1
|
Broome JA, Nguyen NP, Baumung CRE, Chen VC, Bushnell EAC. Gaining Insight into the Catalytic Mechanism of the R132H IDH1 Mutant: A Synergistic DFT Cluster and Experimental Investigation. Biochemistry 2024; 63:2682-2691. [PMID: 39318042 DOI: 10.1021/acs.biochem.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Human isocitrate dehydrogenase 1 (IDH1) is an enzyme that is found in humans that plays a critical role in aerobic metabolism. As a part of the citric acid cycle, IDH1 becomes responsible for catalyzing the oxidative decarboxylation of isocitrate to form α-ketoglutarate (αKG), with nicotinamide adenine dinucleotide phosphate (NADP+) as a cofactor. Strikingly, mutations of the IDH1 enzyme have been discovered in several cancers including glioblastoma multiforme (GBM), a highly aggressive form of brain cancer. It has been experimentally determined that single-residue IDH1 mutations occur at a very high frequency in GBM. Specifically, the IDH1 R132H mutation is known to produce (D)2-hydroxyglutarate (2HG), a recognized oncometabolite. Using the previously determined catalytic mechanism of IDH1, a DFT QM model was developed to study the mechanistic properties of IDH1 R132H compared to wild type enzyme. Validating these insights, biochemical in vitro assays of metabolites produced by mutant vs wild type enzymes were measured and compared. From the results discussed herein, we discuss the mechanistic impact of mutations in IDH1 on its ability to catalyze the formation of αKG and 2HG.
Collapse
Affiliation(s)
- Joshua A Broome
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| | - Nguyen P Nguyen
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| | - Cassidy R E Baumung
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| | - Vincent C Chen
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| | - Eric A C Bushnell
- Department of Chemistry, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada
| |
Collapse
|
2
|
Ferreira P, Neves RPP, Miranda FP, Cunha AV, Havenith RWA, Ramos MJ, Fernandes PA. DszA Catalyzes C-S Bond Cleavage through N 5-Hydroperoxyl Formation. J Chem Inf Model 2024; 64:4218-4230. [PMID: 38684937 PMCID: PMC11134501 DOI: 10.1021/acs.jcim.4c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Due to its detrimental impact on human health and the environment, regulations demand ultralow sulfur levels on fossil fuels, in particular in diesel. However, current desulfurization techniques are expensive and cannot efficiently remove heteroaromatic sulfur compounds, which are abundant in crude oil and concentrate in the diesel fraction after distillation. Biodesulfurization via the four enzymes of the metabolic 4S pathway of the bacterium Rhodococcus erythropolis (DszA-D) is a possible solution. However, the 4S pathway needs to operate at least 500 times faster for industrial applicability, a goal currently pursued through enzyme engineering. In this work, we unveil the catalytic mechanism of the flavin monooxygenase DszA. Surprisingly, we found that this enzyme follows a recently proposed atypical mechanism that passes through the formation of an N5OOH intermediate at the re side of the cofactor, aided by a well-defined, predominantly hydrophobic O2 pocket. Besides clarifying the unusual chemical mechanism of the complex DszA enzyme, with obvious implications for understanding the puzzling chemistry of flavin-mediated catalysis, the result is crucial for the rational engineering of DszA, contributing to making biodesulfurization attractive for the oil refining industry.
Collapse
Affiliation(s)
- Pedro Ferreira
- LAQV,REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Rui P. P. Neves
- LAQV,REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Filipa P. Miranda
- LAQV,REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Ana V. Cunha
- Department
of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp 2000, Belgium
| | - Remco W. A. Havenith
- Stratingh
Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
- Ghent
Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan
281 (S3), Ghent B-9000, Belgium
| | - Maria J. Ramos
- LAQV,REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Pedro A. Fernandes
- LAQV,REQUIMTE,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| |
Collapse
|
3
|
Su X, Zhang L, Meng H, Wang H, Zhao J, Sun X, Song X, Zhang X, Mao L. Long-term conservation tillage increase cotton rhizosphere sequestration of soil organic carbon by changing specific microbial CO 2 fixation pathways in coastal saline soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120743. [PMID: 38626484 DOI: 10.1016/j.jenvman.2024.120743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/18/2024]
Abstract
Coastal saline soil is an important reserve resource for arable land globally. Data from 10 years of continuous stubble return and subsoiling experiments have revealed that these two conservation tillage measures significantly improve cotton rhizosphere soil organic carbon sequestration in coastal saline soil. However, the contribution of microbial fixation of atmospheric carbon dioxide (CO2) has remained unclear. Here, metagenomics and metabolomics analyses were used to deeply explore the microbial CO2 fixation process in rhizosphere soil of coastal saline cotton fields under long-term stubble return and subsoiling. Metagenomics analysis showed that stubble return and subsoiling mainly optimized CO2 fixing microorganism (CFM) communities by increasing the abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi, and improving composition diversity. Conjoint metagenomics and metabolomics analyses investigated the effects of stubble return and subsoiling on the reverse tricarboxylic acid (rTCA) cycle. The conversion of citrate to oxaloacetate was inhibited in the citrate cleavage reaction of the rTCA cycle. More citrate was converted to acetyl-CoA, which enhanced the subsequent CO2 fixation process of acetyl-CoA conversion to pyruvate. In the rTCA cycle reductive carboxylation reaction from 2-oxoglutarate to isocitrate, synthesis of the oxalosuccinate intermediate product was inhibited, with strengthened CO2 fixation involving the direct conversion of 2-oxoglutarate to isocitrate. The collective results demonstrate that stubble return and subsoiling optimizes rhizosphere CFM communities by increasing microbial diversity, in turn increasing CO2 fixation by enhancing the utilization of rTCA and 3-hydroxypropionate/4-hydroxybutyrate cycles by CFMs. These events increase the microbial CO2 fixation in the cotton rhizosphere, thereby promoting the accumulation of microbial biomass, and ultimately improving rhizosphere soil organic carbon. This study clarifies the impact of conservation tillage measures on microbial CO2 fixation in cotton rhizosphere of coastal saline soil, and provides fundamental data for the improvement of carbon sequestration in saline soil in agricultural ecosystems.
Collapse
Affiliation(s)
- Xunya Su
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Le Zhang
- China Agricultural University, Agronomy College, Beijing, 100193, China.
| | - Hao Meng
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Han Wang
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Jiaxue Zhao
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Xuezhen Sun
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Xianliang Song
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Xiaopei Zhang
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Lili Mao
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| |
Collapse
|
4
|
Cui Z, Li C, Liu W, Sun M, Deng S, Cao J, Yang H, Chen P. Scutellarin activates IDH1 to exert antitumor effects in hepatocellular carcinoma progression. Cell Death Dis 2024; 15:267. [PMID: 38622131 PMCID: PMC11018852 DOI: 10.1038/s41419-024-06625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Isochlorate dehydrogenase 1 (IDH1) is an important metabolic enzyme for the production of α-ketoglutarate (α-KG), which has antitumor effects and is considered to have potential antitumor effects. The activation of IDH1 as a pathway for the development of anticancer drugs has not been attempted. We demonstrated that IDH1 can limit glycolysis in hepatocellular carcinoma (HCC) cells to activate the tumor immune microenvironment. In addition, through proteomic microarray analysis, we identified a natural small molecule, scutellarin (Scu), which activates IDH1 and inhibits the growth of HCC cells. By selectively modifying Cys297, Scu promotes IDH1 active dimer formation and increases α-KG production, leading to ubiquitination and degradation of HIF1a. The loss of HIF1a further leads to the inhibition of glycolysis in HCC cells. The activation of IDH1 by Scu can significantly increase the level of α-KG in tumor tissue, downregulate the HIF1a signaling pathway, and activate the tumor immune microenvironment in vivo. This study demonstrated the inhibitory effect of IDH1-α-KG-HIF1a on the growth of HCC cells and evaluated the inhibitory effect of Scu, the first IDH1 small molecule agonist, which provides a reference for cancer immunotherapy involving activated IDH1.
Collapse
Affiliation(s)
- Zhao Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Mo Sun
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Junxian Cao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences & MEGAROBO, Beijing, China.
| |
Collapse
|
5
|
Zhou J, Han T, Ahmad S, Quinn D, Moody TS, Wu Q, Huang M. Origin of the enantioselectivity of alcohol dehydrogenase. Phys Chem Chem Phys 2023; 25:31292-31300. [PMID: 37955422 DOI: 10.1039/d3cp04019d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Alcohol dehydrogenases (ADH) are a family of enzymes that catalyse the interconversion between ketones/aldehydes and alcohols in the presence of NADPH cofactor. It is challenging to desymmetrise the substituted cyclopentane-1,3-dione by engineering an ADH, while the reaction mechanism of the metal independent ADH remains elusive. Here we measured the conversion of a model substrate 2-benzyl-2-methylcyclopentane-1,3-dione by LbADH and found it predominately gave the (2R,3R) product. Binding mode analysis of the substrate in LbADH from molecular dynamics simulations disclosed the origin of the enantioselectivity of the enzyme; the opening and closing of the loop 191-205 above the substrate are responsible for shaping the binding pocket to orientate the substrate, so as to give different stereoisomer products. Using QM/MM calculations, we elucidated the reaction mechanism of LbADH. Furthermore, we demonstrated the reaction profile corresponding to the production of different stereoisomers, which is in accordance with our experimental observations. This research here will shed a light on the rational engineering of ADH to achieve stereodivergent stereoisomer products.
Collapse
Affiliation(s)
- Jiahui Zhou
- School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | - Tao Han
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Shahbaz Ahmad
- School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, Northern Ireland, UK
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland
| | - Derek Quinn
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, Northern Ireland, UK
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland
| | - Thomas S Moody
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, Northern Ireland, UK
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
6
|
Raghavan B, Paulikat M, Ahmad K, Callea L, Rizzi A, Ippoliti E, Mandelli D, Bonati L, De Vivo M, Carloni P. Drug Design in the Exascale Era: A Perspective from Massively Parallel QM/MM Simulations. J Chem Inf Model 2023; 63:3647-3658. [PMID: 37319347 PMCID: PMC10302481 DOI: 10.1021/acs.jcim.3c00557] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 06/17/2023]
Abstract
The initial phases of drug discovery - in silico drug design - could benefit from first principle Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics (MD) simulations in explicit solvent, yet many applications are currently limited by the short time scales that this approach can cover. Developing scalable first principle QM/MM MD interfaces fully exploiting current exascale machines - so far an unmet and crucial goal - will help overcome this problem, opening the way to the study of the thermodynamics and kinetics of ligand binding to protein with first principle accuracy. Here, taking two relevant case studies involving the interactions of ligands with rather large enzymes, we showcase the use of our recently developed massively scalable Multiscale Modeling in Computational Chemistry (MiMiC) QM/MM framework (currently using DFT to describe the QM region) to investigate reactions and ligand binding in enzymes of pharmacological relevance. We also demonstrate for the first time strong scaling of MiMiC-QM/MM MD simulations with parallel efficiency of ∼70% up to >80,000 cores. Thus, among many others, the MiMiC interface represents a promising candidate toward exascale applications by combining machine learning with statistical mechanics based algorithms tailored for exascale supercomputers.
Collapse
Affiliation(s)
- Bharath Raghavan
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
- Department
of Physics, RWTH Aachen University, Aachen 52074, Germany
| | - Mirko Paulikat
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
| | - Katya Ahmad
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
| | - Lara Callea
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Andrea Rizzi
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
- Atomistic
Simulations, Italian Institute of Technology, Genova 16163, Italy
| | - Emiliano Ippoliti
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
| | - Davide Mandelli
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
| | - Laura Bonati
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Marco De Vivo
- Molecular
Modelling and Drug Discovery, Italian Institute
of Technology, Genova 16163, Italy
| | - Paolo Carloni
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
- Department
of Physics and Universitätsklinikum, RWTH Aachen University, Aachen 52074, Germany
| |
Collapse
|
7
|
Blacker TS, Duchen MR, Bain AJ. NAD(P)H binding configurations revealed by time-resolved fluorescence and two-photon absorption. Biophys J 2023; 122:1240-1253. [PMID: 36793214 PMCID: PMC10111271 DOI: 10.1016/j.bpj.2023.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/07/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
NADH and NADPH play key roles in the regulation of metabolism. Their endogenous fluorescence is sensitive to enzyme binding, allowing changes in cellular metabolic state to be determined using fluorescence lifetime imaging microscopy (FLIM). However, to fully uncover the underlying biochemistry, the relationships between their fluorescence and binding dynamics require greater understanding. Here we accomplish this through time- and polarization-resolved fluorescence and polarized two-photon absorption measurements. Two lifetimes result from binding of both NADH to lactate dehydrogenase and NADPH to isocitrate dehydrogenase. The composite fluorescence anisotropy indicates the shorter (1.3-1.6 ns) decay component to be accompanied by local motion of the nicotinamide ring, pointing to attachment solely via the adenine moiety. For the longer lifetime (3.2-4.4 ns), the nicotinamide conformational freedom is found to be fully restricted. As full and partial nicotinamide binding are recognized steps in dehydrogenase catalysis, our results unify photophysical, structural, and functional aspects of NADH and NADPH binding and clarify the biochemical processes that underlie their contrasting intracellular lifetimes.
