CHEM REC 2017. [DOI: 10.1002/tcr.201700023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
45
Siek S, Burks DB, Gerlach DL, Liang G, Tesh JM, Thompson CR, Qu F, Shankwitz JE, Vasquez RM, Chambers N, Szulczewski GJ, Grotjahn DB, Webster CE, Papish ET. Iridium and Ruthenium Complexes of N-Heterocyclic Carbene- and Pyridinol-Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal. Organometallics 2017;36:1091-1106. [PMID: 29540958 PMCID: PMC5840859 DOI: 10.1021/acs.organomet.6b00806] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Indexed: 02/05/2023]
46
Tsurusaki A, Murata K, Onishi N, Sordakis K, Laurenczy G, Himeda Y. Investigation of Hydrogenation of Formic Acid to Methanol using H2 or Formic Acid as a Hydrogen Source. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03194] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
47
Guan C, Zhang DD, Pan Y, Iguchi M, Ajitha MJ, Hu J, Li H, Yao C, Huang MH, Min S, Zheng J, Himeda Y, Kawanami H, Huang KW. Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N′-Diimine Ligand. Inorg Chem 2016;56:438-445. [DOI: 10.1021/acs.inorgchem.6b02334] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
48
Roy BC, Chakrabarti K, Shee S, Paul S, Kundu S. Bifunctional RuII-Complex-Catalysed Tandem C−C Bond Formation: Efficient and Atom Economical Strategy for the Utilisation of Alcohols as Alkylating Agents. Chemistry 2016;22:18147-18155. [DOI: 10.1002/chem.201603557] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Indexed: 11/06/2022]
49
Zhang Q, Yu HZ, Fu Y. Theoretical Study of Ir-Catalyzed Chemoselective C1–O Reduction of Glucose with Silane. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
50
Liu JB, Sheng XH, Sun CZ, Huang F, Chen DZ. A Computational Mechanistic Study of Amidation of Quinoline N-Oxide: The Relative Stability of Amido Insertion Intermediates Determines the Regioselectivity. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02938] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA