1
|
Abdul Nasir J, Beale AM, Catlow CRA. Understanding deNO x mechanisms in transition metal exchanged zeolites. Chem Soc Rev 2024. [PMID: 39440717 DOI: 10.1039/d3cs00468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Transition-metal-containing zeolites have wide-ranging applications in several catalytic processes including the selective catalytic reduction (SCR) of NOx species. To understand how transition metal ions (TMIs) can effect NOx reduction chemistry, both structural and mechanistic aspects at the atomic level are needed. In this review, we discuss the coordination chemistry of TMIs and their mobility within the zeolite framework, the reactivity of active sites, and the mechanisms and intermediates in the NH3-SCR reaction. We emphasise the key relationship between TMI coordination and structure and mechanism and discuss approaches to enhancing catalytic activity via structural modifications.
Collapse
Affiliation(s)
- Jamal Abdul Nasir
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Andrew M Beale
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Oxfordshire OX11 0FA, UK
| | - C Richard A Catlow
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Oxfordshire OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
2
|
Martins AJ, de Cássia F Bezerra R, Saraiva GD, Lima Junior JA, Silva RS, Oliveira AC, Campos AF, Morales MA, Jiménez-Jiménez J, Rodríguez-Castellón E. Effects on structure by spectroscopic investigations, valence state and morphology properties of FeCo-containing SnO 2 catalysts for glycerol valorization to cyclic acetals. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124416. [PMID: 38733915 DOI: 10.1016/j.saa.2024.124416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The effects on the structure, valence state and morphological properties of FeCo-containing SnO2 nanostructured solids were investigated. The physicochemical features were tuned by distinct synthesis routes e.g., sol-gel, coprecipitation and nanocasting, to apply them as catalysts in the glycerol valorization to cyclic acetals. Based on Mössbauer and XPS spectroscopy results, all nanosized FeCoSn solids have Fe-based phases, which contain Co and Sn included in the structure, and well-dispersed Fe3+ and Fe2+ surface active sites. Raman, FTIR and EPR spectroscopies measurements of the spent solids demonstrated structural stability for the sol-gel based solid, which is indeed responsible for the highest catalytic performance, among the nanocasted and coprecipitated counterparts. Morphological and elemental analyses illustrated distinct morphologies and composition on solid surface, depending on the synthesis route. The Fe/Co and Fe/Sn surface ratios are closely related to the catalytic performance. The improved glycerol conversion and selectivities of the solid obtained by sol-gel method was ascribed to the leaching resistance and the Sn action as a structural promoter.
Collapse
Affiliation(s)
- Antonio J Martins
- Universidade Federal do Ceará, Campus do Pici-Bloco 940, Departamento de Química Analitica e Físico-Química, Fortaleza, Ceará, Brazil
| | - Rita de Cássia F Bezerra
- Universidade Federal do Ceará, Campus do Pici-Bloco 940, Departamento de Química Analitica e Físico-Química, Fortaleza, Ceará, Brazil
| | - Gilberto D Saraiva
- Faculdade de Educação, Ciências e Letras do Sertão Central, Universidade Estadual do Ceará, Quixadá 63902-098, Ceará, Brazil
| | - José A Lima Junior
- Universidade Federal do Ceará, Departamento de Física, Fortaleza, Ceará, Brazil
| | - Rômulo S Silva
- Universidade Federal do Ceará, Departamento de Física, Fortaleza, Ceará, Brazil
| | - Alcineia C Oliveira
- Universidade Federal do Ceará, Campus do Pici-Bloco 940, Departamento de Química Analitica e Físico-Química, Fortaleza, Ceará, Brazil.
| | - Adriana F Campos
- CETENE, Av. Prof. Luiz Freire, 01, Cidade Universitária, Recife 50740-545, Pernambuco, Brazil
| | - Marco A Morales
- Universidade Federal do Rio Grande do Norte, Departamento de Física Teórica e Experimental, Natal 59078-970, Rio Grande do Norte, Brazil
| | - José Jiménez-Jiménez
- Universidad de Málaga, Departamento de Química Inorgánica, Facultad de Ciencias, 29071, Málaga, Spain
| | | |
Collapse
|
3
|
Tan X, García-Aznar P, Sastre G, Hong SB. Hydrothermal Aging Enhances Nitrogen Oxide Reduction over Iron-Exchanged Zeolites at 150 °C. J Am Chem Soc 2024; 146:6352-6359. [PMID: 38386651 DOI: 10.1021/jacs.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ammonia selective catalytic reduction (NH3-SCR) over copper- and iron-exchanged zeolites is a state-of-the-art technology for removal of nitrogen oxides (NOx, NO, and NO2) from exhaust emissions but suffers from poor low-temperature (i.e., 150 °C) activity. Here we show that hydrothermal aging of Fe-beta, Fe-ZSM-5, and Fe-ferrierite at 650 °C or higher leads to a remarkable increase in NOx conversion from ∼30 to ∼80% under fast NH3-SCR conditions at 150 °C. The practical relevance of this finding becomes more evident as an aged Fe-beta/fresh Cu-SSZ-13 composite catalyst exhibits ∼90% conversion. We propose that a neutral heteronuclear bis-μ-oxo ironaluminum dimer might be created within iron zeolites during hydrothermal aging and catalyze ammonium nitrate reduction by NO at 150 °C. Density functional theory calculations reveal that the activation free energy (125 versus 147 kJ mol-1) for the reaction of NO with adsorbed NO3- species, the rate-determining step of ammonium nitrate reduction, is considerably lower on the bis-μ-oxo ironaluminum site than on the well-known mononuclear iron-oxo cation site, thus greatly enhancing the overall SCR activity.
Collapse
Affiliation(s)
- Xuechao Tan
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, POSTECH, Pohang 37673, Korea
| | - Pablo García-Aznar
- Instituto de Tecnologia Quimica (UPV-CSIC), Universidad Politécnica de Valencia, Avenida Naranjos s/n, Valencia 46022, Spain
| | - German Sastre
- Instituto de Tecnologia Quimica (UPV-CSIC), Universidad Politécnica de Valencia, Avenida Naranjos s/n, Valencia 46022, Spain
| | - Suk Bong Hong
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, POSTECH, Pohang 37673, Korea
| |
Collapse
|
4
|
Mu W, Ma S, Chen H, Liu T, Long J, Zeng Q, Li X. Quantifying the Two-Dimensional Driving Patterns of Chemisorbed Oxygen and Particle Size on NO Reduction Activity and Mechanism. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37452748 DOI: 10.1021/acsami.3c05162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Quantification in the driving patterns of activity descriptors on structure-activity relationships and reaction mechanisms over heterogeneous catalysts is still a great challenge and needs to be addressed urgently. Herein, with the example of typical Mn-based catalysts, based on the activity regularity and many characterizations, the chemisorbed oxygen density (ρOβ) and particle size (dTEM) have been proposed as the two-dimensional descriptors for selective catalytic reduction of NO, whose role is in quantifying the contents of vacancy defects and the amounts of active sites located on terraces or interfaces, respectively. They can be utilized to construct and quantify the driving patterns for the structure-activity relationships and reaction mechanisms of NO reduction. As a consequence, a complementary modulation for Ea by ρOβ and dTEM is described quantitatively in terms of the fitted functions. Moreover, based on the structure-activity relationships and the quantification laws of in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), the reaction efficiency (RE) of the specific combined NOx-intermediate is identified as the trigger to drive the Langmuir-Hinshelwood mechanism and modulated by the descriptors complementally and collaboratively following the fitted quantification functions. Either of the two descriptors at its lower values plays a dominant role in regulating Ea and RE, and the dominant factor evolves progressively: dTEM ↔ coupling dTEM with ρOβ ↔ ρOβ, when the dependency of Ea and RE on the descriptors is adopted to identify the dominant factor and domains. Therefore, this work has quantitatively accounted for the essence of activity modulation and may provide insight into the quantitative driving patterns for reaction activity and mechanism.
Collapse
Affiliation(s)
- Wentao Mu
- School of Chemistry and Chemical Engineering, Pulp & Paper Engineering State Key Laboratory of China, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shichao Ma
- School of Chemistry and Chemical Engineering, Pulp & Paper Engineering State Key Laboratory of China, South China University of Technology, Guangzhou 510640, P. R. China
| | - Hao Chen
- School of Chemistry and Chemical Engineering, Pulp & Paper Engineering State Key Laboratory of China, South China University of Technology, Guangzhou 510640, P. R. China
| | - Tengfei Liu
- School of Chemistry and Chemical Engineering, Pulp & Paper Engineering State Key Laboratory of China, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jinxing Long
- School of Chemistry and Chemical Engineering, Pulp & Paper Engineering State Key Laboratory of China, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, Pulp & Paper Engineering State Key Laboratory of China, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xuehui Li
- School of Chemistry and Chemical Engineering, Pulp & Paper Engineering State Key Laboratory of China, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
5
|
Zhang C, Liu X, Jiang M, Wen Y, Zhang J, Qian G. A review on identification, quantification, and transformation of active species in SCR by EPR spectroscopy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28550-28562. [PMID: 36708481 DOI: 10.1007/s11356-023-25467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Electron paramagnetic resonance (EPR) is the only technique that provides direct detection of free radicals and samples that contain unpaired electrons. Thus, EPR had an important potential application in the field of selective catalytic reduction of nitrogen oxide (SCR). For the first time, this work reviewed recent developments of EPR in charactering SCR. First, qualitative analysis focused on recognizing Cu, Fe, V, Ti, Mn, and free-radical (oxygen vacancy and superoxide radical) species. Second, quantification of the active species was obtained by a double-integral and calibration method. Third, the active species evolved because of different thermal treatments and redox-thermal processes under reductants (NH3 and NO). The coordination information of the active species in catalysts and their effects on SCR performances were concluded from mechanism viewpoints. Finally, potential perspectives were put forward for EPR developments in characterizing the SCR processes in the future. After all, EPR characterization will help to have a deep understanding of structure-activity relationship in one catalyst.
Collapse
Affiliation(s)
- Chenchen Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, People's Republic of China
| | - Xinyu Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, People's Republic of China
| | - Meijia Jiang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, People's Republic of China
| | - Yuling Wen
- Shanghai SUS Environment Co., LTD, Shanghai, 201703, China
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, People's Republic of China.
| | - Guangren Qian
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, People's Republic of China
| |
Collapse
|
6
|
Yang WL, Zhang SD, Zhang MY. Theoretical Study of the Natural Active Structure of the Fe-SSZ-13 Zeolite and its Reactivity toward the Methane to Methanol Oxidation Reaction. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
7
|
Influence of the Valence of Iron on the NO Reduction by CO over Cu-Fe-Mordenite. Catalysts 2023. [DOI: 10.3390/catal13030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
A comprehensive study of the catalytic properties of the copper-iron binary system supported on mordenite, depending on the iron valence—CuFe2MOR and CuFe3MOR—was carried out, and redox ability has been considered as a decisive factor in determining catalytic efficiency. Acidity was studied by TPD-NH3, DRIFT-OH, and DRT methods. The total acidity of both samples was high. The Brönsted acidity is similar for both bimetallic samples and is explained by the acidity of zeolite; Lewis acidity varies greatly and depends on the exchange cations. A screening DRIFT study of CO and NO has shown redox capacity and demonstrated a potential for using these materials as catalysts for ambient protection. CuFe2MOR demonstrated stable Cu and Fe species, while CuFe3MOR showed redox dynamic species. As expected, CuFe3MOR displayed higher catalytic performance in NO reduction via CO oxidation, because of the easily reduced intermediate NO-complex adsorbed on the metallic Cu and Fe sites, which were observed through in situ DRIFT study.
Collapse
|
8
|
Li J, Ma S, Ren K, Xu N. Studies on the preparation of fly ash-derived Fe-SSZ-13 catalysts and their performance in the catalytic oxidation of NO by H2O2. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Cheng J, Zheng D, Yu G, Xu R, Dai C, Liu N, Wang N, Chen B. N 2O Catalytic Decomposition and NH 3-SCR Coupling Reactions over Fe-SSZ-13 Catalyst: Mechanisms and Interactions Unraveling via Experiments and DFT Calculations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jie Cheng
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Dahai Zheng
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Ruinian Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Chengna Dai
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Ning Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Biaohua Chen
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| |
Collapse
|
10
|
Luo J, Xu H, Liang X, Wu S, Liu Z, Tie Y, Li M, Yang D. Research progress on selective catalytic reduction of NOx by NH3 over copper zeolite catalysts at low temperature: reaction mechanism and catalyst deactivation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Enhanced SO2 Resistance of Cs-Modified Fe-HZSM-5 for NO Decomposition. Catalysts 2022. [DOI: 10.3390/catal12121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Direct decomposition of NO into N2 and O2 is an ideal technology for NOx removal. Catalyst deactivation by sulfur poisoning is the major obstacle for practical application. This paper focuses on strengthening the SO2 resistance of metal-exchanged HZSM-5 catalysts, by investigating the metals, promoters, preparation methods, metal-to-promoter molar ratios, Si/Al ratios and metal loadings. The results show that in the presence of SO2 (500 ppm), Fe is the best compared with Co, Ni and Cu. Cs, Ba and K modification enhanced the low-temperature activity of the Fe-HZSM-5 catalyst for NO decomposition, which can be further improved by increasing the exchanged-solution concentration and Fe/Cs molar ratio or decreasing the Si/Al molar ratio. Interestingly, Cs-doped Fe-HZSM-5 exhibited a high NO conversion and low NO2 selectivity but a high SO2 conversion within 10 h of continuous operation. This indicates that Cs-Fe-HZSM-5 has a relatively high SO2 resistance. Combining the characterization results, including N2 physisorption, XRD, ICP, XRF, UV–Vis, XPS, NO/SO2-TPD, H2-TPR and HAADF-STEM, SO42− was found to be the major sulfur species deposited on the catalyst’s surface. Cs doping inhibited the SO2 adsorption on Fe-HZSM-5, enhanced the Fe dispersion and increased the isolated Fe and Fe-O-Fe species. These findings could be the primary reasons for the high activity and SO2 resistance of Cs-Fe-HZSM-5.