Collapse
Affiliation(s)
- Thomas S Blacker
- Department of Physics & Astronomy, University College London, London, United Kingdom; Research Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | - Michael R Duchen
- Research Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | - Angus J Bain
- Department of Physics & Astronomy, University College London, London, United Kingdom.
| |
Collapse
|
8
|
Structures of a constitutively active mutant of human IDH3 reveal new insights into the mechanisms of allosteric activation and the catalytic reaction. J Biol Chem 2022; 298:102695. [PMID: 36375638 PMCID: PMC9731866 DOI: 10.1016/j.jbc.2022.102695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Human NAD-dependent isocitrate dehydrogenase or IDH3 (HsIDH3) catalyzes the decarboxylation of isocitrate into α-ketoglutarate in the tricarboxylic acid cycle. It consists of three types of subunits (α, β, and γ) and exists and functions as the (αβαγ)2 heterooctamer. HsIDH3 is regulated allosterically and/or competitively by numerous metabolites including CIT, ADP, ATP, and NADH. Our previous studies have revealed the molecular basis for the activity and regulation of the αβ and αγ heterodimers. However, the molecular mechanism for the allosteric activation of the HsIDH3 holoenzyme remains elusive. In this work, we report the crystal structures of the αβ and αγ heterodimers and the (αβαγ)2 heterooctamer containing an α-Q139A mutation in the clasp domain, which renders all the heterodimers and the heterooctamer constitutively active in the absence of activators. Our structural analysis shows that the α-Q139A mutation alters the hydrogen-bonding network at the heterodimer-heterodimer interface in a manner similar to that in the activator-bound αγ heterodimer. This alteration not only stabilizes the active sites of both αQ139Aβ and αQ139Aγ heterodimers in active conformations but also induces conformational changes of the pseudo-allosteric site of the αQ139Aβ heterodimer enabling it to bind activators. In addition, the αQ139AICT+Ca+NADβNAD structure presents the first pseudo-Michaelis complex of HsIDH3, which allows us to identify the key residues involved in the binding of cofactor, substrate, and metal ion. Our structural and biochemical data together reveal new insights into the molecular mechanisms for allosteric regulation and the catalytic reaction of HsIDH3.
Collapse
|
9
|
Characteristics of Escherichia coli Isolated from Intestinal Microbiota Children of 0–5 Years Old in the Commune of Abomey-Calavi. J Pathog 2022; 2022:6253894. [PMID: 35707744 PMCID: PMC9192313 DOI: 10.1155/2022/6253894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli is a commensal bacterium and one of the first bacteria to colonize the digestive tract of newborns after birth. It is characterized by great versatility and metabolic flexibility that allows its survival in different niches. The present study aims at analyzing the diversity of E. coli strains isolated from the intestinal microbiota of children aged from 0 to 5 years in the commune of Abomey-Calavi in Benin. For this purpose, a descriptive and analytical cross-sectional study was conducted. A total of 135 stool samples were collected from the pediatric clinic of Abomey-Calavi. Microbiological analyses were performed according to standard microbiology analytical techniques. The molecular characterization of E. coli was performed by investigating eight genes (dinB, icdA, pabB, polB, putP, trpA, trpB, and uidA) using the PCR technique. The results showed that the average loading rate on stool samples was 3.74 × 107 CFU/g for TAMF. A total of 7 species of bacteria were identified at different proportions: Staphylococcus spp (55.36%), E. coli (14.29%), Klebsiella ornithinolytica (12.5%), Serratia odorifera (5.36%), and Enterobacter aerogenes (5.36%). Interestingly, isolated E. coli presented a resistance of 100% to cefotaxime and aztreonam. In addition, resistances of 95.24% and 50% were observed against erythromycin and nalidixic acid, respectively. The molecular characterization of the isolated E. coli strains allowed us to discover another molecular variation within the isolated strains. Genes encoding the enzymes isocitrate dehydrogenase (icd) and DNA polymerase II (polB) were detected at 96.30% in the isolated E. coli strains. Moreover, the genes encoding the enzymes beta-D-glucuronidase (uidA) and DNA polymerase (dinB) were detected at 88.89% in the isolated E. coli strains. Interestingly, 81.48%, 85.19, 92.59%, and 100% of isolated E. coli strains expressed the genes encoding the enzymes tryptophan synthase subunit A (trpA), proline permease (putP), p-aminobenzoate synthase, and tryptophan synthase subunit B (trpB), respectively. The diversity of E. coli strains reflects the importance of regulatory mechanisms in the adaptation of bacteria to the gut microbiota.
Collapse
|
10
|
Ghiasi M, Shahabi P, Supuran CT. Quantum mechanical study on the activation mechanism of human carbonic anhydrase VII cluster model with bis-histamine schiff bases and bis-spinaceamine derivatives. Bioorg Med Chem 2021; 44:116276. [PMID: 34225168 DOI: 10.1016/j.bmc.2021.116276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 02/05/2023]
Abstract
The activation mechanism of human carbonic anhydrase (hCA) isoform VII, hCA VII, with histamine, histamine bis-Schiff bases and bis-spinaceamine derivatives has been investigated using quantum mechanical calculations. The DFT-D3 method has been employed to calculate in detail the electronic structure and electronic energy of different compounds and complexes throughout the reaction pathway. The model system of hCA VII included the core catalytic center, the Zn2+ ion, its three histidine ligands and a hydroxide ion or water molecule coordinated to it. Furthermore, Thr199, Glu106 and the deep water molecule were considered in the model. Five activators of this enzyme, including histamine as standard, in complex with the cluster model of hCA VII were investigated. Thermodynamic functions for the overall reaction and for the complexation between activators and hCA VII were evaluated. Our results demonstrate that the protonatable moiety of these activators participates in proton transfer reactions from the zinc-bound water molecule to the reaction medium, promoting the formation of the catalytically active zinc hydroxide species of the enzyme. The QM analysis revealed that the electrostatic interactions between activators and hCA VII are the driving force of the enzyme-activator complex formation.
Collapse
Affiliation(s)
- Mina Ghiasi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran.
| | - Parisa Shahabi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di, Scienze Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Ferreira P, Fernandes PA, Ramos MJ. THE CATALYTIC MECHANISM OF THE RETAINING GLYCOSYLTRANSFERASE MANNOSYLGLYCERATE SYNTHASE. Chemistry 2021; 27:13998-14006. [PMID: 34355437 DOI: 10.1002/chem.202101724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 11/07/2022]
Abstract
To protect their intracellular proteins, extremophile microorganisms synthesize molecules called compatible solutes. These molecules are the result of the attachment of a small negatively charged molecule to a sugar molecule. It has been found that these molecules, not only protect the microorganism against osmotic stress, as initially thought, but also against other extreme conditions. The observation that these molecules can confer protection against extreme conditions to isolated enzymes from different organisms made them an exciting prospect for potential biotechnological applications. One of the most widespread compatible solute in hyperthermophile organisms is the molecule 2-O-α-D-mannosyl-D-glycerate (MG). In addition to confer protection to proteins against extreme conditions, MG was found to prevent Alzheimer's β-amyloid aggregation and reduce α-synuclein fibril formation in Parkinson's disease. In this work we studied, using computational methods, the catalytic mechanism of the synthesis of MG by the enzyme mannosylglycerate synthase (MGS) from the thermophilic bacteria Rhodothermus marinus . MGS is a promiscuous enzyme, accepting a variety of sugar donors and acceptors. This feature can be used to synthesize other molecules with potential biotechnological applications beyond MG. The unravelling of the catalytic mechanism with atomistic resolution and the associated free energies and electrostatic profiles of the stationary states obtained in the present work will help future investigations to full explore the potential of MGS.
