1
|
Wang J, Pan F, Chen W, Li B, Yang D, Ming P, Wei X, Zhang C. Pt-Based Intermetallic Compound Catalysts for the Oxygen Reduction Reaction: Structural Control at the Atomic Scale to Achieve a Win–Win Situation Between Catalytic Activity and Stability. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
2
|
Hayat A, Sohail M, Ali H, Taha TA, Qazi HIA, Ur Rahman N, Ajmal Z, Kalam A, Al-Sehemi AG, Wageh S, Amin MA, Palamanit A, Nawawi WI, Newair EF, Orooji Y. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting. CHEM REC 2023; 23:e202200149. [PMID: 36408911 DOI: 10.1002/tcr.202200149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/15/2022] [Indexed: 11/22/2022]
Abstract
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, Zhejiang, P. R. China.,College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, P. R. China
| | - Hamid Ali
- Multiscale Computational Materials Facility, Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, 350100, Fuzhou, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, PO Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - H I A Qazi
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Naveed Ur Rahman
- Department of Physics, Bacha Khan University Charsadda, KP, Pakistan
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, P. R. China
| | - Abul Kalam
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., 90110, Hat Yai, Songkhla, Thailand
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600, Cawangan Perlis, Arau Perlis, Malaysia
| | - Emad F Newair
- Chemistry Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| |
Collapse
|
3
|
PtCo-Based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Ma Q, Jin H, Zhu J, Li Z, Xu H, Liu B, Zhang Z, Ma J, Mu S. Stabilizing Fe-N-C Catalysts as Model for Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102209. [PMID: 34687174 PMCID: PMC8655191 DOI: 10.1002/advs.202102209] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/08/2021] [Indexed: 05/05/2023]
Abstract
The highly efficient energy conversion of the polymer-electrolyte-membrane fuel cell (PEMFC) is extremely limited by the sluggish oxygen reduction reaction (ORR) kinetics and poor electrochemical stability of catalysts. Hitherto, to replace costly Pt-based catalysts, non-noble-metal ORR catalysts are developed, among which transition metal-heteroatoms-carbon (TM-H-C) materials present great potential for industrial applications due to their outstanding catalytic activity and low expense. However, their poor stability during testing in a two-electrode system and their high complexity have become a big barrier for commercial applications. Thus, herein, to simplify the research, the typical Fe-N-C material with the relatively simple constitution and structure, is selected as a model catalyst for TM-H-C to explore and improve the stability of such a kind of catalysts. Then, different types of active sites (centers) and coordination in Fe-N-C are systematically summarized and discussed, and the possible attenuation mechanism and strategies are analyzed. Finally, some challenges faced by such catalysts and their prospects are proposed to shed some light on the future development trend of TM-H-C materials for advanced ORR catalysis.
Collapse
Affiliation(s)
- Qianli Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong LaboratoryXianhu Hydrogen ValleyFoshan528200P. R. China
| | - Huihui Jin
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Zilan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Hanwen Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Bingshuai Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Zhiwei Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Jingjing Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong LaboratoryXianhu Hydrogen ValleyFoshan528200P. R. China
| |
Collapse
|
5
|
Jiao L, Liu E, Hwang S, Mukerjee S, Jia Q. Compressive Strain Reduces the Hydrogen Evolution and Oxidation Reaction Activity of Platinum in Alkaline Solution. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01723] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Li Jiao
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ershuai Liu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sanjeev Mukerjee
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Qingying Jia
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Alloying-realloying enabled high durability for Pt-Pd-3d-transition metal nanoparticle fuel cell catalysts. Nat Commun 2021; 12:859. [PMID: 33558516 PMCID: PMC7870895 DOI: 10.1038/s41467-021-21017-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/08/2021] [Indexed: 11/08/2022] Open
Abstract
Alloying noble metals with non-noble metals enables high activity while reducing the cost of electrocatalysts in fuel cells. However, under fuel cell operating conditions, state-of-the-art oxygen reduction reaction alloy catalysts either feature high atomic percentages of noble metals (>70%) with limited durability or show poor durability when lower percentages of noble metals (<50%) are used. Here, we demonstrate a highly-durable alloy catalyst derived by alloying PtPd (<50%) with 3d-transition metals (Cu, Ni or Co) in ternary compositions. The origin of the high durability is probed by in-situ/operando high-energy synchrotron X-ray diffraction coupled with pair distribution function analysis of atomic phase structures and strains, revealing an important role of realloying in the compressively-strained single-phase alloy state despite the occurrence of dealloying. The implication of the finding, a striking departure from previous perceptions of phase-segregated noble metal skin or complete dealloying of non-noble metals, is the fulfilling of the promise of alloy catalysts for mass commercialization of fuel cells.
Collapse
|
7
|
Boppella R, Tan J, Yun J, Manorama SV, Moon J. Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213552] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Mardle P, Thirunavukkarasu G, Guan S, Chiu YL, Du S. Comparative Study of PtNi Nanowire Array Electrodes toward Oxygen Reduction Reaction by Half-Cell Measurement and PEMFC Test. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42832-42841. [PMID: 32865384 DOI: 10.1021/acsami.0c11531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A clear understanding of catalytic activity enhancement mechanisms in fuel cell operation is necessary for a full degree translation of the latest generation of non-Pt/C fuel cell electrocatalysts into high-performance electrodes in proton-exchange membrane fuel cells (PEMFCs). In this work, PtNi nanowire (NW) array gas diffusion electrodes (GDEs) are fabricated from Pt NW arrays with Ni impregnation. A 2.84-fold improvement in the oxygen reduction reaction catalytic activity is observed for the PtNi NW array GDE (cf. the Pt NW array GDE) using half-cell GDE measurement in a 0.1 M HClO4 aqueous electrolyte at 25 °C, in comparison to only a 1.07-fold power density recorded in the PEMFC single-cell test. An ionomer is shown to significantly increase the electrochemically active surface area of the GDEs, but the PtNi NW array GDE suffers from Ni ion contamination at a high temperature, contributing to decreased catalytic activities and limited improvement in operating PEMFCs.
Collapse
Affiliation(s)
- Peter Mardle
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | | | - Shaoliang Guan
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
- HarwellXPS-The EPSRC National Facility for Photoelectron Spectroscopy, Research Complex at Harwell (RCaH), Didcot OX11 0FA, Oxon, U.K
| | - Yu-Lung Chiu
- School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Shangfeng Du
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
9
|
Jiao L, Liu E, Mukerjee S, Jia Q. In Situ Identification of Non-Specific Adsorption of Alkali Metal Cations on Pt Surfaces and Their Catalytic Roles in Alkaline Solutions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02762] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Jiao
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ershuai Liu
- Department of Chemistry and Chemical Biology Northeastern University, Boston, Massachusetts 02115, United States
| | - Sanjeev Mukerjee
- Department of Chemistry and Chemical Biology Northeastern University, Boston, Massachusetts 02115, United States
| | - Qingying Jia
- Department of Chemistry and Chemical Biology Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Luo L, Wang M, Cui Y, Chen Z, Wu J, Cao Y, Luo J, Dai Y, Li W, Bao J, Zeng J. Surface Iron Species in Palladium–Iron Intermetallic Nanocrystals that Promote and Stabilize CO
2
Methanation. Angew Chem Int Ed Engl 2020; 59:14434-14442. [DOI: 10.1002/anie.201916032] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/08/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Laihao Luo
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Menglin Wang
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yi Cui
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Ziyuan Chen
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jiaxin Wu
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yulu Cao
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jie Luo
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yizhou Dai
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Wei‐Xue Li
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jun Bao
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
11
|
Luo L, Wang M, Cui Y, Chen Z, Wu J, Cao Y, Luo J, Dai Y, Li W, Bao J, Zeng J. Surface Iron Species in Palladium–Iron Intermetallic Nanocrystals that Promote and Stabilize CO
2
Methanation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laihao Luo
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Menglin Wang
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yi Cui
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Ziyuan Chen
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jiaxin Wu
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yulu Cao
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jie Luo
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yizhou Dai
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Wei‐Xue Li
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jun Bao
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale National Synchrotron Radiation Laboratory CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
12
|
Kong Z, Maswadeh Y, Vargas JA, Shan S, Wu ZP, Kareem H, Leff AC, Tran DT, Chang F, Yan S, Nam S, Zhao X, Lee JM, Luo J, Shastri S, Yu G, Petkov V, Zhong CJ. Origin of High Activity and Durability of Twisty Nanowire Alloy Catalysts under Oxygen Reduction and Fuel Cell Operating Conditions. J Am Chem Soc 2020; 142:1287-1299. [PMID: 31885267 DOI: 10.1021/jacs.9b10239] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability to control the surface composition and morphology of alloy catalysts is critical for achieving high activity and durability of catalysts for oxygen reduction reaction (ORR) and fuel cells. This report describes an efficient surfactant-free synthesis route for producing a twisty nanowire (TNW) shaped platinum-iron (PtFe) alloy catalyst (denoted as PtFe TNWs) with controllable bimetallic compositions. PtFe TNWs with an optimal initial composition of ∼24% Pt are shown to exhibit the highest mass activity (3.4 A/mgPt, ∼20 times higher than that of commercial Pt catalyst) and the highest durability (<2% loss of activity after 40 000 cycles and <30% loss after 120 000 cycles) among all PtFe-based nanocatalysts under ORR or fuel cell operating conditions reported so far. Using ex situ and in situ synchrotron X-ray diffraction coupled with atomic pair distribution function (PDF) analysis and 3D modeling, the PtFe TNWs are shown to exhibit mixed face-centered cubic (fcc)-body-centered cubic (bcc) alloy structure and a significant lattice strain. A striking finding is that the activity strongly depends on the composition of the as-synthesized catalysts and this dependence remains unchanged despite the evolution of the composition of the different catalysts and their lattice constants under ORR or fuel cell operating conditions. Notably, dealloying under fuel cell operating condition starts at phase-segregated domain sites leading to a final fcc alloy structure with subtle differences in surface morphology. Due to a subsequent realloying and the morphology of TNWs, the surface lattice strain observed with the as-synthesized catalysts is largely preserved. This strain and the particular facets exhibited by the TNWs are believed to be responsible for the observed activity and durability enhancements. These findings provide new insights into the correlation between the structure, activity, and durability of nanoalloy catalysts and are expected to energize the ongoing effort to develop highly active and durable low-Pt-content nanowire catalysts by controlling their alloy structure and morphology.
Collapse
Affiliation(s)
- Zhijie Kong
- College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China.,Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Yazan Maswadeh
- Department of Physics , Central Michigan University , Mt. Pleasant , Michigan 48859 , United States
| | - Jorge A Vargas
- Department of Physics , Central Michigan University , Mt. Pleasant , Michigan 48859 , United States
| | - Shiyao Shan
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Zhi-Peng Wu
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Haval Kareem
- CCDC Army Research Laboratory , FCDD-RLS-DE , Adelphi , Maryland 20783 , United States
| | - Asher C Leff
- CCDC Army Research Laboratory , FCDD-RLS-DE , Adelphi , Maryland 20783 , United States
| | - Dat T Tran
- CCDC Army Research Laboratory , FCDD-RLS-DE , Adelphi , Maryland 20783 , United States
| | - Fangfang Chang
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Shan Yan
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Sanghyun Nam
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Xingfang Zhao
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Jason M Lee
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Jin Luo
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Sarvjit Shastri
- X-ray Science Division, Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Gang Yu
- College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Valeri Petkov
- Department of Physics , Central Michigan University , Mt. Pleasant , Michigan 48859 , United States
| | - Chuan-Jian Zhong
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| |
Collapse
|
13
|
Wei Z, Zhuiykov S. Challenges and recent advancements of functionalization of two-dimensional nanostructured molybdenum trioxide and dichalcogenides. NANOSCALE 2019; 11:15709-15738. [PMID: 31414098 DOI: 10.1039/c9nr03072g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Atomically thin two-dimensional (2D) semiconductors are the thinnest functional semiconducting materials available today. Among them, both molybdenum trioxide and chalcogenides (MT&Ds) represent key components within the family of different 2D semiconductors for various electronic, optoelectronic and electrochemical applications due to their unique electronic, optical, mechanical and electrochemical properties. However, despite great progress in research dedicated to the development and fabrication of 2D MT&Ds observed within the last decade, there are significant challenges that affected their charge transport behavior and fabrication on a large scale as well as there is high dependence of the carrier mobility on the thickness. In this article, we review the recent progress in the carrier mobility engineering of 2D MT&Ds and elaborate devised strategies dedicated to the optimization of MT&D properties. Specifically, the latest physical and chemical methods towards the surface functionalization and optimization of the major factors influencing the extrinsic transport at the electrode-2D semiconductor interface are discussed.
Collapse
Affiliation(s)
- Zihan Wei
- Ghent University Global Campus, Department of Green Chemistry & Technology, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, South Korea.
| | | |
Collapse
|
14
|
Zhao Z, Chen C, Liu Z, Huang J, Wu M, Liu H, Li Y, Huang Y. Pt-Based Nanocrystal for Electrocatalytic Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808115. [PMID: 31183932 DOI: 10.1002/adma.201808115] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Currently, Pt-based electrocatalysts are adopted in the practical proton exchange membrane fuel cell (PEMFC), which converts the energy stored in hydrogen and oxygen into electrical power. However, the broad implementation of the PEMFC, like replacing the internal combustion engine in the present automobile fleet, sets a requirement for less Pt loading compared to current devices. In principle, the requirement needs the Pt-based catalyst to be more active and stable. Two main strategies, engineering of the electronic (d-band) structure (including controlling surface facet, tuning surface composition, and engineering surface strain) and optimizing the reactant adsorption sites are discussed and categorized based on the fundamental working principle. In addition, general routes for improving the electrochemical surface area, which improves activity normalized by the unit mass of precious group metal/platinum group metal, and stability of the electrocatalyst are also discussed. Furthermore, the recent progress of full fuel cell tests of novel electrocatalysts is summarized. It is suggested that a better understanding of the reactant/intermediate adsorption, electron transfer, and desorption occurring at the electrolyte-electrode interface is necessary to fully comprehend these electrified surface reactions, and standardized membrane electrode assembly (MEA) testing protocols should be practiced, and data with full parameters detailed, for reliable evaluation of catalyst functions in devices.
Collapse
Affiliation(s)
- Zipeng Zhao
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Changli Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zeyan Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Jin Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Menghao Wu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haotian Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Yujing Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
15
|
Abstract
Low-noble metal electrocatalysts are attracting massive attention for anode and cathode reactions in fuel cells. Pt transition metal alloy nanostructures have demonstrated their advantages in high performance low-noble metal electrocatalysts due to synergy effects. The basic of designing this type of catalysts lies in understanding structure-performance correlation at the atom and electron level. Herein, design threads of highly active and durable Pt transition metal alloy nanocatalysts are summarized, with highlighting their synthetic realization. Microscopic and electron structure characterization methods and their prospects will be introduced. Recent progress will be discussed in high active and durable Pt transition metal alloy nanocatalysts towards oxygen reduction and methanol oxidation, with their structure-performance correlations illustrated. Lastly, an outlook will be given on promises and challenges in future developing of Pt transition metal alloy nanostructures towards fuel cells catalysis uses.
Collapse
|
16
|
Li Y, Polakovic T, Curtis J, Shumlas S, Chatterjee S, Intikhab S, Chareev D, Volkova O, Vasiliev A, Karapetrov G, Snyder J. Tuning the activity/stability balance of anion doped CoS Se2− dichalcogenides. J Catal 2018. [DOI: 10.1016/j.jcat.2018.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Lozano T, Rankin RB. Computational predictive design for metal-decorated-graphene size-specific subnanometer to nanometer ORR catalysts. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
|
19
|
Gamler JTL, Ashberry HM, Skrabalak SE, Koczkur KM. Random Alloyed versus Intermetallic Nanoparticles: A Comparison of Electrocatalytic Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801563. [PMID: 29984851 DOI: 10.1002/adma.201801563] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/12/2018] [Indexed: 05/15/2023]
Abstract
As synthetic methods advance for metal nanoparticles, more rigorous studies of structure-function relationships can be made. Many electrocatalytic processes depend on the size, shape, and composition of the nanocatalysts. Here, the properties and electrocatalytic behavior of random alloyed and intermetallic nanoparticles are compared. Beginning with an introduction of metallic nanoparticles for catalysis and the unique features of bimetallic compositions, the discussion transitions to case studies of nanoscale electrocatalysts where direct comparisons of alloy and intermetallic compositions are undertaken for methanol electrooxidation, formic acid electrooxidation, the oxygen reduction reaction, and the electroreduction of carbon dioxide (CO2 ). Design and synthesis strategies for random alloyed and intermetallic nanoparticles are discussed, with an emphasis on Pt-M and Cu-M compositions as model systems. The differences in catalytic performance between alloys and intermetallic nanoparticles are highlighted in order to provide an outlook for future electrocatalyst design.
Collapse
Affiliation(s)
- Jocelyn T L Gamler
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Hannah M Ashberry
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Kallum M Koczkur
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| |
Collapse
|
20
|
Li J, Li L, Wang MJ, Wang J, Wei Z. Alloys with Pt-skin or Pt-rich surface for electrocatalysis. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Zhai Y, Zhu Z, Zhou S, Zhu C, Dong S. Recent advances in spectroelectrochemistry. NANOSCALE 2018; 10:3089-3111. [PMID: 29379916 DOI: 10.1039/c7nr07803j] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The integration of two quite different techniques, conventional electrochemistry and spectroscopy, into spectroelectrochemistry (SEC) provides a complete description of chemically driven electron transfer processes and redox events for different kinds of molecules and nanoparticles. SEC possesses interdisciplinary advantages and can further expand the scopes in the fields of analysis and other applications, emphasizing the hot issues of analytical chemistry, materials science, biophysics, chemical biology, and so on. Considering the past and future development of SEC, a review on the recent progress of SEC is presented and selected examples involving surface-enhanced Raman scattering (SERS), ultraviolet-visible (UV-Vis), near-infrared (NIR), Fourier transform infrared (FTIR), fluorescence, as well as other SEC are summarized to fully demonstrate these techniques. In addition, the optically transparent electrodes and SEC cell design, and the typical applications of SEC in mechanism study, electrochromic device fabrication, sensing and protein study are fully introduced. Finally, the key issues, future perspectives and trends in the development of SEC are also discussed.
Collapse
Affiliation(s)
- Yanling Zhai
- Department of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| | | | | | | | | |
Collapse
|
22
|
Jia Q, Zhao Z, Cao L, Li J, Ghoshal S, Davies V, Stavitski E, Attenkofer K, Liu Z, Li M, Duan X, Mukerjee S, Mueller T, Huang Y. Roles of Mo Surface Dopants in Enhancing the ORR Performance of Octahedral PtNi Nanoparticles. NANO LETTERS 2018; 18:798-804. [PMID: 29272136 DOI: 10.1021/acs.nanolett.7b04007] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Doping with a transition metal was recently shown to greatly boost the activity and durability of PtNi/C octahedral nanoparticles (NPs) for the oxygen reduction reaction (ORR), but its specific roles remain unclear. By combining electrochemistry, ex situ and in situ spectroscopic techniques, density functional theory calculations, and a newly developed kinetic Monte Carlo model, we showed that Mo atoms are preferentially located on the vertex and edge sites of Mo-PtNi/C in the form of oxides, which are stable within the wide potential window of the electrochemical cycle. These surface Mo oxides stabilize adjacent Pt sites, hereby stabilizing the octahedral shape enriched with (111) facets, and lead to increased concentration of Ni in subsurface layers where they are protected against acid dissolution. Consequently, the favorable Pt3Ni(111) structure for the ORR is stabilized on the surface of PtNi/C NPs in acid against voltage cycling. Significantly, the unusual potential-dependent oxygen coverage trend on Mo-doped PtNi/C NPs as revealed by the surface-sensitive Δμ analysis suggests that the Mo dopants may also improve the ORR kinetics by modifying the coordination environments of Pt atoms on the surface. Our studies point out a possible way to stabilize the favorable shape and composition established on conceptual catalytic models in practical nanoscale catalysts.
Collapse
Affiliation(s)
- Qingying Jia
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Zipeng Zhao
- Department of Materials Science and Engineering, University of California , Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California , Los Angeles, California 90095, United States
| | - Liang Cao
- Department of Materials Science and Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Jingkun Li
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Shraboni Ghoshal
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Veronica Davies
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Klaus Attenkofer
- National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Zeyan Liu
- Department of Materials Science and Engineering, University of California , Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California , Los Angeles, California 90095, United States
| | - Mufan Li
- California NanoSystems Institute (CNSI), University of California , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- California NanoSystems Institute (CNSI), University of California , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Sanjeev Mukerjee
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Tim Mueller
- Department of Materials Science and Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Yu Huang
- Department of Materials Science and Engineering, University of California , Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California , Los Angeles, California 90095, United States
| |
Collapse
|
23
|
Li Y, Hart JL, Taheri ML, Snyder JD. Morphological Instability in Topologically Complex, Three-Dimensional Electrocatalytic Nanostructures. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02398] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yawei Li
- Chemical
and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - James L. Hart
- Materials
Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Mitra L. Taheri
- Materials
Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Joshua D. Snyder
- Chemical
and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Li J, Jia Q, Ghoshal S, Liang W, Mukerjee S. Highly Active and Stable Fe-N-C Catalyst for Oxygen Depolarized Cathode Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9246-9253. [PMID: 28445640 DOI: 10.1021/acs.langmuir.7b00643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Anion immunity toward the oxygen reduction reaction (ORR) has tremendous implications in electrocatalysis with applications for fuel cells, metal-air batteries, and oxygen depolarized cathodes (ODCs) in the anodic evolution of chlorine. The necessity of exploring ORR catalysts with immunity to anion adsorption is particularly significant considering that platinum group metal (PGM) catalysts are costly and highly vulnerable to impurities such as halides. Herein, we report a metal organic framework (MOF)-derived Fe-N-C catalyst that exhibits a dramatically improved half-wave potential of 240 mV compared to the state-of-the-art RhxSy/C catalyst in a rotating disk electrode in the presence of Cl-. The Fe-N4 active sites in Fe-N-C are intrinsically immune to Cl- poisoning, in contrast to Pt/C, which is severely susceptible to Cl- poisoning. As a result, the activity of Fe-N-C decreases only marginally in the presence of Cl-, far exceeding that of Pt/C. The viability of this catalyst as ODCs is further demonstrated in real-life hydrochloric acid electrolyzers using highly concentrated HCl solution saturated with Cl2 gas as the electrolyte. The introduction of Fe-N-C materials as ODC catalysts here overcomes the limitations of (i) the low intrinsic ORR activity of RhxSy/C as the state-of-the-art ODC catalyst; (ii) the vulnerability to Cl- poisoning of Pt/C as the state-of-the-art ORR catalyst; and (iii) the high cost of precious metals in these two materials, resulting in a cost-effective ODC catalyst with the overall performance exceeding that of all previously reported materials.
Collapse
Affiliation(s)
- Jingkun Li
- Department of Chemistry and Chemical Biology and ‡Department of Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Qingying Jia
- Department of Chemistry and Chemical Biology and ‡Department of Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Shraboni Ghoshal
- Department of Chemistry and Chemical Biology and ‡Department of Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Wentao Liang
- Department of Chemistry and Chemical Biology and ‡Department of Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Sanjeev Mukerjee
- Department of Chemistry and Chemical Biology and ‡Department of Biology, Northeastern University , Boston, Massachusetts 02115, United States
| |
Collapse
|
25
|
Jia Q, Ghoshal S, Li J, Liang W, Meng G, Che H, Zhang S, Ma ZF, Mukerjee S. Metal and Metal Oxide Interactions and Their Catalytic Consequences for Oxygen Reduction Reaction. J Am Chem Soc 2017; 139:7893-7903. [DOI: 10.1021/jacs.7b02378] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | - Guangnan Meng
- ULVAC Technologies, Inc., 401
Griffin Brook Drive, Methuen, Massachusetts 01844, United States
| | - Haiying Che
- Shanghai
Electrochemical Energy Devices Research Center, Department of Chemical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Shiming Zhang
- Shanghai
Electrochemical Energy Devices Research Center, Department of Chemical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Zi-Feng Ma
- Shanghai
Electrochemical Energy Devices Research Center, Department of Chemical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | | |
Collapse
|
26
|
Le Bacq O, Pasturel A, Chattot R, Previdello B, Nelayah J, Asset T, Dubau L, Maillard F. Effect of Atomic Vacancies on the Structure and the Electrocatalytic Activity of Pt-rich/C Nanoparticles: A Combined Experimental and Density Functional Theory Study. ChemCatChem 2017. [DOI: 10.1002/cctc.201601672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Olivier Le Bacq
- Univ. Grenoble Alpes, SIMAP; F-38000 Grenoble France
- CNRS, SIMAP; F-38000 Grenoble France
| | - Alain Pasturel
- Univ. Grenoble Alpes, SIMAP; F-38000 Grenoble France
- CNRS, SIMAP; F-38000 Grenoble France
| | - Raphaël Chattot
- Univ. Grenoble Alpes, LEPMI; F-38000 Grenoble France
- CNRS, LEPMI; F-38000 Grenoble France
| | - Bruno Previdello
- Institute of Chemistry of São Carlos; University of São Paulo, CP 780; CEP 13560-970 São Carlos, SP Brazil
| | - Jaysen Nelayah
- Université Paris Diderot, Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162; 75013 Paris France
| | - Tristan Asset
- Univ. Grenoble Alpes, LEPMI; F-38000 Grenoble France
- CNRS, LEPMI; F-38000 Grenoble France
| | - Laetitia Dubau
- Univ. Grenoble Alpes, LEPMI; F-38000 Grenoble France
- CNRS, LEPMI; F-38000 Grenoble France
| | - Frédéric Maillard
- Univ. Grenoble Alpes, LEPMI; F-38000 Grenoble France
- CNRS, LEPMI; F-38000 Grenoble France
| |
Collapse
|
27
|
Dubau L, Nelayah J, Asset T, Chattot R, Maillard F. Implementing Structural Disorder as a Promising Direction for Improving the Stability of PtNi/C Nanoparticles. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00410] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laetitia Dubau
- Université Grenoble Alpes, LEPMI, F-38000 Grenoble, France
- CNRS, LEPMI, F-38000 Grenoble, France
| | - Jaysen Nelayah
- Université Paris Diderot, Sorbonne Paris Cité,
CNRS, Laboratoire Matériaux et Phénomènes Quantiques,
UMR 7162, F-75013 Paris, France
| | - Tristan Asset
- Université Grenoble Alpes, LEPMI, F-38000 Grenoble, France
- CNRS, LEPMI, F-38000 Grenoble, France
| | - Raphaël Chattot
- Université Grenoble Alpes, LEPMI, F-38000 Grenoble, France
- CNRS, LEPMI, F-38000 Grenoble, France
| | - Frédéric Maillard
- Université Grenoble Alpes, LEPMI, F-38000 Grenoble, France
- CNRS, LEPMI, F-38000 Grenoble, France
| |
Collapse
|
28
|
|
29
|
Asset T, Chattot R, Nelayah J, Job N, Dubau L, Maillard F. Structure-Activity Relationships for the Oxygen Reduction Reaction in Porous Hollow PtNi/C Nanoparticles. ChemElectroChem 2016. [DOI: 10.1002/celc.201600300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tristan Asset
- University of Grenoble Alpes, LEPMI; 38000 Grenoble France
- CNRS, LEPMI; 38000 Grenoble France
- University of Liège; Department of Chemical Engineering: Nanomaterials, Catalysis, Electrochemistry, B6a, Sart-Tilman; 4000 Liège Belgium
| | - Raphaël Chattot
- University of Grenoble Alpes, LEPMI; 38000 Grenoble France
- CNRS, LEPMI; 38000 Grenoble France
| | - Jaysen Nelayah
- Laboratoire Matériaux et Phénomènes Quantiques (MPQ), UMR 7162 CNRS &; Université Paris-Diderot, Bâtiment Condorcet; 4 rue Elsa Morante 75205 Paris Cedex 13 France
| | - Nathalie Job
- University of Liège; Department of Chemical Engineering: Nanomaterials, Catalysis, Electrochemistry, B6a, Sart-Tilman; 4000 Liège Belgium
| | - Laetitia Dubau
- University of Grenoble Alpes, LEPMI; 38000 Grenoble France
- CNRS, LEPMI; 38000 Grenoble France
| | - Frédéric Maillard
- University of Grenoble Alpes, LEPMI; 38000 Grenoble France
- CNRS, LEPMI; 38000 Grenoble France
| |
Collapse
|
30
|
Dubau L, Nelayah J, Moldovan S, Ersen O, Bordet P, Drnec J, Asset T, Chattot R, Maillard F. Defects do Catalysis: CO Monolayer Oxidation and Oxygen Reduction Reaction on Hollow PtNi/C Nanoparticles. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01106] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Laetitia Dubau
- Université Grenoble Alpes, LEPMI, F-38000 Grenoble, France
- CNRS, LEPMI, F-38000 Grenoble, France
| | - Jaysen Nelayah
- Laboratoire Matériaux et Phénomènes Quantiques (MPQ), UMR 7162, CNRS & Université Paris-Diderot, Bâtiment Condorcet, 4 rue Elsa Morante, F-75205 Paris Cedex 13, France
| | - Simona Moldovan
- Institut
de Physique et Chimie des Matériaux de Strasbourg (IPCMS),
UMR 7504, CNRS-Université de Strasbourg (UdS), 23 rue du Lœss, Cedex 2 Strasbourg, France
| | - Ovidiu Ersen
- Institut
de Physique et Chimie des Matériaux de Strasbourg (IPCMS),
UMR 7504, CNRS-Université de Strasbourg (UdS), 23 rue du Lœss, Cedex 2 Strasbourg, France
| | - Pierre Bordet
- Université Grenoble Alpes, Institut Néel, F-38000 Grenoble, France
- CNRS, Institut Néel, F-38000 Grenoble, France
| | - Jakub Drnec
- European Synchrotron Radiation Facility, ID 31 Beamline, BP 220, F-38043 Grenoble Cedex, France
| | - Tristan Asset
- Université Grenoble Alpes, LEPMI, F-38000 Grenoble, France
- CNRS, LEPMI, F-38000 Grenoble, France
| | - Raphaël Chattot
- Université Grenoble Alpes, LEPMI, F-38000 Grenoble, France
- CNRS, LEPMI, F-38000 Grenoble, France
| | - Frédéric Maillard
- Université Grenoble Alpes, LEPMI, F-38000 Grenoble, France
- CNRS, LEPMI, F-38000 Grenoble, France
| |
Collapse
|
31
|
Kongkanand A, Mathias MF. The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells. J Phys Chem Lett 2016; 7:1127-37. [PMID: 26961326 DOI: 10.1021/acs.jpclett.6b00216] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Substantial progress has been made in reducing proton-exchange membrane fuel cell (PEMFC) cathode platinum loadings from 0.4-0.8 mgPt/cm(2) to about 0.1 mgPt/cm(2). However, at this level of cathode Pt loading, large performance loss is observed at high-current density (>1 A/cm(2)), preventing a reduction in the overall stack cost. This next developmental step is being limited by the presence of a resistance term exhibited at these lower Pt loadings and apparently due to a phenomenon at or near the catalyst surface. This issue can be addressed through the design of catalysts with high and stable Pt dispersion as well as through development and implementation of ionomers designed to interact with Pt in a way that does not constrain oxygen reduction reaction rates. Extrapolating from progress made in past decades, we are optimistic that the concerted efforts of materials and electrode designers can resolve this issue, thus enabling a large step toward fuel cell vehicles that are affordable for the mass market.
Collapse
Affiliation(s)
- Anusorn Kongkanand
- Fuel Cell Activities, General Motors Global Product Development , Pontiac, Michigan 48340, United States
| | - Mark F Mathias
- Fuel Cell Activities, General Motors Global Product Development , Pontiac, Michigan 48340, United States
| |
Collapse
|