• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4610642)   Today's Articles (5052)   Subscriber (49380)
For: Schulz C, Kittl R, Ludwig R, Gorton L. Direct Electron Transfer from the FAD Cofactor of Cellobiose Dehydrogenase to Electrodes. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01854] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Number Cited by Other Article(s)
1
Schachinger F, Ma S, Ludwig R. Redox potential of FAD-dependent glucose dehydrogenase. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]  Open
2
Engineering bio-interfaces for the direct electron transfer of Myriococcum thermophilum cellobiose dehydrogenase: Towards a mediator-less biosupercapacitor/biofuel cell hybrid. Biosens Bioelectron 2022;210:114337. [PMID: 35537312 DOI: 10.1016/j.bios.2022.114337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/24/2022]
3
Schachinger F, Chang H, Scheiblbrandner S, Ludwig R. Amperometric Biosensors Based on Direct Electron Transfer Enzymes. Molecules 2021;26:molecules26154525. [PMID: 34361678 PMCID: PMC8348568 DOI: 10.3390/molecules26154525] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]  Open
4
Cohen R, Cohen Y, Mukha D, Yehezkeli O. Oxygen insensitive amperometric glucose biosensor based on FAD dependent glucose dehydrogenase co-entrapped with DCPIP or DCNQ in a polydopamine layer. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
5
Direct Electrochemical Enzyme Electron Transfer on Electrodes Modified by Self-Assembled Molecular Monolayers. Catalysts 2020. [DOI: 10.3390/catal10121458] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]  Open
6
Besharati M, Tabrizi MA, Molaabasi F, Saber R, Shamsipur M, Hamedi J, Hosseinkhani S. Novel enzyme-based electrochemical and colorimetric biosensors for tetracycline monitoring in milk. Biotechnol Appl Biochem 2020;69:41-50. [PMID: 33226159 DOI: 10.1002/bab.2078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
7
Kamathewatta NJB, Deay DO, Karaca BT, Seibold S, Nguyen TM, Tomás B, Richter ML, Berrie CL, Tamerler C. Self-Immobilized Putrescine Oxidase Biocatalyst System Engineered with a Metal Binding Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020;36:11908-11917. [PMID: 32921059 DOI: 10.1021/acs.langmuir.0c01986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
8
Bollella P, Katz E. Enzyme-Based Biosensors: Tackling Electron Transfer Issues. SENSORS (BASEL, SWITZERLAND) 2020;20:E3517. [PMID: 32575916 PMCID: PMC7349488 DOI: 10.3390/s20123517] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/25/2022]
9
Tuoriniemi J, Gorton L, Ludwig R, Safina G. Determination of the Distance Between the Cytochrome and Dehydrogenase Domains of Immobilized Cellobiose Dehydrogenase by Using Surface Plasmon Resonance with a Center of Mass Based Model. Anal Chem 2020;92:2620-2627. [PMID: 31916434 PMCID: PMC7003987 DOI: 10.1021/acs.analchem.9b04490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
10
Scheiblbrandner S, Ludwig R. Cellobiose dehydrogenase: Bioelectrochemical insights and applications. Bioelectrochemistry 2019;131:107345. [PMID: 31494387 DOI: 10.1016/j.bioelechem.2019.107345] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
11
Besharati M, Hamedi J, Hosseinkhani S, Saber R. A novel electrochemical biosensor based on TetX2 monooxygenase immobilized on a nano-porous glassy carbon electrode for tetracycline residue detection. Bioelectrochemistry 2019;128:66-73. [PMID: 30928867 DOI: 10.1016/j.bioelechem.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 02/16/2019] [Accepted: 02/16/2019] [Indexed: 12/17/2022]
12
Ma S, Ludwig R. Direct Electron Transfer of Enzymes Facilitated by Cytochromes. ChemElectroChem 2019;6:958-975. [PMID: 31008015 PMCID: PMC6472588 DOI: 10.1002/celc.201801256] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/12/2018] [Indexed: 01/03/2023]
13
Grippo V, Ma S, Ludwig R, Gorton L, Bilewicz R. Cellobiose dehydrogenase hosted in lipidic cubic phase to improve catalytic activity and stability. Bioelectrochemistry 2019;125:134-141. [DOI: 10.1016/j.bioelechem.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/15/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022]
14
Meneghello M, Al-Lolage FA, Ma S, Ludwig R, Bartlett PN. Studying direct electron transfer by site-directed immobilization of cellobiose dehydrogenase. ChemElectroChem 2019;6:700-713. [PMID: 31700765 PMCID: PMC6837870 DOI: 10.1002/celc.201801503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 11/10/2022]
15
Fungi-Based Microbial Fuel Cells. ENERGIES 2018. [DOI: 10.3390/en11102827] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
16
Copper active site in polysaccharide monooxygenases. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
17
Fusco G, Göbel G, Zanoni R, Bracciale MP, Favero G, Mazzei F, Lisdat F. Aqueous polythiophene electrosynthesis: A new route to an efficient electrode coupling of PQQ-dependent glucose dehydrogenase for sensing and bioenergetic applications. Biosens Bioelectron 2018;112:8-17. [DOI: 10.1016/j.bios.2018.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/27/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
18
Bollella P, Mazzei F, Favero G, Fusco G, Ludwig R, Gorton L, Antiochia R. Improved DET communication between cellobiose dehydrogenase and a gold electrode modified with a rigid self-assembled monolayer and green metal nanoparticles: The role of an ordered nanostructuration. Biosens Bioelectron 2017;88:196-203. [DOI: 10.1016/j.bios.2016.08.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
19
Muguruma H, Iwasa H, Hidaka H, Hiratsuka A, Uzawa H. Mediatorless Direct Electron Transfer between Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase and Single-Walled Carbon Nanotubes. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02470] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
20
Gal I, Schlesinger O, Amir L, Alfonta L. Yeast surface display of dehydrogenases in microbial fuel-cells. Bioelectrochemistry 2016;112:53-60. [DOI: 10.1016/j.bioelechem.2016.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/17/2016] [Accepted: 07/17/2016] [Indexed: 12/31/2022]
21
Fort CI, Ortiz R, Cotet LC, Danciu V, Popescu IC, Gorton L. Carbon Aerogel as Electrode Material for Improved Direct Electron Transfer in Biosensors Incorporating Cellobiose Dehydrogenase. ELECTROANAL 2016. [DOI: 10.1002/elan.201600219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
22
A novel bio-electronic tongue using different cellobiose dehydrogenases to resolve mixtures of various sugars and interfering analytes. Biosens Bioelectron 2015;79:515-21. [PMID: 26748369 DOI: 10.1016/j.bios.2015.12.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/15/2015] [Accepted: 12/20/2015] [Indexed: 11/22/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA