1
|
Nishio H, Miura H, Shishido T. Low-Temperature Borylation of C(sp 3)-O Bonds of Alkyl Ethers by Gold-Metal Oxide Cooperative Catalysis. J Am Chem Soc 2024; 146:34690-34701. [PMID: 39630121 DOI: 10.1021/jacs.4c13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Since ether moieties are often found not only in petrochemical products but also in natural organic molecules, the development of methods for manipulating C-O bonds of ethers is important for expanding the range of compound libraries synthesized from biomass resources, which should contribute to the goal of carbon neutrality. We report herein that gold nanoparticles supported on Lewis acidic metal oxides, namely α-Fe2O3, showed excellent catalytic activity for the reaction of dialkyl ethers and diborons, which enables the conversion of unactivated C(sp3)-O bonds to C(sp3)-B bonds at around room temperature. Various acyclic and cyclic ethers as well as a series of diborons participated in the heterogeneous gold-catalyzed borylation of unactivated C(sp3)-O bonds, to give a series of alkylboronates in high yields. Mechanistic studies corroborated that the present borylation of C(sp3)-O bonds of dialkyl ethers proceeded at the interface between gold nanoparticles and Lewis acidic metal oxides. Furthermore, adsorption IR measurements supported the notion that strong Lewis acid sites were generated at the boron atom of diborons adsorbed at the interface between Lewis acidic metal oxides and gold nanoparticles, which enabled us to ensure that the cooperation of gold nanoparticles and Lewis acidic metal oxides was responsible for the efficient transformation of unactivated C(sp3)-O bonds in ethers under mild conditions. This novel reaction technology which is specific to heterogeneous catalysts enables the activation of stable C(sp3)-O bonds of oxygenated chemical feedstock, which is beneficial for the sustainable synthesis of value-added organoboron compounds.
Collapse
Affiliation(s)
- Hidenori Nishio
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji 192-0397, Tokyo, Japan
| | - Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji 192-0397, Tokyo, Japan
- Research Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji 192-0397, Tokyo, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji 192-0397, Tokyo, Japan
- Research Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji 192-0397, Tokyo, Japan
| |
Collapse
|
2
|
Chen M, Li Y, Liu H, Zhang D, Guo Y, Shi QS, Xie X. Lignin hydrogenolysis: Tuning the reaction by lignin chemistry. Int J Biol Macromol 2024; 279:135169. [PMID: 39218172 DOI: 10.1016/j.ijbiomac.2024.135169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Replacing fossil resource with biomass is one of the promising approaches to reduce our carbon footprint. Lignin is one of the three major components of lignocellulosic biomass, accounting for 10-35 wt% of dried weight of the biomass. Hydrogenolytic depolymerization of lignin is attracting increasing attention because of its capacity of utilizing lignin in its uncondensed form and compatibility with the biomass fractionation processes. Lignin is a natural aromatic polymer composed of a variety of monolignols associated with a series of lignin linkage motifs. Hydrogenolysis cleaves various ether bonds in lignin and releases phenolic monomers which can be further upgraded into valuable products, i.e., drugs, terephthalic acid, phenol. This review provides an overview of the state-of-the-art advances of the reagent (lignin), products (hydrol lignin), mass balance, and mechanism of the lignin hydrogenolysis reaction. The chemical structure of lignin is reviewed associated with the free radical coupling of monolignols and the chemical reactions of lignin upon isolation processes. The reactions of lignin linkages upon hydrogenolysis are discussed. The components of hydrol lignin and the selectivity production of phenolic monomers are reviewed. Future challenges on hydrogenolysis of lignin are proposed. This article provides an overview of lignin hydrogenolysis reaction which shows light on the generation of optimized lignin ready for hydrogenolytic depolymerization.
Collapse
Affiliation(s)
- Mingjie Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangdong Dimei New Materials Technology Co. Ltd., 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Yan Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Huiming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Dandan Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Qing-Shan Shi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China.
| | - Xiaobao Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Guangzhou, 510070, China.
| |
Collapse
|
3
|
Zheng D, Zhu Y, Sun X, Sun H, Yang P, Yu Z, Zhu J, Ye Y, Zhang Y, Jiang F. Equilibrium Moisture Mediated Esterification Reaction to Achieve Over 100% Lignocellulosic Nanofibrils Yield. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402777. [PMID: 38934355 DOI: 10.1002/smll.202402777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Lignocellulosic nanofibrils (LCNFs) isolation is recognized as an efficient strategy for maximizing biomass utilization. Nevertheless, achieving a 100% yield presents a formidable challenge. Here, an esterification strategy mediated by the equilibrium moisture in biomass is proposed for LCNFs preparation without the use of catalysts, resulting in a yield exceeding 100%. Different from anhydrous chemical thermomechanical pulp (CTMP0%), the presence of moisture (moisture content of 7 wt%, denoted as CTMP7%) introduces a notably distinct process for the pretreatment of CTMP, comprising the initial disintegration and the post-esterification steps. The maleic acid, generated through maleic anhydride (MA) hydrolysis, degrades the recalcitrant lignin-carbohydrate complex (LCC) structures, resulting in esterified CTMP7% (E-CTMP7%). The highly grafted esters compensate for the mass loss resulting from the partial removal of hydrolyzed lignin and hemicellulose, ensuring a high yield. Following microfluidization, favorable LCNF7% with a high yield (114.4 ± 3.0%) and a high charge content (1.74 ± 0.09 mmol g-1) can be easily produced, surpassing most previous records for LCNFs. Additionally, LCNF7% presented highly processability for filaments, films, and 3D honeycomb structures preparation. These findings provide valuable insights and guidance for achieving a high yield in the isolation of LCNFs from biomass through the mediation of equilibrium moisture.
Collapse
Affiliation(s)
- Dingyuan Zheng
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, P. R. China
| | - Yeling Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Xia Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Hao Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, P. R. China
| | - Pu Yang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Zhengyang Yu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Jiaying Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Yuhang Ye
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Yanhua Zhang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, P. R. China
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
4
|
Zhu R, Mao C, Gao F, Guo Z, Li M, Xin Y, Gu Z, Zhang L. Catalytic Cleavage of the C-O Bonds in Lignin and Lignin Model Compounds by Metal Triflate Catalysts. CHEMSUSCHEM 2024; 17:e202301743. [PMID: 38206879 DOI: 10.1002/cssc.202301743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The effective cleavage of C-O bonds in linkages of lignin was one of the significant strategies promoting lignin valorization. Herein, the strategy of C-O bonds cleavage of lignin using metal triflate as the catalyst was developed. The carboxylic acid or alcohol could be used as the nucleophile to stabilize the reactive intermediates formed during the depolymerization of lignin, and the corresponding ester/ether compounds could be obtained. This catalytic system was suitable for the C-O bond cleavage in α-O-4 and β-O-4 linkages with excellent efficiency. Additionally, reaction conditions were optimized. The reaction mixture was detected by 1 H NMR, and no other byproducts were found. As for treated lignin samples, the cleavage of C-O bonds in linkages was determined by 2D HSQC NMR, the increased content of the phenol hydroxyl group was proved by FT-IR, and the reduced molecular weight was investigated by GPC. Furthermore, multiple phenolic compounds were detected by GC-MS in the reaction mixtures.
Collapse
Affiliation(s)
- Rui Zhu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Changtao Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
| | - Fang Gao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhongpeng Guo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Moying Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yu Xin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhenghua Gu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing, 214200, P. R. China
| | - Liang Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing, 214200, P. R. China
| |
Collapse
|
5
|
Wang Q, Xiao LP, Lv YH, Yin WZ, Hou CJ, Sun RC. Metal–Organic-Framework-Derived Copper Catalysts for the Hydrogenolysis of Lignin into Monomeric Phenols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiang Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Hui Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Wen-Zheng Yin
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chuan-Jin Hou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Run-Cang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
6
|
Hossain MA, Saelee T, Tulaphol S, Rahaman MS, Phung TK, Maihom T, Praserthdam P, Praserthdam S, Yelle DJ, Sathitsuksanoh N. Catalytic hydrogenolysis of lignin into phenolics by internal hydrogen over Ru catalyst. ChemCatChem 2022. [DOI: 10.1002/cctc.202200549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | - Thanh Khoa Phung
- Vietnam National University Ho Chi Minh City University of Science: University of Science Science and Technology VIET NAM
| | | | | | | | - Daniel J. Yelle
- Department of Agriculture Forest Biopolymer Science and Engineering UNITED STATES
| | - Noppadon Sathitsuksanoh
- University of Louisville chemical engineering 216 eastern parkway 40292 Louisville UNITED STATES
| |
Collapse
|
7
|
Zhu J, Chen L, Cai C. Acid Hydrotropic Fractionation of Lignocelluloses for Sustainable Biorefinery: Advantages, Opportunities, and Research Needs. CHEMSUSCHEM 2021; 14:3031-3046. [PMID: 34033701 DOI: 10.1002/cssc.202100915] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Indexed: 06/12/2023]
Abstract
This Minireview provides a comprehensive discussion on the potential of using acid hydrotropes for sustainably fractionating lignocelluloses for biorefinery applications. Acid hydrotropes are a class of acids that have hydrotrope properties toward lignin, which helps to solubilize lignin in aqueous systems. With the capability of cleaving ether and ester bonds and even lignin-carbohydrate complex (LCC) linkages, these acid hydrotropes can therefore isolate lignin embedded in the plant biomass cell wall and subsequently solubilize the isolated lignin in aqueous systems. Performances of two acid hydrotropes, that is, an aromatic sulfonic acid [p-toluenesulfonic acid (p-TsOH)] and a dicarboxylic acid [maleic acid (MA)], in terms of delignification and dissolution of hemicelluloses, and reducing lignin condensation, were evaluated and compared. The advantages of lignin esterification by MA for producing cellulosic sugars through enzymatic hydrolysis and lignin-containing cellulose nanofibrils (LCNFs) through mechanical fibrillation from the fractionated water insoluble solids (WIS), and for obtaining less condensed lignin with light color, were demonstrated. The excellent enzymatic digestibility of maleic acid hydrotropic fractionation WISs was also demonstrated by comparing with WISs from other fractionation processes. The recyclability and reusability of acid hydrotropes were also reviewed. Finally, perspectives on future research needs to address key technical issues for commercialization were also provided.
Collapse
Affiliation(s)
- Junyong Zhu
- USDA Forest Service, Forest Products Laboratory, Madison, WI, USA
| | - Liheng Chen
- Department of Biomedical Engineering, Jinan University, Guangzhou, P. R. China
| | - Cheng Cai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| |
Collapse
|
8
|
Arturi K, Rohrbach T, Vogel F, Bjelić S. High Yields of Aromatic Monomers from Acidolytic Oxidation of Kraft Lignin in a Biphasic System. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katarzyna Arturi
- Energy and Environment Division, Laboratory for Bioenergy and Catalysis, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Thomas Rohrbach
- Energy and Environment Division, Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Frédéric Vogel
- Energy and Environment Division, Laboratory for Bioenergy and Catalysis, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
- Institute of Bioenergy and Resource Efficiency, University of Applied Sciences Northwestern Switzerland (FHNW), Klosterzelgstrasse 2, 5210 Windisch, Switzerland
| | - Saša Bjelić
- Energy and Environment Division, Laboratory for Bioenergy and Catalysis, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| |
Collapse
|
9
|
Dou X, Li W, Zhu C, Jiang X, Chang HM, Jameel H. Cleavage of aryl-ether bonds in lignin model compounds using a Co-Zn-beta catalyst. RSC Adv 2020; 10:43599-43606. [PMID: 35519679 PMCID: PMC9058404 DOI: 10.1039/d0ra08121c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
Efficient cleavage of aryl-ether linkages is a key strategy for generating aromatic chemicals and fuels from lignin. Currently, a popular method to depolymerize native/technical lignin employs a combination of Lewis acid and hydrogenation metal. However, a clear mechanistic understanding of the process is lacking. Thus, a more thorough understanding of the mechanism of lignin depolymerization in this system is essential. Herein, we propose a detailed mechanistic study conducted with lignin model compounds (LMC) via a synergistic Co-Zn/Off-Al H-beta catalyst that mirrors the hydrogenolysis process of lignin. The results suggest that the main reaction paths for the phenolic dimers exhibiting α-O-4 and β-O-4 ether linkages are the cleavage of aryl-ether linkages. Particularly, the conversion was readily completed using a Co-Zn/Off-Al H-beta catalyst, but 40% of α-O-4 was converted and β-O-4 did not react in the absence of a catalyst under the same conditions. In addition, it was found that the presence of hydroxyl groups on the side chain, commonly found in native lignin, greatly promotes the cleavage of aryl-ether linkages activated by Zn Lewis acid, which was attributed to the adsorption between Zn and the hydroxyl group. Followed by the cobalt catalyzed hydrogenation reaction, the phenolic dimers are degraded into monomers that maintain aromaticity.
Collapse
Affiliation(s)
- Xiaomeng Dou
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China Hefei 230026 PR China +86-551-63600786
| | - Wenzhi Li
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China Hefei 230026 PR China +86-551-63600786
| | - Chaofeng Zhu
- Hefei National Laboratory for Physics Science at Microscale, School of Chemistry and Materials Science, University of Science and Technology of China Hefei 230026 PR China
| | - Xiao Jiang
- Department of Forest Biomaterials, North Carolina State University Raleigh NC 27695-8005 USA
| | - Hou-Min Chang
- Department of Forest Biomaterials, North Carolina State University Raleigh NC 27695-8005 USA
| | - Hasan Jameel
- Department of Forest Biomaterials, North Carolina State University Raleigh NC 27695-8005 USA
| |
Collapse
|
10
|
Kaithal A, Kalsi D, Krishnakumar V, Pattanaik S, Bordet A, Leitner W, Gunanathan C. Ruthenium-Catalyzed Selective Hydroboronolysis of Ethers. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04269] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akash Kaithal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar752050, India
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Deepti Kalsi
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Varadhan Krishnakumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar752050, India
| | - Sandip Pattanaik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar752050, India
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar752050, India
| |
Collapse
|
11
|
Li H, Song G. Paving the Way for the Lignin Hydrogenolysis Mechanism by Deuterium-Incorporated β-O-4 Mimics. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02339] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Helong Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, China
| | - Guoyong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, China
| |
Collapse
|
12
|
Lahive CW, Kamer PCJ, Lancefield CS, Deuss PJ. An Introduction to Model Compounds of Lignin Linking Motifs; Synthesis and Selection Considerations for Reactivity Studies. CHEMSUSCHEM 2020; 13:4238-4265. [PMID: 32510817 PMCID: PMC7540175 DOI: 10.1002/cssc.202000989] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 05/31/2023]
Abstract
The development of fundamentally new valorization strategies for lignin plays a vital role in unlocking the true potential of lignocellulosic biomass as sustainable and economically compatible renewable carbon feedstock. In particular, new catalytic modification and depolymerization strategies are required. Progress in this field, past and future, relies for a large part on the application of synthetic model compounds that reduce the complexity of working with the lignin biopolymer. This aids the development of catalytic methodologies and in-depth mechanistic studies and guides structural characterization studies in the lignin field. However, due to the volume of literature and the piecemeal publication of methodology, the choice of suitable lignin model compounds is far from straight forward, especially for those outside the field and lacking a background in organic synthesis. For example, in catalytic depolymerization studies, a balance between synthetic effort and fidelity compared to the actual lignin of interest needs to be found. In this Review, we provide a broad overview of the model compounds available to study the chemistry of the main native linking motifs typically found in lignins from woody biomass, the synthetic routes and effort required to access them, and discuss to what extent these represent actual lignin structures. This overview can aid researchers in their selection of the most suitable lignin model systems for the development of emerging lignin modification and depolymerization technologies, maximizing their chances of successfully developing novel lignin valorization strategies.
Collapse
Affiliation(s)
- Ciaran W. Lahive
- Department of Chemical Engineering (ENTEG)University of GroningenNijenborgh 49747 AGGroningenNetherlands
- School of Chemistry and Biomedical Science Research ComplexUniversity of St. Andrews and EaStCHEMNorth HaughSt. AndrewsFifeKY16 9STUnited Kingdom
| | - Paul C. J. Kamer
- School of Chemistry and Biomedical Science Research ComplexUniversity of St. Andrews and EaStCHEMNorth HaughSt. AndrewsFifeKY16 9STUnited Kingdom
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Christopher S. Lancefield
- School of Chemistry and Biomedical Science Research ComplexUniversity of St. Andrews and EaStCHEMNorth HaughSt. AndrewsFifeKY16 9STUnited Kingdom
| | - Peter J. Deuss
- Department of Chemical Engineering (ENTEG)University of GroningenNijenborgh 49747 AGGroningenNetherlands
| |
Collapse
|
13
|
Song Y, Feng X, Chen JS, Brzezinski C, Xu Z, Lin W. Multistep Engineering of Synergistic Catalysts in a Metal–Organic Framework for Tandem C–O Bond Cleavage. J Am Chem Soc 2020; 142:4872-4882. [DOI: 10.1021/jacs.0c00073] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yang Song
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Xuanyu Feng
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Justin S. Chen
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Carter Brzezinski
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Ziwan Xu
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Chan JC, Paice M, Zhang X. Enzymatic Oxidation of Lignin: Challenges and Barriers Toward Practical Applications. ChemCatChem 2019. [DOI: 10.1002/cctc.201901480] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jou C. Chan
- Voiland School of Chemical Engineering and Bioengineering Washington State University 2710 Crimson Way Richland WA-99354 USA
| | - Michael Paice
- FPInnovations Pulp Paper & Bioproducts 2665 East Mall Vancouver BC V6T 1Z4 Canada
| | - Xiao Zhang
- Voiland School of Chemical Engineering and Bioengineering Washington State University 2710 Crimson Way Richland WA-99354 USA
- Pacific Northwest National Laboratory 520 Battelle Boulevard P.O. Box 999, MSIN P8-60 Richland WA-99352 USA
| |
Collapse
|
15
|
Wang M, Wang F. Catalytic Scissoring of Lignin into Aryl Monomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901866. [PMID: 31821648 DOI: 10.1002/adma.201901866] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Lignin is an aromatic polymer, which is the biggest and most sustainable reservoir for aromatics. The selective conversion of lignin polymers into aryl monomers is a promising route to provide aromatics, but it is also a challenging task. Compared to cellulose, lignin remains the most poorly utilized biopolymer due to its complex structure. Although harsh conditions can degrade lignin, the aromatic rings are usually destroyed. This article comprehensively analyzes the challenges facing the scissoring of lignin into aryl monomers and summarizes the recent progress, focusing on the strategies and the catalysts to address the problems. Finally, emphasis is given to the outlook and future directions of this research.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| |
Collapse
|
16
|
Catalytic amidation of natural and synthetic polyol esters with sulfonamides. Nat Commun 2019; 10:3881. [PMID: 31462632 PMCID: PMC6713792 DOI: 10.1038/s41467-019-11864-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/08/2019] [Indexed: 02/02/2023] Open
Abstract
Triacylglycerides are naturally abundant and renewable feedstock for biofuels and chemicals. In this report, these seemingly stable compounds are shown to be reactive toward a variety of sulfonamides under Lewis acid catalysis. In these reactions, alkyl C(sp3)–O bonds are cleaved and C–N bonds constructed, providing functionalized value-added products directly from renewables. Mechanistic and scope study demonstrate that the origin of the reactivity could be the synergy of Lewis acid catalysis and neighboring group participation by the 2- or 3-acyloxy or acylamido group with respect to the reactive site. Since poly(ethylene terephthalate) (PET), a widely available consumer polyester, also contains 1,2-diol diester group as the repeating unit in the main chain, this chemistry can also be applied to efficient depolymerization of PET. Triacylglycerides are naturally abundant and renewable feedstock, but their chemical transformation is hindered by their stability. Here, under Lewis acid catalysis, the authors report the selective alkyl C–O bond conversion of triglycerides into C–N bonds and even apply this efficient method to PET depolymerization.
Collapse
|
17
|
Barger CJ, Motta A, Weidner VL, Lohr TL, Marks TJ. La[N(SiMe3)2]3-Catalyzed Ester Reductions with Pinacolborane: Scope and Mechanism of Ester Cleavage. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02605] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Christopher J. Barger
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Alessandro Motta
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Dipartimento di Scienze Chimiche, Università di Roma “La Sapienza” and INSTM, UdR Roma, Piazzale Aldo Moro 5, Roma I-00185, Italy
| | - Victoria L. Weidner
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Tracy L. Lohr
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Tobin J. Marks
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
18
|
Vaid R, Gupta M, Kour G, Gupta VK. Sulfoacetate Modified Silica Supported Indium(III) Triflate [SiSAIn(OTf)
2
]: A Novel Solid Acid Nano‐Catalyst And Investigation of Its Catalytic Potential for One‐Pot Synthesis of 1,2,4,5‐Tetrasubstituted Imidazole Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201902012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rupali Vaid
- Department of ChemistryUniversity of Jammu Jammu- 180006
| | - Monika Gupta
- Department of ChemistryUniversity of Jammu Jammu- 180006
| | - Gurpreet Kour
- Department of ChemistryUniversity of Jammu Jammu- 180006
| | - Vivek K. Gupta
- Post-Graduate Department of PhysicsUniversity of Jammu Jammu Tawi- 180006 India
| |
Collapse
|
19
|
Li H, Song G. Ru-Catalyzed Hydrogenolysis of Lignin: Base-Dependent Tunability of Monomeric Phenols and Mechanistic Study. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00556] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Helong Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| |
Collapse
|
20
|
Zhou H, Tan L, Fu Y, Zhang H, Liu N, Qin M, Wang Z. Rapid Nondestructive Fractionation of Biomass (≤15 min) by using Flow-Through Recyclable Formic Acid toward Whole Valorization of Carbohydrate and Lignin. CHEMSUSCHEM 2019; 12:1213-1221. [PMID: 30673166 DOI: 10.1002/cssc.201802803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Whole valorization of carbohydrate and lignin from biomass was achieved by rapid flow-through fractionation (RFF) within 15 min. Wheat straw was effectively deconstructed into its principle components without degradation by using easily recyclable aqueous formic acid (72 wt %) at 130 °C. The obtained cellulose-rich solid showed a nearly complete glucan recovery and 73.8 % glucose conversion after enzymatic hydrolysis. Xylan also reached full recovery with negligible furfural formation with a sum of 80 % of oligo/mono xylose in spent liquor and 20 % of xylan remaining in the solid. Up to 75.4 % lignin was dissolved in the spent liquor and further fractionated into water-insoluble (WIL) and water-soluble lignin (WSL) by dilution with water. WIL showed a non-condensed and well-preserved structure with 84.5 % β-O-4 remaining, which is believed to be beneficial for catalytic conversion into low-molecular-weight chemicals and fuels. The concentration of employed formic acid was below the formic acid/water azeotrope, and therefore the reaction medium could be restored through simple distillation. Together with the joint valorization of lignin and carbohydrates, the presented RFF is a promising process for sustainable biorefinery.
Collapse
Affiliation(s)
- Hao Zhou
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Rd, Jinan, 250353, P.R. China
| | - Liping Tan
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Rd, Jinan, 250353, P.R. China
| | - Yingjuan Fu
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Rd, Jinan, 250353, P.R. China
| | - Huayong Zhang
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Rd, Jinan, 250353, P.R. China
| | - Na Liu
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Rd, Jinan, 250353, P.R. China
| | - Menghua Qin
- Laboratory of Organic Chemistry, Taishan University, 525 Dongyue Street, Taian, 271021, P.R. China
| | - Zhaojiang Wang
- State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Rd, Jinan, 250353, P.R. China
| |
Collapse
|
21
|
Chen T, Li Z, Zhang X, Min D, Wu Y, Wen J, Yuan T. Effects of Hydrothermal Pretreatment on the Structural Characteristics of Organosolv Lignin from Triarrhena lutarioriparia. Polymers (Basel) 2018; 10:E1157. [PMID: 30961082 PMCID: PMC6403627 DOI: 10.3390/polym10101157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/26/2018] [Accepted: 10/14/2018] [Indexed: 11/16/2022] Open
Abstract
The effects of hydrothermal pretreatment (170⁻180 °C, 30⁻60 min) on the structural characteristics of enzymatic and extracted lignin from Triarrhena lutarioriparia (TL) during the integrated delignification process have been comprehensively investigated. Ion chromatography and NMR characterization showed that liquid products after mild hydrothermal process (170 °C, 30 min) were mainly composed of xylooligosaccharide (XOS) with different degrees of polymerization (DP ≥ 2). In addition, the structural changes of lignin during hydrothermal pretreatment and organic acid delignification process have been demonstrated by quantitative 2D heteronuclear single quantum coherence (2D-HSQC) and 31P-NMR techniques. Results showed that the structural changes of lignin (e.g., cleavage of β-O-4 linkages) induced by the hydrothermal pretreatment will facilitate the subsequent organic acid delignification process, and acetylated lignin could be obtained with a considerable yield, which can be used in lignin-based composite and candidate feedstock for catalytic upgrading of lignin. In short, the proposed process facilitates the producing of XOS and acetylated lignin for lignin valorization.
Collapse
Affiliation(s)
- Tianying Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Zhiwen Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Douyong Min
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning 530004, China.
| | - Yuying Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Tongqi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
22
|
Wang M, Liu M, Li H, Zhao Z, Zhang X, Wang F. Dealkylation of Lignin to Phenol via Oxidation–Hydrogenation Strategy. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00886] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Min Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Meijiang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Hongji Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhitong Zhao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Xiaochen Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
23
|
Li J, Sun H, Liu JX, Zhang JJ, Li ZX, Fu Y. Selective reductive cleavage of C O bond in lignin model compounds over nitrogen-doped carbon-supported iron catalysts. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Selective hydrodeoxygenation of lignin β-O-4 model compounds and aromatic ketones promoted by palladium chloride with acidic CO2/MeOH system. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Wang M, Ma J, Liu H, Luo N, Zhao Z, Wang F. Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03790] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Min Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Ma
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Huifang Liu
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Nengchao Luo
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Zhitong Zhao
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Feng Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
26
|
Brahmayya M, Suen SY, Dai SA. Sulfonated graphene oxide-catalyzed N-acetylation of amines with acetonitrile under sonication. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Dong L, Shao Y, Han X, Liu X, Xia Q, Parker SF, Cheng Y, Daemen LL, Ramirez-Cuesta AJ, Wang Y, Yang S. Comparison of two multifunctional catalysts [M/Nb2O5 (M = Pd, Pt)] for one-pot hydrodeoxygenation of lignin. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01459k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improved lignin valorisation via its catalytic conversion to value-added feedstocks is of essential importance to the development of future bio-refineries.
Collapse
|
28
|
Keskiväli J, Parviainen A, Lagerblom K, Repo T. Transition metal triflate catalyzed conversion of alcohols, ethers and esters to olefins. RSC Adv 2018; 8:15111-15118. [PMID: 35541314 PMCID: PMC9080037 DOI: 10.1039/c8ra02437e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
Herein, we report an efficient transition metal triflate catalyzed approach to convert biomass-based compounds, such as monoterpene alcohols, sugar alcohols, octyl acetate and tea tree oil, to their corresponding olefins in high yields. The reaction proceeds through C–O bond cleavage under solvent-free conditions, where the catalytic activity is determined by the oxophilicity and the Lewis acidity of the metal catalyst. In addition, we demonstrate how the oxygen containing functionality affects the formation of the olefins. Furthermore, the robustness of the used metal triflate catalysts, Fe(OTf)3 and Hf(OTf)4, is highlighted by their ability to convert an over 2400-fold excess of 2-octanol to octenes in high isolated yields. In this work, we report an efficient solvent-free metal triflate catalyzed conversion of various biomass-based alcohols, ethers and esters to olefins.![]()
Collapse
Affiliation(s)
- J. Keskiväli
- Department of Chemistry
- University of Helsinki
- Finland
| | - A. Parviainen
- Department of Chemistry
- University of Helsinki
- Finland
| | - K. Lagerblom
- Department of Chemistry
- University of Helsinki
- Finland
| | - T. Repo
- Department of Chemistry
- University of Helsinki
- Finland
| |
Collapse
|
29
|
Dong L, Yin LL, Xia Q, Liu X, Gong XQ, Wang Y. Size-dependent catalytic performance of ruthenium nanoparticles in the hydrogenolysis of a β-O-4 lignin model compound. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02014g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One-pot depolymerization of lignin to well-defined chemicals and their further deoxygenation to arenes are extremely attractive.
Collapse
Affiliation(s)
- Lin Dong
- Shanghai Key Laboratory of Functional Materials Chemistry
- Research Institute of Industrial Catalysis
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
| | - Li-Li Yin
- Key Laboratory for Advanced Materials
- Centre for Computational Chemistry and Research Institute of Industrial Catalysis
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
| | - Qineng Xia
- Shanghai Key Laboratory of Functional Materials Chemistry
- Research Institute of Industrial Catalysis
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
| | - Xiaohui Liu
- Shanghai Key Laboratory of Functional Materials Chemistry
- Research Institute of Industrial Catalysis
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials
- Centre for Computational Chemistry and Research Institute of Industrial Catalysis
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry
- Research Institute of Industrial Catalysis
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
| |
Collapse
|
30
|
Weißbach U, Dabral S, Konnert L, Bolm C, Hernández JG. Selective enzymatic esterification of lignin model compounds in the ball mill. Beilstein J Org Chem 2017; 13:1788-1795. [PMID: 28904622 PMCID: PMC5588541 DOI: 10.3762/bjoc.13.173] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/11/2017] [Indexed: 01/31/2023] Open
Abstract
A lipase-catalyzed esterification of lignin model compounds in the ball mill was developed combining the advantages of enzyme catalysis and mechanochemistry. Under the described conditions, the primary aliphatic hydroxy groups present in the substrates were selectively modified by the biocatalyst to afford monoesterified products. Amongst the tested lipases, CALB proved to be the most effective biocatalyst for these transformations. Noteworthy, various acyl donors of different chain lengths were tolerated under the mechanochemical conditions.
Collapse
Affiliation(s)
- Ulla Weißbach
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Saumya Dabral
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Laure Konnert
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - José G Hernández
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
31
|
Xu XL, Li Z. Catalytic Electrophilic Alkylation ofp-Quinones through a Redox Chain Reaction. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao-Long Xu
- School of Physical Science and Technology; ShanghaiTech University; 393 Middle Huaxia Road, Pudong Shanghai 201210 China
| | - Zhi Li
- School of Physical Science and Technology; ShanghaiTech University; 393 Middle Huaxia Road, Pudong Shanghai 201210 China
| |
Collapse
|
32
|
Xu XL, Li Z. Catalytic Electrophilic Alkylation ofp-Quinones through a Redox Chain Reaction. Angew Chem Int Ed Engl 2017; 56:8196-8200. [DOI: 10.1002/anie.201702885] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/07/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Xiao-Long Xu
- School of Physical Science and Technology; ShanghaiTech University; 393 Middle Huaxia Road, Pudong Shanghai 201210 China
| | - Zhi Li
- School of Physical Science and Technology; ShanghaiTech University; 393 Middle Huaxia Road, Pudong Shanghai 201210 China
| |
Collapse
|
33
|
Oregui-Bengoechea M, Gandarias I, Arias PL, Barth T. Unraveling the Role of Formic Acid and the Type of Solvent in the Catalytic Conversion of Lignin: A Holistic Approach. CHEMSUSCHEM 2017; 10:754-766. [PMID: 27925410 DOI: 10.1002/cssc.201601410] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/30/2016] [Indexed: 06/06/2023]
Abstract
The role of formic acid together with the effect of the solvent type and their synergic interactions with a NiMo catalyst were studied for the conversion of lignin into bio-oil in an alcohol/formic acid media. The replacement of formic acid with H2 or isopropanol decreased the oil yield to a considerable degree, increased the solid yield, and altered the nature of the bio-oil. The differences induced by the presence of H2 were comparable to those observed in the isopropanol system, which suggests similar lignin conversion mechanisms for both systems. Additional semi-batch experiments confirmed that formic acid does not act merely as an in situ hydrogen source or hydrogen donor molecule. Actually, is seems to react with lignin through a formylation-elimination-hydrogenolysis mechanism that leads to the depolymerization of the biopolymer. This reaction competes with formic acid decomposition, which gives mainly H2 and CO2 , and forms a complex reaction system. To the best of our knowledge, this is the first time that the distinctive role/mechanism of formic acid has been observed in the conversion of real lignin feedstock. In addition, the solvent, especially ethanol, seems also to play a vital role in the stabilization of the depolymerized monomers and in the elimination/deformylation step.
Collapse
Affiliation(s)
| | - Inaki Gandarias
- Chemical and Environmental Engineering Department, University of the Basque Country (UPV/EHU), Alameda Urquijo s/n, 48013, Bilbao, Spain
| | - Pedro L Arias
- Chemical and Environmental Engineering Department, University of the Basque Country (UPV/EHU), Alameda Urquijo s/n, 48013, Bilbao, Spain
| | - Tanja Barth
- Department of Chemistry, University of Bergen, Allegaten 41, N-5007, Bergen, Norway
| |
Collapse
|
34
|
Cui X, Junge K, Beller M. Palladium-Catalyzed Synthesis of Alkylated Amines from Aryl Ethers or Phenols. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01687] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xinjiang Cui
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Str.
29a, 18059, Rostock, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Str.
29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Str.
29a, 18059, Rostock, Germany
| |
Collapse
|
35
|
Zhu G, Qiu X, Zhao Y, Qian Y, Pang Y, Ouyang X. Depolymerization of lignin by microwave-assisted methylation of benzylic alcohols. BIORESOURCE TECHNOLOGY 2016; 218:718-722. [PMID: 27420159 DOI: 10.1016/j.biortech.2016.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
A new two-step lignin depolymerization strategy was developed, in which the benzylic alcohols in lignin was methylated under microwave irradiation, followed by a hydrogenolysis for the cleavage of βO4 bond with Pd/C as the catalyst. The results showed that an efficient and selective catalytic methylation of benzylic alcohols was achieved with various lignin model compounds, and the acidic environment promoted the methylation of benzylic alcohol. Methylation of benzylic alcohol increased the βO4 bond cleavage rate by 55.9%, and improved products selectivity. Preliminary study of lignin depolymerization illustrated that methylation pretreatment of benzylic alcohols facilitated lignin depolymerization to produce aromatic monomers and reduced the oxygen content of aromatic monomers.
Collapse
Affiliation(s)
- Guodian Zhu
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xueqing Qiu
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China; State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ying Zhao
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yong Qian
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuxia Pang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xinping Ouyang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
36
|
Mouat AR, Lohr TL, Wegener EC, Miller JT, Delferro M, Stair PC, Marks TJ. Reactivity of a Carbon-Supported Single-Site Molybdenum Dioxo Catalyst for Biodiesel Synthesis. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01717] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aidan R. Mouat
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tracy L. Lohr
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Evan C. Wegener
- School
of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907-2100, United States
| | - Jeffrey T. Miller
- School
of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907-2100, United States
| | - Massimiliano Delferro
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Peter C. Stair
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tobin J. Marks
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
37
|
Jastrzebski R, Constant S, Lancefield CS, Westwood NJ, Weckhuysen BM, Bruijnincx PCA. Tandem Catalytic Depolymerization of Lignin by Water-Tolerant Lewis Acids and Rhodium Complexes. CHEMSUSCHEM 2016; 9:2074-9. [PMID: 27440544 PMCID: PMC5129541 DOI: 10.1002/cssc.201600683] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 05/11/2023]
Abstract
Lignin is an attractive renewable feedstock for aromatic bulk and fine chemicals production, provided that suitable depolymerization procedures are developed. Here, we describe a tandem catalysis strategy for ether linkage cleavage within lignin, involving ether hydrolysis by water-tolerant Lewis acids followed by aldehyde decarbonylation by a Rh complex. In situ decarbonylation of the reactive aldehydes limits loss of monomers by recondensation, a major issue in acid-catalyzed lignin depolymerization. Rate of hydrolysis and decarbonylation were matched using lignin model compounds, allowing the method to be successfully applied to softwood, hardwood, and herbaceous dioxasolv lignins, as well as poplar sawdust, to give the anticipated decarbonylation products and, rather surprisingly, 4-(1-propenyl)phenols. Promisingly, product selectivity can be tuned by variation of the Lewis-acid strength and lignin source.
Collapse
Affiliation(s)
- Robin Jastrzebski
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Sandra Constant
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Christopher S Lancefield
- School of Chemistry and Biomedical Science Research Complex, University of St. Andrews and EaStCHEM, North Haugh, St. Andrews, Fife, KY16 9ST, United Kingdom
| | - Nicholas J Westwood
- School of Chemistry and Biomedical Science Research Complex, University of St. Andrews and EaStCHEM, North Haugh, St. Andrews, Fife, KY16 9ST, United Kingdom
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Pieter C A Bruijnincx
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
38
|
Wang M, Lu J, Zhang X, Li L, Li H, Luo N, Wang F. Two-Step, Catalytic C–C Bond Oxidative Cleavage Process Converts Lignin Models and Extracts to Aromatic Acids. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02049] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Min Wang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jianmin Lu
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaochen Zhang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Lihua Li
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Hongji Li
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Nengchao Luo
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Wang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
39
|
Lohr TL, Li Z, Marks TJ. Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis. Acc Chem Res 2016; 49:824-34. [PMID: 27078085 DOI: 10.1021/acs.accounts.6b00069] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To reduce global reliance on fossil fuels, new renewable sources of energy that can be used with the current infrastructure are required. Biomass represents a major source of renewable carbon based fuel; however, the high oxygen content (∼40%) limits its use as a conventional fuel. To utilize biomass as an energy source, not only with current infrastructure, but for maximum energy return, the oxygen content must be reduced. One method to achieve this is to develop selective catalytic methods to cleave C-O bonds commonly found in biomass (aliphatic and aromatic ethers and esters) for the eventual removal of oxygen in the form of volatile H2O or carboxylic acids. Once selective methods of C-O cleavage are understood and perfected, application to processing real biomass feedstocks such as lignin can be undertaken. This Laboratory previously reported that recyclable "green" lanthanide triflates are excellent catalysts for C-O bond-forming hydroalkoxylation reactions. Based on the virtues of microscopic reversibility, the same lanthanide triflate catalyst should catalyze the reverse C-O cleavage process, retrohydroalkoxylation, to yield an alcohol and an alkene. However, ether C-O bond-forming (retrohydroalkoxylation) to form an alcohol and alkene is endothermic. Guided by quantum chemical analysis, our strategy is to couple endothermic, in tandem, ether C-O bond cleavage with exothermic alkene hydrogenation, thereby leveraging the combined catalytic cycles thermodynamically to form an overall energetically favorable C-O cleavage reaction. This Account reviews recent developments on thermodynamically leveraged tandem catalysis for ether and more recently, ester C-O bond cleavage undertaken at Northwestern University. First, the fundamentals of lanthanide-catalyzed hydroelementation are reviewed, with particular focus on ether C-O bond formation (hydroalkoxylation). Next, the reverse C-O cleavage/retrohydroalkoxylation processes enabled by tandem catalysis are discussed for both ether and ester C-O bond cleavage, including mechanistic and computational analysis. This is followed by recent results using this tandem catalytic strategy toward biomass relevant substrates, including work deconstructing acetylated lignin models, and the production of biodiesel from triglycerides, while bypassing the production of undesired glycerol for more valuable C3 products such as diesters (precursors to diols) in up to 47% selectivity. This Account concludes with future prospects for using this tandem catalytic system under real biomass processing conditions.
Collapse
Affiliation(s)
- Tracy L. Lohr
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Zhi Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tobin J. Marks
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|