Collapse
Affiliation(s)
- Pedro Ferreira
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Pedro A Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria J Ramos
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
12
|
Ferreira P, Cerqueira NMFSA, Fernandes PA, Romão MJ, Ramos MJ. Catalytic Mechanism of Human Aldehyde Oxidase. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pedro Ferreira
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Nuno M. F. Sousa A. Cerqueira
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria João Romão
- UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria João Ramos
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
13
|
Medina FE, Ramos MJ, Fernandes PA. Complexities of the Reaction Mechanisms of CC Double Bond Reduction in Mammalian Fatty Acid Synthase Studied with Quantum Mechanics/Molecular Mechanics Calculations. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fabiola E. Medina
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
14
|
Teixeira CSS, Ramos MJ, Sousa SF, Cerqueira NMFSA. Solving the Catalytic Mechanism of Tryptophan Synthase: an Emergent Drug Target in the Treatment of Tuberculosis. ChemCatChem 2019. [DOI: 10.1002/cctc.201901505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carla S. Silva Teixeira
- UCIBIO@REQUIMTEBioSIMDepartamento de BiomedicinaFaculdade de MedicinaUniversidade do Porto Porto 4200-319 Portugal
| | - Maria J. Ramos
- UCIBIO@REQUIMTEDepartamento de Química e BioquímicaFaculdade de CiênciasUniversidade do Porto Porto 4169-007 Portugal
| | - Sérgio F. Sousa
- UCIBIO@REQUIMTEBioSIMDepartamento de BiomedicinaFaculdade de MedicinaUniversidade do Porto Porto 4200-319 Portugal
| | - Nuno M. F. S. A. Cerqueira
- UCIBIO@REQUIMTEBioSIMDepartamento de BiomedicinaFaculdade de MedicinaUniversidade do Porto Porto 4200-319 Portugal
| |
Collapse
|
15
|
Kotredes KP, Razmpour R, Lutton E, Alfonso-Prieto M, Ramirez SH, Gamero AM. Characterization of cancer-associated IDH2 mutations that differ in tumorigenicity, chemosensitivity and 2-hydroxyglutarate production. Oncotarget 2019; 10:2675-2692. [PMID: 31105869 PMCID: PMC6505628 DOI: 10.18632/oncotarget.26848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 03/23/2019] [Indexed: 01/01/2023] Open
Abstract
The family of isocitrate dehydrogenase (IDH) enzymes is vital for cellular metabolism, as IDH1 and IDH2 are required for the decarboxylation of isocitrate to α-ketoglutarate. Heterozygous somatic mutations in IDH1 or IDH2 genes have been detected in many cancers. They share the neomorphic production of the oncometabolite (R)-2-hydroxyglutarate [(R)-2-HG]. With respect to IDH2, it is unclear whether all IDH2 mutations display the same or differ in tumorigenic properties and degrees of chemosensitivity. Here, we evaluated the three most frequent IDH2 mutations occurring in cancer. The predicted changes to the enzyme structure introduced by these individual mutations are supported by the observed production of (R)-2-HG. However, their tumorigenic properties, response to chemotherapeutic agents, and baseline activation of STAT3 differed. Paradoxically, the varying levels of endogenous (R)-2-HG produced by each IDH2 mutant inversely correlated with their respective growth rates. Interestingly, while we found that (R)-2-HG stimulated the growth of non-transformed cells, (R)-2-HG also displayed antitumor activity by suppressing the growth of tumors harboring wild type IDH2. The mitogenic effect of (R)-2-HG in immortalized cells could be switched to antiproliferative by transformation with oncogenic RAS. Thus, our findings show that despite their shared (R)-2-HG production, IDH2 mutations are not alike and differ in shaping tumor cell behavior and response to chemotherapeutic agents. Our study also reveals that under certain conditions, (R)-2-HG has antitumor properties.