Collapse
|
12
|
Li Z, Chen G, Shao Z, Zhang H, Guo X. The Effect of Iron Content on the Ammonia Selective Catalytic Reduction Reaction (NH 3-SCR) Catalytic Performance of FeO x/SAPO-34. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14749. [PMID: 36429468 PMCID: PMC9691003 DOI: 10.3390/ijerph192214749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Iron-based catalysts are regarded as promising candidates for the ammonia selective catalytic reduction reaction (NH3-SCR) which show good catalytic activity at medium and high temperatures, whereas SAPO-34 molecular sieves have a micro-pore structure and are ideal catalyst carriers. In this paper, four FeOx/SAPO-34 molecular sieve catalysts with different iron contents (Fe = 1%, 2%, 3%, 4%) were prepared using an impregnation method. The effect of iron content on the surface properties and catalytic activity was investigated by a series of characterization techniques including XRD, SEM, BET, XPS, H2-TPR and NH3-TPD. Iron species in the FeOx/SAPO-34 catalysts exist in the form of isolated iron ions or well-dispersed small crystals and iron oxide species clusters. With the addition of iron content, the integrity of CHA (chabazite) zeolite structure remained, but the crystallinity was affected. The FeOx/SAPO-34 catalyst with 3% Fe loading showed a relatively flat surface with no large-diameter particles and strong oxidation-reduction ability. Meanwhile, more acidic sites are exposed, which accelerated the process of catalytic reaction. Thus, the FeOx/SAPO-34 catalyst with 3% Fe showed the best NO conversion performance among the four catalysts prepared and maintained more than 90% NO conversion efficiency in a wide temperature range from 310 °C to 450 °C.
Collapse
Affiliation(s)
- Zhaoyang Li
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Geng Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Zhenghua Shao
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Haonan Zhang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Xiujuan Guo
- School of Civil and Transportation Engineering, Ningbo University of Technology, Ningbo 315211, China
| |
Collapse
|
13
|
Szymaszek-Wawryca A, Summa P, Duraczyńska D, Díaz U, Motak M. Hydrotalcite-Modified Clinoptilolite as the Catalyst for Selective Catalytic Reduction of NO with Ammonia (NH 3-SCR). MATERIALS (BASEL, SWITZERLAND) 2022; 15:7884. [PMID: 36431374 PMCID: PMC9696415 DOI: 10.3390/ma15227884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
A series of clinoptilolite-supported catalysts, modified with hydrotalcite-like phase (HT) by co-precipitation, were prepared and tested in NH3-SCR reactions. It was found that deposition of HT on clinoptilolite increased conversion of NO within 250-450 °C, and that the positive impact on the catalytic activity was independent of HT loading. The promoting effect of clinoptilolite was attributed to Brönsted acid sites present in the zeolite, which facilitated adsorption and accumulation of ammonia during the catalytic process. Concentration of N2O in the post-reaction gas mixture reached its maximum at 300 °C and the by-product was most likely formed as a consequence of NH4NO3 decomposition or side reaction of NH3 oxidation in the high-temperature region. The gradual elimination of nitrous oxide, noticed as the material with the highest concentration of hydrotalcite phase, was attributed to the abundance of oligomeric iron species and the superior textural parameters of the material. UV-Vis experiments performed on the calcined samples indicated that Fe sites of higher nuclearity were generated by thermal decomposition of the hydrotalcite phase during the catalytic reaction. Therefore, calcination of the materials prior to the catalytic tests was not required to obtain satisfactory overall catalytic performance in NO reductions.
