1
|
Saha R, Hembram BC, Panda S, Ghosh R, Bagh B. Iron-Catalyzed sp 3 C-H Alkylation of Fluorene with Primary and Secondary Alcohols: A Borrowing Hydrogen Approach. J Org Chem 2024; 89:16223-16241. [PMID: 39175426 DOI: 10.1021/acs.joc.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The utilization of earth-abundant, cheap, and nontoxic transition metals in important catalytic transformations is essential for sustainable development, and iron has gained significant attention as the most abundant transition metal. A mixture of FeCl2 (3 mol %), phenanthroline (6 mol %), and KOtBu (0.4 eqivalent) was used as an effective catalyst for the sp3 C-H alkylation of fluorene using alcohol as a nonhazardous alkylating partner, and eco-friendly water was formed as the only byproduct. The substrate scope includes a wide range of substituted fluorenes and substituted benzyl alcohols. The reaction is equally effective with challenging secondary alcohols and unactivated aliphatic alcohols. Selective mono-C9-alkylation of fluorenes with alcohols yielded the corresponding products in good isolated yields. Various postfunctionalizations of C-9 alkylated fluorene products were performed to establish the practical utility of this catalytic alkylation. Control experiments suggested a homogeneous reaction path involving borrowing hydrogen mechanism with the formation and subsequent reduction of 9-alkylidene fluorene intermediate.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Bhairab Chand Hembram
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Rahul Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| |
Collapse
|
2
|
Ramsden J, Zucoloto da Costa B, Heath RS, Marshall JR, Derrington SR, Mangas-Sanchez J, Montgomery SL, Mulholland KR, Cosgrove SC, Turner NJ. Bifunctional Imine Reductase Cascades for the Synthesis of Saturated N-Heterocycles. ACS Catal 2024; 14:14703-14710. [PMID: 39386922 PMCID: PMC11459430 DOI: 10.1021/acscatal.4c03832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Saturated N-heterocycles constitute a vital scaffold for pharmaceutical chemistry but are challenging to access synthetically, particularly asymmetrically. Here, we demonstrate how imine reductases can achieve annulation through tandem inter- and intramolecular reductive amination processes. Imine reductases were used in combination with further enzymes to access unsubstituted, α-substituted, and α,α'-disubstituted N-heterocycles from simple starting materials in one pot and under benign conditions. This work shows the remarkable flexibility of these enzymes to have broad activity against numerous substrates derived from singlular starting materials.
Collapse
Affiliation(s)
- Jeremy
I. Ramsden
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Bruna Zucoloto da Costa
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Rachel S. Heath
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - James R. Marshall
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Sasha R. Derrington
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Juan Mangas-Sanchez
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Sarah L. Montgomery
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Keith R. Mulholland
- Chemical
Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Silk Road Business Park, Macclesfield SK10 2NA, U.K.
| | - Sebastian C. Cosgrove
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
- School
of
Chemical and Physical Sciences and Keele Centre for Glycoscience, Keele University, Keele ST5 5BG, U.K.
| | - Nicholas J. Turner
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
3
|
Shekhawat B, Gahlaut PS, Gautam D, Jana B. N-Alkylation of amines with primary/secondary alcohols using a novel cobalt(II) inverse triazolyl-pyridine complex. Chem Commun (Camb) 2024; 60:8581-8584. [PMID: 39045651 DOI: 10.1039/d4cc01996b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Herein, we report a highly effective homogeneous methodology for the N-alkylation of amines with primary and secondary alcohols using a Co(II)-complex of an inverse triazolyl-pyridine ligand. The developed methodology tolerates various functional groups to produce the desired N-alkylated products in up to 98% yield. A number of control experiments establish that the developed methodology follows a hydrogen auto-transfer (HAT) pathway.
Collapse
Affiliation(s)
- Bhawana Shekhawat
- Organometallic and Supramolecular Chemistry Laboratory, Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jhalana Gram, Malviya Nagar, Jaipur, Rajasthan, 302017, India.
| | - Puneet Singh Gahlaut
- Organometallic and Supramolecular Chemistry Laboratory, Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jhalana Gram, Malviya Nagar, Jaipur, Rajasthan, 302017, India.
| | - Deepak Gautam
- Organometallic and Supramolecular Chemistry Laboratory, Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jhalana Gram, Malviya Nagar, Jaipur, Rajasthan, 302017, India.
| | - Barun Jana
- Organometallic and Supramolecular Chemistry Laboratory, Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jhalana Gram, Malviya Nagar, Jaipur, Rajasthan, 302017, India.
| |
Collapse
|
4
|
Chandra A, Basu P, Raha S, Dhibar P, Bhattacharya S. Development of ruthenium complexes with S-donor ligands for application in synthesis, catalytic acceptorless alcohol dehydrogenation and crossed-aldol condensation. Dalton Trans 2024; 53:10675-10685. [PMID: 38860941 DOI: 10.1039/d4dt00985a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The reaction of [Ru(dmso)4Cl2] with a potassium salt of four xanthate (RO-C(S)S-; R = Me, Et, iPr and tBu) ligands (depicted as Ln; n = 1-4) in hot methanol afforded a group of mixed-ligand complexes of type [Ru(Ln)2(dmso)2]. The crystal structures of all the four complexes have been determined, which show that the xanthate ligands are bound to the metal center forming four-membered chelates and dmso is coordinated through sulfur and they are mutually cis. The relative thermodynamic stability of this cis and the other possible trans-isomers of these complexes has been assessed with the help of DFT calculations, which have revealed that the cis-isomer is the more stable isomer. The coordinated dmso in the [Ru(Ln)2(dmso)2] complexes could be easily displaced by chelating bidentate ligands (depicted as L') to furnish complexes of type [Ru(Ln)2(L')], as demonstrated through isolation of two such complexes, viz. [Ru(L3)2(bpy)] and [Ru(L2)2(phen)] (bpy = 2,2'-bipyridine and phen = 1,10-phenanthroline). The crystal structure of [Ru(L3)2(bpy)] has been determined and the structure of [Ru(L2)2(phen)] has been optimized by the DFT method. The electronic spectra of the four [Ru(Ln)2(dmso)2] complexes and the two derivatives ([Ru(Ln)2(L')]; n = 3, L' = bpy; n = 2, L' = phen), recorded in dichloromethane solutions, show intense absorptions spanning the visible and ultraviolet regions, which have been analyzed by the TDDFT method. The [Ru(Ln)2(dmso)2] complexes are found to serve as efficient catalyst precursors for the acceptorless dehydrogenation of 2-propanol followed by crossed-aldol condensation with substituted benzaldehydes (and related aldehydes), using tert-butoxide as the co-catalyst, producing dibenzylideneacetone derivatives in good yields.
Collapse
Affiliation(s)
- Anushri Chandra
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
| | - Pousali Basu
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
| | - Shreya Raha
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
| | - Papu Dhibar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
- Department of Chemistry, Brainware University, Kolkata 700 125, India
| | - Samaresh Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
| |
Collapse
|
5
|
Faizan M, Kumar R, Mazumder A, Salahuddin, Kukreti N, Kumar A, Chaitanya MVNL. The medicinal chemistry of piperazines: A review. Chem Biol Drug Des 2024; 103:e14537. [PMID: 38888058 DOI: 10.1111/cbdd.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 06/20/2024]
Abstract
The versatile basic structure of piperazine allows for the development and production of newer bioactive molecules that can be used to treat a wide range of diseases. Piperazine derivatives are unique and can easily be modified for the desired pharmacological activity. The two opposing nitrogen atoms in a six-membered piperazine ring offer a large polar surface area, relative structural rigidity, and more acceptors and donors of hydrogen bonds. These properties frequently result in greater water solubility, oral bioavailability, and ADME characteristics, as well as improved target affinity and specificity. Various synthetic protocols have been reported for piperazine and its derivatives. In this review, we focused on recently published synthetic protocols for the synthesis of the piperazine and its derivatives. The structure-activity relationship concerning different biological activities of various piperazine-containing drugs has also been highlighted to provide a good understanding to researchers for future research on piperazines.
Collapse
Affiliation(s)
- Md Faizan
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajnish Kumar
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Salahuddin
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Arvind Kumar
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - M V N L Chaitanya
- School of Pharmaceutical Science, Lovely Professional University, Phagwara, India
| |
Collapse
|
6
|
Zubčić G, You J, Zott FL, Ashirbaev SS, Kolympadi Marković M, Bešić E, Vrček V, Zipse H, Šakić D. Regioselective Rearrangement of Nitrogen- and Carbon-Centered Radical Intermediates in the Hofmann-Löffler-Freytag Reaction. J Phys Chem A 2024; 128:2574-2583. [PMID: 38516723 PMCID: PMC11000220 DOI: 10.1021/acs.jpca.3c07892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
The Hofmann-Löffler-Freytag (HLF) reaction serves as a late-stage functionalization technique for generating pyrrolidine heterocyclic ring systems. Contemporary HLF protocols utilize in situ halogenated sulfonamides as precursors in the radical-mediated rearrangement cycle. Despite its well-established reaction mechanism, experiments toward the detection of radical intermediates using EPR techniques have only recently been attempted. However, the obtained spectra lack the distinct features of the N-centered radicals expected for the employed reactants. This paper presents phenylbutylnitrone spin-trapped C-centered and N-centered radicals, generated via light irradiation from N-halogen-tosyl-sulfonamide derivatives and detected using EPR spectroscopy. NMR spectroscopy and DFT calculations are used to explain the observed regioselectivity of the HLF reaction.
Collapse
Affiliation(s)
- Gabrijel Zubčić
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Jiangyang You
- Division
of Physical Chemistry, Rud̵er Bošković
Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Fabian L. Zott
- Department
of Chemistry, Ludwig-Maximilians-Universität
München, Butenandtstrasse 5-13, D-81377 München, Germany
| | - Salavat S. Ashirbaev
- Department
of Chemistry, Ludwig-Maximilians-Universität
München, Butenandtstrasse 5-13, D-81377 München, Germany
| | - Maria Kolympadi Marković
- Faculty
of Physics, and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Erim Bešić
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Valerije Vrček
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Hendrik Zipse
- Department
of Chemistry, Ludwig-Maximilians-Universität
München, Butenandtstrasse 5-13, D-81377 München, Germany
| | - Davor Šakić
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Singh RK, Yadav D, Misra S, Singh AK. Role of ancillary ligands in selectivity towards acceptorless dehydrogenation versus dehydrogenative coupling of alcohols and amines catalyzed by cationic ruthenium(II)-CNC pincer complexes. Dalton Trans 2023; 52:15878-15895. [PMID: 37830304 DOI: 10.1039/d3dt03149g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
An unexpected reversal in catalytic activity for acceptorless dehydrogenative coupling compared to acceptorless alcohol dehydrogenation has been observed using a series of cationic Ru(II)-CNC pincer complexes with different ancillary ligands. In continuation of our study of cationic Ru(II)-CNC pincer complexes 1a-6a, new complexes with bulky N-wingtips [Ru(CNCiPr)(CO)(PPh3)Br]PF6 (1b), [Ru(CNCCy)(CO)(PPh3)Cl]PF6 (1c), [Ru(CNCCy)(CO)(PPh3)H]PF6 (2c), [Ru(CNCiPr)(PPh3)2Cl]PF6 (3b), [Ru(CNCCy)(PPh3)2Cl]PF6 (3c), [Ru(CNCiPr)(PPh3)2H]PF6 (4b), [Ru(CNCCy)(PPh3)2H]PF6 (4c), [Ru(CNCiPr)(DMSO)2Cl]PF6 (6b), and [Ru(CNCCy)(DMSO)2Cl]PF6 (6c) [CNCR = 2,6-bis(1-alkylimidazol-2-ylidene)-pyridine] have been synthesized and the catalytic activities of the new complexes have been compared with their N-methyl analogues for transfer hydrogenation of cyclohexanone and acceptorless dehydrogenation of benzyl alcohol. Furthermore, all complexes have been utilized as catalysts in the dehydrogenative coupling reaction of benzyl alcohol with amines. While the catalytic activities of the new complexes for transfer hydrogenation and acceptorless alcohol dehydrogenation were found to be in line with the previously observed trend based on the ancillary ligands (CO > COD > DMSO > PPh3), for the acceptorless dehydrogenative coupling reaction, complexes containing PPh3 and DMSO ligands performed better compared to complexes containing CO and COD ligands. Based on NMR and mass investigation of catalytic reactions, a plausible mechanism has been suggested to explain the difference in catalytic activity and its reversal during the dehydrogenative coupling reaction. Furthermore, the substrate scope for the dehydrogenative coupling reaction of benzyl alcohol with a wide range of amines has been explored, including synthesizing some pharmaceutically important imines. All new complexes have been characterized by various spectroscopic techniques, and the structures of 4b and 6b have been confirmed by the single-crystal X-ray diffraction technique.
Collapse
Affiliation(s)
- Rahul Kumar Singh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Dibya Yadav
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Shilpi Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
- Centre for Scientific and Applied Research, IPS Academy, Indore 452012, India
| | - Amrendra K Singh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
8
|
Grooms AJ, Nordmann AN, Badu-Tawiah AK. Dual Tunability for Uncatalyzed N-Alkylation of Primary Amines Enabled by Plasma-Microdroplet Fusion. Angew Chem Int Ed Engl 2023:e202311100. [PMID: 37770409 DOI: 10.1002/anie.202311100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
The fusion of non-thermal plasma with charged microdroplets facilitates catalyst-free N-alkylation for a variety of primary amines, without halide salt biproduct generation. Significant reaction enhancement (up to >200×) is observed over microdroplet reactions generated from electrospray. This enhancement for the plasma-microdroplet system is attributed to the combined effects of energetic collisions and the presence of reactive oxygen species (ROS). The ROS (e.g., O2 ⋅- ) act as a proton sink to increase abundance of free neutral amines in the charged microdroplet environment. The effect of ROS on N-alkylation is confirmed through three unique experiments: (i) utilization of radical scavenging reagent, (ii) characterization of internal energy distribution, and (iii) controls performed without plasma, which lacked reaction acceleration. Establishing plasma discharge in the wake of charged microdroplets as a green synthetic methodology overcomes two major challenges within conventional gas-phase plasma chemistry, including the lack of selectivity and product scale-up. Both limitations are overcome here, where dual tunability is achieved by controlling reagent concentration and residence time in the microdroplet environment, affording single or double N-alkylated products. Products are readily collected yielding milligram quantities in eight hours. These results showcase a novel synthetic strategy that represents a straightforward and sustainable C-N bond-forming process.
Collapse
Affiliation(s)
- Alexander J Grooms
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH-43210, USA
| | - Anna N Nordmann
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH-43210, USA
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH-43210, USA
| |
Collapse
|
9
|
Larduinat M, François J, Jacolot M, Popowycz F. Ir-Catalyzed Synthesis of Functionalized Pyrrolidines and Piperidines Using the Borrowing Hydrogen Methodology. J Org Chem 2023. [PMID: 37134228 DOI: 10.1021/acs.joc.3c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Ir(III)-catalyzed synthesis of 3-pyrrolidinols and 4-piperidinols combining 1,2,4-butanetriol or 1,3,5-pentanetriol with primary amines was carried out. This borrowing hydrogen methodology was further extended to the sequential diamination of triols leading to amino-pyrrolidines and amino-piperidines.
Collapse
Affiliation(s)
- Malvina Larduinat
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France
| | - Jordan François
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France
| | - Maïwenn Jacolot
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France
| | - Florence Popowycz
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France
| |
Collapse
|
10
|
Nalikezhathu A, Tam A, Cherepakhin V, Do VK, Williams TJ. Synthesis of 1,4-Diazacycles by Hydrogen Borrowing. Org Lett 2023; 25:1754-1759. [PMID: 36867725 DOI: 10.1021/acs.orglett.3c00468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
We report the syntheses of 1,4-diazacycles by diol-diamine coupling, uniquely made possible with a (pyridyl)phosphine-ligated ruthenium(II) catalyst (1). The reactions can exploit either two sequential N-alkylations or an intermediate tautomerization pathway to yield piperazines and diazepanes; diazepanes are generally inaccessible by catalytic routes. Our conditions tolerate different amines and alcohols that are relevant to key medicinal platforms. We show the syntheses of the drugs cyclizine and homochlorcyclizine in 91% and 67% yields, respectively.
Collapse
Affiliation(s)
- Anju Nalikezhathu
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Adriane Tam
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Valeriy Cherepakhin
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Van K Do
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Travis J Williams
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
11
|
Ru(II)-p-cymene complexes containing hydrazone ligands catalyzed α-alkylation of ketones and one-pot synthesis of bioactive quinolines and 3-(quinolin-2-yl)-2H-chromen-2-one. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Nad P, Behera AK, Sen A, Mukherjee A. Catalytic and Mechanistic Approach to the Metal-Free N-Alkylation of 2-Aminopyridines with Diketones. J Org Chem 2022; 87:15403-15414. [PMID: 36350139 DOI: 10.1021/acs.joc.2c01957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
N-alkylation of amines is an important catalytic reaction in synthetic chemistry. Herein, we report a simple strategy for the N-alkylation of 2-aminopyridines with 1,2-diketones using BF3·OEt2 as a catalyst. The reaction proceeds under aerobic conditions, leading to the formation of a diverse range of substituted secondary amines in good to excellent yields. A close inspection of the mechanistic pathway using various spectroscopic techniques and the computational study revealed that the reaction proceeds through the formation of an iminium-keto intermediate with the liberation of CO2.
Collapse
Affiliation(s)
- Pinaki Nad
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur 492015, Chhattisgarh, India
| | - Anil Kumar Behera
- Department of Chemistry (CMDD Lab), GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India
| | - Anik Sen
- Department of Chemistry (CMDD Lab), GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur 492015, Chhattisgarh, India
| |
Collapse
|
13
|
Ruijten D, Narmon T, De Weer H, van der Zweep R, Poleunis C, Debecker DP, Maes BUW, Sels BF. Hydrogen Borrowing: towards Aliphatic Tertiary Amines from Lignin Model Compounds Using a Supported Copper Catalyst. CHEMSUSCHEM 2022; 15:e202200868. [PMID: 35900053 DOI: 10.1002/cssc.202200868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Upcoming biorefineries, such as lignin-first provide renewable aromatics containing unique aliphatic alcohols. In this context, a Cu-ZrO2 catalyzed hydrogen borrowing approach was established to yield tertiary amine from the lignin model monomer 3-(3,4-dimethoxyphenyl)-1-propanol and the actual lignin-derived monomers, (3-(4-hydroxyphenyl)-1-propanol and dihydroconiferyl alcohol), with dimethylamine. Various industrial metal catalysts were evaluated, resulting in nearly quantitative mass balances for most catalysts. Identified intermediates, side and reaction products were placed into a corresponding reaction network, supported by kinetic evolution experiments. Cu-ZrO2 was selected as most suitable catalyst combining high alcohol conversion with respectable aliphatic tertiary amine selectivity. Low pressure H2 was key for high catalyst activity and tertiary amine selectivity, mainly by hindering undesired reactant dimethylamine disproportionation and alcohol amidation. Besides dimethylamine model, diverse secondary amine reactants were tested with moderate to high tertiary amine yields. As most active catalytic site, highly dispersed Cu species in strong contact with ZrO2 is suggested. ToF-SIMS, N2 O chemisorption, TGA and XPS of spent Cu-ZrO2 revealed that imperfect amine product desorption and declining surface Cu lowered the catalytic activity upon catalyst reuse, while thermal reduction readily restored the initial activity and selectivity demonstrating catalyst reuse.
Collapse
Affiliation(s)
- Dieter Ruijten
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Thomas Narmon
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Hanne De Weer
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Robbe van der Zweep
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Claude Poleunis
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain (UCLouvain), 1348, Louvain-La-Neuve, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain (UCLouvain), 1348, Louvain-La-Neuve, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Bert F Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| |
Collapse
|
14
|
Lu Y, Chai H, Yu K, Huang C, Li Y, Wang J, Ma J, Tan W, Zhang G. A reusable MOF supported single-site nickel-catalyzed direct N-alkylation of anilines with alcohols. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Yadav D, Singh RK, Misra S, Singh AK. Ancillary Ligand Effects and Microwave‐Assisted Enhancement on the Catalytic Performance of Cationic Ruthenium (II)‐CNC Pincer Complexes for Acceptorless Alcohol Dehydrogenation. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dibya Yadav
- Department of Chemistry Indian Institute of Technology Indore Indore India
| | - Rahul Kumar Singh
- Department of Chemistry Indian Institute of Technology Indore Indore India
| | - Shilpi Misra
- Department of Chemistry Indian Institute of Technology Indore Indore India
| | - Amrendra K. Singh
- Department of Chemistry Indian Institute of Technology Indore Indore India
| |
Collapse
|
16
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
17
|
Kumar KN, Reddy MM, Panchami H, Velayutham R, Dhaked DK, Swain SP. Thiourea as oxyanion stabilizer for Iridium catalyzed, base free green synthesis of amines: Synthesis of cardiovascular drug ticlopidine. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Ye Z, Yang Z, Yang C, Huang M, Xu X, Ke Z. Disarming the alkoxide trap to access a practical FeCl 3 system for borrowing-hydrogen N-alkylation. Org Chem Front 2022. [DOI: 10.1039/d2qo00825d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Disarming the alkoxide trap using an in situ reduction strategy to access a practical FeCl3 and N-heterocyclic carbene system for borrowing-hydrogen N-alkylation.
Collapse
Affiliation(s)
- Zongren Ye
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhenjie Yang
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Chenhui Yang
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ming Huang
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xianfang Xu
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Optical Chemicals, XinHuaYue Group, Maoming, 525000, P.R. China
| |
Collapse
|
19
|
Saranya PV, Neetha M, Philip RM, Anilkumar G. Recent advances and prospects in the cobalt-catalyzed amination reactions. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Karroum H, Chenakin S, Alekseev S, Iablokov V, Xiang Y, Dubois V, Kruse N. Terminal Amines, Nitriles, and Olefins through Catalytic CO Hydrogenation in the Presence of Ammonia. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hafsa Karroum
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Wegner Hall 155, P.O. Box 646515, Pullman, Washington 99164-6515, United States
| | - Sergey Chenakin
- G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Akad. Vernadsky Blvd., Kyiv 03142, Ukraine
| | - Sergei Alekseev
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Wegner Hall 155, P.O. Box 646515, Pullman, Washington 99164-6515, United States
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska Street, Kyiv 01601, Ukraine
| | - Viacheslav Iablokov
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Wegner Hall 155, P.O. Box 646515, Pullman, Washington 99164-6515, United States
| | - Yizhi Xiang
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Vincent Dubois
- Physical Chemistry and Catalysis, Labiris, Avenue Emile Gryzon 1, Brussels 1070, Belgium
| | - Norbert Kruse
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Wegner Hall 155, P.O. Box 646515, Pullman, Washington 99164-6515, United States
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99332, United States
| |
Collapse
|
21
|
Hofmann N, Hultzsch KC. Borrowing Hydrogen and Acceptorless Dehydrogenative Coupling in the Multicomponent Synthesis of N‐Heterocycles: A Comparison between Base and Noble Metal Catalysis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Natalie Hofmann
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis Währinger Straße 38 1090 Vienna Austria
| | - Kai C. Hultzsch
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis Währinger Straße 38 1090 Vienna Austria
| |
Collapse
|
22
|
Bera S, Kabadwal LM, Banerjee D. Recent advances in transition metal-catalyzed (1, n) annulation using (de)-hydrogenative coupling with alcohols. Chem Commun (Camb) 2021; 57:9807-9819. [PMID: 34486592 DOI: 10.1039/d1cc03404a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
(1,n) annulation reactions using (de)-hydrogenative coupling with alcohols or diols represent a straightforward technique for the synthesis of cyclic moieties. Utilization of such renewable resources for chemical transformations in a one-pot manner is the main focus, which avoids generation of stoichiometric waste. Application of such (1,n) annulation approaches drives the catalysis research in a more sustainable way and generates dihydrogen and water as by-products. This feature article highlights the recent (from 2015 to March 2021) progress in the synthesis of stereo-selective cycloalkanes and cycloalkenes, saturated and unsaturated N-heterocycles (cyclic amine, imide, lactam, tetrahydro β-carboline, quinazoline, quinazolinone, 1,3,5-triazines etc.) and other N-heterocycles with the formation of multiple bonds in a one pot operation. Mechanistic studies, new catalytic approaches, and synthetic applications including drug synthesis and post-drug derivatization, scope, and limitations are discussed.
Collapse
Affiliation(s)
- Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
23
|
Panigrahi UK, Bhat VT, Ramakrishnan VKM. Magnetically Recyclable Heterogeneous Cobalt Ferrite Catalyst for the Direct N‐Alkylation of (Hetero)aryl Amines with Alcohols. ChemistrySelect 2021. [DOI: 10.1002/slct.202100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Uttam Kumar Panigrahi
- Department of chemistry College of Engineering and Technology Faculty of Engineering and Technology SRM Institute of Science and Technology SRM Nagar, Kattankulathur 603203, Kanchipuram Chennai Tamil Nadu India
| | - Venugopal T. Bhat
- Department of chemistry College of Engineering and Technology Faculty of Engineering and Technology SRM Institute of Science and Technology SRM Nagar, Kattankulathur 603203, Kanchipuram Chennai Tamil Nadu India
| | - Vengadesh Kumara Mangalam Ramakrishnan
- Department of chemistry College of Engineering and Technology Faculty of Engineering and Technology SRM Institute of Science and Technology SRM Nagar, Kattankulathur 603203, Kanchipuram Chennai Tamil Nadu India
| |
Collapse
|
24
|
Subaramanian M, Ramar PM, Sivakumar G, Kadam RG, Petr M, Zboril R, Gawande MB, Balaraman E. Convenient and Reusable Manganese‐Based Nanocatalyst for Amination of Alcohols. ChemCatChem 2021. [DOI: 10.1002/cctc.202100635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Murugan Subaramanian
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati 517507 Tirupati India
| | - Palmurukan M. Ramar
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati 517507 Tirupati India
| | - Ganesan Sivakumar
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati 517507 Tirupati India
| | - Ravishankar G. Kadam
- Regional Centre of Advanced Technologies and Materials Palacky University 78371 Olomouc Czech Republic
| | - Martin Petr
- Regional Centre of Advanced Technologies and Materials Palacky University 78371 Olomouc Czech Republic
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials Palacky University 78371 Olomouc Czech Republic
| | - Manoj B. Gawande
- Regional Centre of Advanced Technologies and Materials Palacky University 78371 Olomouc Czech Republic
| | - Ekambaram Balaraman
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati 517507 Tirupati India
| |
Collapse
|
25
|
Subaramanian M, Sivakumar G, Balaraman E. First-Row Transition-Metal Catalyzed Acceptorless Dehydrogenation and Related Reactions: A Personal Account. CHEM REC 2021; 21:3839-3871. [PMID: 34415674 DOI: 10.1002/tcr.202100165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022]
Abstract
The development of sustainable catalytic protocols that circumvent the use of expensive and precious metal catalysts and avoid toxic reagents plays a crucial role in organic synthesis. Indeed, the direct employment of simple and abundantly available feedstock chemicals as the starting materials broadens their synthetic application in contemporary research. In particular, the transition metal-catalyzed diversification of alcohols with various nucleophilic partners to construct a wide range of building blocks is a powerful and highly desirable methodology. Moreover, the replacement of precious metal catalysts by non-precious and less toxic metals for selective transformations is one of the main goals and has been paid significant attention to in modern chemistry. In view of this, the first-row transition metal catalysts find extensive applications in various synthetic transformations such as catalytic hydrogenation, dehydrogenation, and related reactions. Herein, we have disclosed our recent developments on the base-metal catalysis such as Mn, Fe, Co, and Ni for the acceptorless dehydrogenation reactions and its application in the C-C and C-N bond formation via hydrogen auto-transfer (HA) and acceptorless dehydrogenation coupling (ADC) reactions. These HA/ADC protocols employ alcohol as alkylating agents and eliminate water and/or hydrogen gas as by-products, representing highly atom-efficient and environmentally benign reactions. Furthermore, diverse simple to complex organic molecules synthesis by C-C and C-N bond formation using feedstock alcohols are also overviewed. Overall, this account deals with the contribution and development of efficient and novel homogeneous as well as heterogeneous base-metal catalysts for sustainable chemical synthesis.
Collapse
Affiliation(s)
- Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| |
Collapse
|
26
|
Zhang MJ, Ge XL, Young DJ, Li HX. Recent advances in Co-catalyzed C–C and C–N bond formation via ADC and ATH reactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Fu XP, Han P, Wang YZ, Wang S, Yan N. Insight into the roles of ammonia during direct alcohol amination over supported Ru catalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Swain SP, Shri O, Ravichandiran V. Iridium and bis(4-nitrophenyl)phosphoric acid catalysed amination of diol by hydrogen-borrowing methodology for the synthesis of cyclic amine: Synthesis of clopidogrel. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Ruthenium‐Catalyzed Secondary Amine Formation Studied by Density Functional Theory. ChemCatChem 2021. [DOI: 10.1002/cctc.202001588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Churro R, Mendes F, Araújo P, Ribeiro MF, Madeira LM. Amination of Cyclohexanol over a Ni‐Based Catalyst – Part II: Catalyst Stability and Reaction Pathway. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rui Churro
- Universidade do Porto LEPABE Departamento de Engenharia Química Faculdade de Engenharia Rua Dr. Roberto Frias s/n 4200-465 Porto Portugal
- Bondalti Chemicals, SA Quinta da Indústria Rua do Amoníaco Português, no. 10, Beduído 3860-680 Estarreja Portugal
- Universidade de Lisboa Centro de Química Estrutural Departamento de Engenharia Química Instituto Superior Técnico Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Fernando Mendes
- Bondalti Chemicals, SA Quinta da Indústria Rua do Amoníaco Português, no. 10, Beduído 3860-680 Estarreja Portugal
| | - Paulo Araújo
- Bondalti Chemicals, SA Quinta da Indústria Rua do Amoníaco Português, no. 10, Beduído 3860-680 Estarreja Portugal
| | - Maria Filipa Ribeiro
- Universidade de Lisboa Centro de Química Estrutural Departamento de Engenharia Química Instituto Superior Técnico Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Luís M. Madeira
- Universidade do Porto LEPABE Departamento de Engenharia Química Faculdade de Engenharia Rua Dr. Roberto Frias s/n 4200-465 Porto Portugal
| |
Collapse
|
31
|
|
32
|
|
33
|
Guérin V, Legault CY. Synthesis of NHC-Iridium(III) Complexes Based on N-Iminoimidazolium Ylides and Their Use for the Amine Alkylation by Borrowing Hydrogen Catalysis. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Vincent Guérin
- University of Sherbrooke, Department of Chemistry, Centre in Green Chemistry and Catalysis,2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Claude Y. Legault
- University of Sherbrooke, Department of Chemistry, Centre in Green Chemistry and Catalysis,2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
34
|
Huang M, Li Y, Lan XB, Liu J, Zhao C, Liu Y, Ke Z. Ruthenium(II) complexes with N-heterocyclic carbene-phosphine ligands for the N-alkylation of amines with alcohols. Org Biomol Chem 2021; 19:3451-3461. [PMID: 33899900 DOI: 10.1039/d1ob00362c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal hydride complexes are key intermediates for N-alkylation of amines with alcohols by the borrowing hydrogen/hydrogen autotransfer (BH/HA) strategy. Reactivity tuning of metal hydride complexes could adjust the dehydrogenation of alcohols and the hydrogenation of imines. Herein we report ruthenium(ii) complexes with hetero-bidentate N-heterocyclic carbene (NHC)-phosphine ligands, which realize smart pathway selection in the N-alkylated reaction via reactivity tuning of [Ru-H] species by hetero-bidentate ligands. In particular, complex 6cb with a phenyl wingtip group and BArF- counter anion, is shown to be one of the most efficient pre-catalysts for this transformation (temperature is as low as 70 °C, neat conditions and catalyst loading is as low as 0.25 mol%). A large variety of (hetero)aromatic amines and primary alcohols were efficiently converted into mono-N-alkylated amines in good to excellent isolated yields. Notably, aliphatic amines, challenging methanol and diamines could also be transformed into the desired products. Detailed control experiments and density functional theory (DFT) calculations provide insights to understand the mechanism and the smart pathway selection via [Ru-H] species in this process.
Collapse
Affiliation(s)
- Ming Huang
- Clinical Pharmacy of The First Affiliated Hospital, School of clinical pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China. and School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yinwu Li
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Xiao-Bing Lan
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Jiahao Liu
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Cunyuan Zhao
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
35
|
Prabha D, Pachisia S, Gupta R. Cobalt mediated N-alkylation of amines by alcohols: role of hydrogen bonding pocket. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01374a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cobalt complexes of amide-based pincers provide a H-bonding pocket that binds a reagent in the vicinity of the metal center. These complexes function as catalysts for the N-alkylation of amines using alcohols via a borrowing hydrogen strategy.