Collapse
Affiliation(s)
- Kevin P Kotredes
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Roshanak Razmpour
- Department of Pathology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Evan Lutton
- Department of Pathology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mercedes Alfonso-Prieto
- Department of Inorganic and Organic Chemistry, University of Barcelona, Barcelona, Spain.,Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany.,C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Servio H Ramirez
- Department of Pathology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Pu Z, Zhao M, Zhang Y, Sun W, Bao Y. Dynamic Description of the Catalytic Cycle of Malate Enzyme: Stereoselective Recognition of Substrate, Chemical Reaction, and Ligand Release. J Phys Chem B 2018; 122:12241-12250. [PMID: 30500201 DOI: 10.1021/acs.jpcb.8b05135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In protein engineering, investigations of catalytic cycle facilitate rational design of enzymes. In the present work, deeper analysis on the catalytic cycle of malate enzyme (EC 1.1.1.40), an enzyme involved in cancer metabolic and fatty acid synthesis, was performed. In substrate binding, stereoselective recognition of a substrate originates from distance and angle difference between two chiral substrates and Mn2+ as well as monodentate or coplanar ion reaction with Arg165. In catalytic transformation, the activation barrier for the hydride transfer of d-malate is 20.28 kcal/mol higher than that for l-malate. The activation barrier for β-decarboxylation of oxaloacetate is about 4.59 kcal/mol higher than the activation barrier for the hydride transfer of l-malate. The effective activation barrier is 16.44 kcal/mol, which is in close agreement with the value derived from the application of transition-state theory and the Eyring equation to kcat. In ligand release, l/d-malate needs to overcome a higher barrier than pyruvate to break all bonds in parallel and then to escape from the binding pocket. Leu167 and Asn421 comprise a swinging gate to control the product release. The more open gate is possibly required in the direction of pyruvate to l-malate. Our studies are focused on extending structural knowledge regarding the malate enzyme and provided a powerful strategy for future experimental investigations.
Collapse
Affiliation(s)
- Zhongji Pu
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Mengdi Zhao
- Department of Nanoenergy Engineering , Pusan National University , Busan 46241 , Republic of Korea
| | - Yue Zhang
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Wenhui Sun
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Yongming Bao
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China.,School of Food and Environment Science and Engineering , Dalian University of Technology , Panjin 124221 , China
| |
Collapse
|
17
|
Medina FE, Neves RPP, Ramos MJ, Fernandes PA. QM/MM Study of the Reaction Mechanism of the Dehydratase Domain from Mammalian Fatty Acid Synthase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02616] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fabiola E. Medina
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rui P. P. Neves
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
18
|
Fernandes HS, Ramos MJ, Cerqueira NMFSA. Catalytic Mechanism of the Serine Hydroxymethyltransferase: A Computational ONIOM QM/MM Study. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02321] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Henrique S. Fernandes
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria João Ramos
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Nuno M. F. S. A. Cerqueira
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
19
|
Barbosa ACC, Neves RPP, Sousa SF, Ramos MJ, Fernandes PA. Mechanistic Studies of a Flavin Monooxygenase: Sulfur Oxidation of Dibenzothiophenes by DszC. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana C. C. Barbosa
- UCIBIO,REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Rui P. P. Neves
- UCIBIO,REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Sérgio F. Sousa
- UCIBIO,REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO,REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCIBIO,REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
20
|
Medina FE, Neves RPP, Ramos MJ, Fernandes PA. A QM/MM study of the reaction mechanism of human β-ketoacyl reductase. Phys Chem Chem Phys 2018; 19:347-355. [PMID: 27905606 DOI: 10.1039/c6cp07014k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human fatty acid synthase (hFAS) is a multifunctional enzyme involved in a wide diversity of biological functions. For instance, it is a precursor of phospholipids and other complex processes such as the de novo synthesis of long chain fatty acid. Human FAS is also a component of biological membranes and it is implicated in the overexpression of several types of cancers. In this work, we describe the catalytic mechanism of β-ketoreductase (KR), which is a catalytic domain of the hFAS enzyme that catalyzes the reduction of β-ketoacyl to β-hydroxyacyl with the concomitant oxidation of the NADPH cofactor. The catalysis by KR is an intermediate step in the cycle of reactions that elongate the substrate's carbon chain until the final product is obtained. We study and propose the catalytic mechanism of the KR domain determined using the hybrid QM/MM methodology, at the ONIOM(B3LYP/6-311+G(2d,2p):AMBER) level of theory. The results indicate that the reaction mechanism occurs in two stages: (i) nucleophilic attack by a NADPH hydride to the β-carbon of the substrate, together with an asynchronous deprotonation of the Tyr2034 by the oxygen of the β-alkoxide to hold the final alcohol product; and (ii) an asynchronous deprotonation of the hydroxyl in the NADP+'s ribose by Tyr2034, and of the Lys1995 by the resulting alkoxide in the former ribose to restore the protonation state of Tyr2034. The reduction step occurs with a Gibbs energy barrier of 11.7 kcal mol-1 and a Gibbs reaction energy of -10.6 kcal mol-1. These results have provided an understanding of the catalytic mechanism of the KR hFAS domain, a piece of the heavy hFAS biosynthetic machinery.