Collapse
Affiliation(s)
- Divya Prabha
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| | - Sanya Pachisia
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| | - Rajeev Gupta
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| |
Collapse
|
36
|
Yang D, Xie CX, Wu XT, Fei LR, Feng L, Ma C. Metal-Free β-Amino Alcohol Synthesis: A Two-step Smiles Rearrangement. J Org Chem 2020; 85:14905-14915. [PMID: 33124420 DOI: 10.1021/acs.joc.0c01543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel method for the synthesis of β-amino alcohols has been demonstrated under mild reaction conditions with a broad scope via a two-step Smiles rearrangement. What is more, theoretical calculations have been performed to confirm the rationality of the mechanism. The method has been proved to be notably effective for N-arylated amino alcohols, which are difficult to synthesize by traditional methods.
Collapse
Affiliation(s)
- Di Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Cai-Xia Xie
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Xiao-Tian Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Luo-Ran Fei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
37
|
Pertejo P, González-Saiz B, Quesada R, García-Valverde M. One-Pot Synthesis of Enantiopure Pyrrolopiperazines. J Org Chem 2020; 85:14240-14245. [PMID: 33052681 DOI: 10.1021/acs.joc.0c02103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple one-pot protocol for the synthesis of fused pyrrolopiperazines with a complete diastereoselectivity has been developed. This novel methodology combined the Ugi reaction with a spontaneous enamine alkylation on a multicomponent domino reaction, starting from nonprotected diamines and arylglyoxals.
Collapse
Affiliation(s)
- Pablo Pertejo
- Departamento de Quı́mica, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Beatriz González-Saiz
- Departamento de Quı́mica, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Roberto Quesada
- Departamento de Quı́mica, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - María García-Valverde
- Departamento de Quı́mica, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| |
Collapse
|
38
|
Dambatta MB, Santos J, Bolt RR, Morrill LC. Transition metal free α-C-alkylation of ketones using secondary alcohols. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Chun S, Ahn J, Putta RR, Lee SB, Oh DC, Hong S. Direct Synthesis of Pyrrolo[1,2-α]quinoxalines via Iron-Catalyzed Transfer Hydrogenation between 1-(2-Nitrophenyl)pyrroles and Alcohols. J Org Chem 2020; 85:15314-15324. [DOI: 10.1021/acs.joc.0c02145] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Simin Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiwon Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ramachandra Reddy Putta
- BK 21 Plus Project, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
40
|
Ruiz‐Castañeda M, Rodríguez AM, Aboo AH, Manzano BR, Espino G, Xiao J, Jalón FA. Iridium complexes with a new type of
N
^
N
′‐donor anionic ligand catalyze the
N
‐benzylation of amines via borrowing hydrogen. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Margarita Ruiz‐Castañeda
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas‐IRICA Universidad de Castilla‐La Mancha Avda. Camilo J. Cela 10 Ciudad Real 13071 Spain
| | - Ana M. Rodríguez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas‐IRICA Universidad de Castilla‐La Mancha Avda. Camilo J. Cela 10 Ciudad Real 13071 Spain
| | - Ahmed H. Aboo
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Blanca R. Manzano
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas‐IRICA Universidad de Castilla‐La Mancha Avda. Camilo J. Cela 10 Ciudad Real 13071 Spain
| | - Gustavo Espino
- Departamento de Química, Facultad de Ciencias Universidad de Burgos Plaza Misael Bañuelos s/n Burgos 09001 Spain
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Félix A. Jalón
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas‐IRICA Universidad de Castilla‐La Mancha Avda. Camilo J. Cela 10 Ciudad Real 13071 Spain
| |
Collapse
|
41
|
Kwok T, Hoff O, Armstrong RJ, Donohoe TJ. Control of Absolute Stereochemistry in Transition-Metal-Catalysed Hydrogen-Borrowing Reactions. Chemistry 2020; 26:12912-12926. [PMID: 32297370 PMCID: PMC7589454 DOI: 10.1002/chem.202001253] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Indexed: 12/20/2022]
Abstract
Hydrogen-borrowing catalysis represents a powerful method for the alkylation of amine or enolate nucleophiles with non-activated alcohols. This approach relies upon a catalyst that can mediate a strategic series of redox events, enabling the formation of C-C and C-N bonds and producing water as the sole by-product. In the majority of cases these reactions have been employed to target achiral or racemic products. In contrast, the focus of this Minireview is upon hydrogen-borrowing-catalysed reactions in which the absolute stereochemical outcome of the process can be controlled. Asymmetric hydrogen-borrowing catalysis is rapidly emerging as a powerful approach for the synthesis of enantioenriched amine and carbonyl containing products and examples involving both C-N and C-C bond formation are presented. A variety of different approaches are discussed including use of chiral auxiliaries, asymmetric catalysis and enantiospecific processes.
Collapse
Affiliation(s)
- Timothy Kwok
- Chemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUK
| | - Oskar Hoff
- Chemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUK
| | | | | |
Collapse
|
42
|
Preventing Candida albicans biofilm formation using aromatic-rich piperazines. Bioorg Med Chem 2020; 28:115810. [PMID: 33091849 DOI: 10.1016/j.bmc.2020.115810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
The global increase in microbial resistance is an imminent threat to public health. Effective treatment of infectious diseases now requires new antimicrobial therapies. We report herein the discovery of aromatic-rich piperazines that inhibit biofilm formation by C. albicans. 22 piperazines, including 16 novel ones, were prepared efficiently using a combination of solid- and solution phase synthesis. The most potent compound prevents morphological switching under several hypha-inducing conditions and reduces C. albicans' ability to adhere to epithelial cells. These processes are essential to the development of Candida biofilms, which are associated with its increased resistance to immune defenses and antifungal agents.
Collapse
|
43
|
Denizaltı S, Dayan S, Günnaz S, Şahin E. Thiazoline‐Iridium (III) Complexes and Immobilized Nanomaterials as Selective Catalysts in
N
‐Alkylation of Amines with Alcohols. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Serpil Denizaltı
- Department of Chemistry Ege University Bornova‐İzmir 35100 Turkey
| | - Serkan Dayan
- Drug Application and Research Center Erciyes University Kayseri 38280 Turkey
| | - Salih Günnaz
- Department of Chemistry Ege University Bornova‐İzmir 35100 Turkey
| | - Ertan Şahin
- Department of Chemistry Atatürk University Erzurum 25400 Turkey
| |
Collapse
|
44
|
Sankar V, Kathiresan M, Sivakumar B, Mannathan S. Zinc‐Catalyzed N‐Alkylation of Aromatic Amines with Alcohols: A Ligand‐Free Approach. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Velayudham Sankar
- Department of Chemistry SRM Institute of Science and Technology Kattankulathur Chennai 603203 India
| | - Murugavel Kathiresan
- Electro Organic Division CSIR – Central Electrochemical Research Institute Karaikudi 630003 Tamilnadu India
| | | | | |
Collapse
|
45
|
Thiyagarajan S, Gunanathan C. Direct Catalytic Symmetrical, Unsymmetrical N,N-Dialkylation and Cyclization of Acylhydrazides Using Alcohols. Org Lett 2020; 22:6617-6622. [PMID: 32806177 DOI: 10.1021/acs.orglett.0c02369] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, direct N,N-dialkylation of acylhydrazides using alcohols is reported. This catalytic protocol provides one-pot synthesis of both symmetrical and unsymmetrical N,N-disubstituted acylhydrazides using an assortment of primary and secondary alcohols with remarkable selectivity and excellent yields. Interestingly, the use of diols resulted in intermolecular cyclization of acylhydrazides, and such products are privileged structures in biologically active compounds. Water is the only byproduct, which makes this catalytic protocol sustainable and environmentally benign.
Collapse
Affiliation(s)
- Subramanian Thiyagarajan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, India
| |
Collapse
|
46
|
Dindar S, Nemati Kharat A. Amination of aliphatic alcohols with urea catalyzed by ruthenium complexes: effect of supporting ligands. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1804058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sara Dindar
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ali Nemati Kharat
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
47
|
Nalikezhathu A, Cherepakhin V, Williams TJ. Ruthenium Catalyzed Tandem Pictet-Spengler Reaction. Org Lett 2020; 22:4979-4984. [PMID: 32558575 DOI: 10.1021/acs.orglett.0c01485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report a pyridyl-phosphine ruthenium(II) catalyzed tandem alcohol amination/Pictet-Spengler reaction sequence to synthesize tetrahydro-β-carbolines from an alcohol and tryptamine. Our conditions use a Lewis acid cocatalyst, In(OTf)3, that is compatible with typically base catalyzed amination and an acid catalyzed Pictet-Spengler cyclization. This method proceeds well with benzylic alcohols, heterocyclic carbinols, and aliphatic alcohols. We also show how combining this reaction with a subsequent cycloamination enables a direct synthesis of tetracyclic alkaloids like harmicine.
Collapse
Affiliation(s)
- Anju Nalikezhathu
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of Chemistry, University of Southern California, Los Angeles California 90089-1661, United States
| | - Valeriy Cherepakhin
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of Chemistry, University of Southern California, Los Angeles California 90089-1661, United States
| | - Travis J Williams
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of Chemistry, University of Southern California, Los Angeles California 90089-1661, United States
| |
Collapse
|
48
|
Savela R, Vogt D, Leino R. Ruthenium Catalyzed N
-Alkylation of Cyclic Amines with Primary Alcohols. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Risto Savela
- Laboratory of Molecular Science and Technology; Åbo Akademi University; Biskopsgatan 8 20500 Åbo Finland
| | - Dieter Vogt
- Laboratory of Industrial Chemistry; Department of Biochemical and Chemical Engineering; Technical University of Dortmund; Emil-Figge-Str. 66 44227 Dortmund Germany
| | - Reko Leino
- Laboratory of Molecular Science and Technology; Åbo Akademi University; Biskopsgatan 8 20500 Åbo Finland
| |
Collapse
|
49
|
Arora V, Dutta M, Das K, Das B, Srivastava HK, Kumar A. Solvent-Free N-Alkylation and Dehydrogenative Coupling Catalyzed by a Highly Active Pincer-Nickel Complex. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00233] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Moumita Dutta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kanu Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Babulal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Hemant Kumar Srivastava
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- National Institute of Pharmaceutical Education and Research Guwahati, Guwahati 781101, Assam, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
50
|
Churro R, Mendes F, Araújo P, Ribeiro MF, Madeira LM. Amination Reaction of Cyclohexanol over a Commercial Ni-Based Catalyst, Part I: Influence of Operating Conditions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rui Churro
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Bondalti Chemicals, SA, Quinta da Indústria, Rua do Amonı́aco Português, no 10, Beduı́do, 3860-680 Estarreja, Portugal
- Centro de Quı́mica Estrutural, Departamento de Engenharia Quı́mica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fernando Mendes
- Bondalti Chemicals, SA, Quinta da Indústria, Rua do Amonı́aco Português, no 10, Beduı́do, 3860-680 Estarreja, Portugal
| | - Paulo Araújo
- Bondalti Chemicals, SA, Quinta da Indústria, Rua do Amonı́aco Português, no 10, Beduı́do, 3860-680 Estarreja, Portugal
| | - Maria Filipa Ribeiro
- Centro de Quı́mica Estrutural, Departamento de Engenharia Quı́mica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Luı́s M. Madeira
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|