Collapse
Affiliation(s)
- Fabiola E Medina
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Rui P P Neves
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Maria J Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Pedro A Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
21
|
Calixto AR, Ramos MJ, Fernandes PA. Influence of Frozen Residues on the Exploration of the PES of Enzyme Reaction Mechanisms. J Chem Theory Comput 2017; 13:5486-5495. [DOI: 10.1021/acs.jctc.7b00768] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ana R. Calixto
- UCIBIO, REQUIMTE,
Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE,
Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE,
Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
22
|
Fernandes HS, Ramos MJ, Cerqueira NMFSA. The Catalytic Mechanism of the Pyridoxal-5′-phosphate-Dependent Enzyme, Histidine Decarboxylase: A Computational Study. Chemistry 2017; 23:9162-9173. [DOI: 10.1002/chem.201701375] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Henrique Silva Fernandes
- UCIBIO-REQUIMTE; Departamento de Química e Bioquímica; Faculdade de Ciências s/n; Universidade do Porto; 4169-007 Porto Portugal
| | - Maria João Ramos
- UCIBIO-REQUIMTE; Departamento de Química e Bioquímica; Faculdade de Ciências s/n; Universidade do Porto; 4169-007 Porto Portugal
| | - Nuno M. F. S. A. Cerqueira
- UCIBIO-REQUIMTE; Departamento de Química e Bioquímica; Faculdade de Ciências s/n; Universidade do Porto; 4169-007 Porto Portugal
| |
Collapse
|
23
|
Bani-Yaseen AD. Computational molecular perspectives on the interaction of propranolol with β-cyclodextrin in solution: Towards the drug-receptor mechanism of interaction. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Romero-Rivera A, Garcia-Borràs M, Osuna S. Computational tools for the evaluation of laboratory-engineered biocatalysts. Chem Commun (Camb) 2016; 53:284-297. [PMID: 27812570 PMCID: PMC5310519 DOI: 10.1039/c6cc06055b] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022]
Abstract
Biocatalysis is based on the application of natural catalysts for new purposes, for which enzymes were not designed. Although the first examples of biocatalysis were reported more than a century ago, biocatalysis was revolutionized after the discovery of an in vitro version of Darwinian evolution called Directed Evolution (DE). Despite the recent advances in the field, major challenges remain to be addressed. Currently, the best experimental approach consists of creating multiple mutations simultaneously while limiting the choices using statistical methods. Still, tens of thousands of variants need to be tested experimentally, and little information is available on how these mutations lead to enhanced enzyme proficiency. This review aims to provide a brief description of the available computational techniques to unveil the molecular basis of improved catalysis achieved by DE. An overview of the strengths and weaknesses of current computational strategies is explored with some recent representative examples. The understanding of how this powerful technique is able to obtain highly active variants is important for the future development of more robust computational methods to predict amino-acid changes needed for activity.
Collapse
Affiliation(s)
- Adrian Romero-Rivera
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona, Campus Montilivi, 17071 Girona, Catalonia, Spain.
| | - Marc Garcia-Borràs
- Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive, Los Angeles, California 90095, USA
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona, Campus Montilivi, 17071 Girona, Catalonia, Spain.
| |
Collapse
|
25
|
Sousa SF, Ribeiro AJM, Neves RPP, Brás NF, Cerqueira NMFSA, Fernandes PA, Ramos MJ. Application of quantum mechanics/molecular mechanics methods in the study of enzymatic reaction mechanisms. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1281] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sérgio Filipe Sousa
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - António J. M. Ribeiro
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Rui P. P. Neves
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Natércia F. Brás
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Nuno M. F. S. A. Cerqueira
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Pedro A. Fernandes
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Maria João Ramos
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| |
Collapse
|