Collapse
Affiliation(s)
- Agnieszka Szymaszek-Wawryca
- Faculty of Energy and Fuels, AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30-059 Krakow, Poland
| | - Paulina Summa
- Faculty of Energy and Fuels, AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30-059 Krakow, Poland
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Ul. Niezapominajek 8, 30-239 Krakow, Poland
| | - Urbano Díaz
- Instituto de Tecnología Química, UPV-CSIC, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| | - Monika Motak
- Faculty of Energy and Fuels, AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
14
|
Chen J, Huang W, Bao S, Zhang W, Liang T, Zheng S, Yi L, Guo L, Wu X. A review on the characterization of metal active sites over Cu-based and Fe-based zeolites for NH 3-SCR. RSC Adv 2022; 12:27746-27765. [PMID: 36320283 PMCID: PMC9517171 DOI: 10.1039/d2ra05107a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 06/07/2024] Open
Abstract
Cu-based and Fe-based zeolites are promising catalysts for NH3-SCR due to their high catalytic activity, wide temperature window and good hydrothermal stability, while the detailed investigation of NH3-SCR mechanism should be based on the accurate determination of active metal sites. This review systematically summarizes the qualitative and quantitative determination of metal active sites in Cu-based or Fe-based zeolites for NH3-SCR reactions based on advanced characterization methods such as UV-vis absorption (UV-vis), temperature-programmed reduction with H2 (H2-TPR), X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure spectroscopy (XAFS), Infrared spectroscopy (IR), Electron paramagnetic resonance (EPR), Mössbauer spectroscopy and DFT calculations. The application and limitations of different characterization methods are also discussed to provide insights for further study of the NH3-SCR reaction mechanism over metal-based zeolites.
Collapse
Affiliation(s)
- Jialing Chen
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Wei Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Sizhuo Bao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Wenbo Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Tingyu Liang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
| | - Shenke Zheng
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Chemistry and Chemical Engineering, Huanggang Normal University Huanggang 438000 China
| | - Lan Yi
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Li Guo
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| |
Collapse
|
15
|
Liu X, Wang P, Shen Y, Zheng L, Han L, Deng J, Zhang J, Wang A, Ren W, Gao F, Zhang D. Boosting SO 2-Resistant NO x Reduction by Modulating Electronic Interaction of Short-Range Fe-O Coordination over Fe 2O 3/TiO 2 Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11646-11656. [PMID: 35876848 DOI: 10.1021/acs.est.2c01812] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
SO2-resistant selective catalytic reduction (SCR) of NOx remains a grand challenge for eliminating NOx generated from stationary combustion processes. Herein, SO2-resistant NOx reduction has been boosted by modulating electronic interaction of short-range Fe-O coordination over Fe2O3/TiO2 catalysts. We report a remarkable SO2-tolerant Fe2O3/TiO2 catalyst using sulfur-doped TiO2 as the support. Via an array of spectroscopic and microscopic characterizations and DFT theoretical calculations, the active form of the dopant is demonstrated as SO42- residing at subsurface TiO6 locations. Sulfur doping exerts strong electronic perturbation to TiO2, causing a net charge transfer from Fe2O3 to TiO2 via increased short-range Fe-O coordination. This electronic effect simultaneously weakens charge transfer from Fe2O3 to SO2 and enhances that from NO/NH3 to Fe2O3, resulting in a remarkable "killing two birds with one stone" scenario, that is, improving NO/NH3 adsorption that benefits SCR reaction and inhibiting SO2 poisoning that benefits catalyst long-term stability.
Collapse
Affiliation(s)
- Xiangyu Liu
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongjie Shen
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lupeng Han
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiang Deng
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianping Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Aiyong Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Ren
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
16
|
Yasumura S, Qian Y, Kato T, Mine S, Toyao T, Maeno Z, Shimizu KI. In Situ/ Operando Spectroscopic Studies on the NH 3–SCR Mechanism over Fe–Zeolites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yucheng Qian
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Taisetsu Kato
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shinya Mine
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Zen Maeno
- School of Advanced Engineering, KKogakuin University, Tokyo 192-0015, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| |
Collapse
|
17
|
Understanding roles of Ce on hydrothermal stability of Cu-SSZ-52 catalyst for selective catalytic reduction of NO with NH3. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Catalytic Performance of One-Pot Synthesized Fe-MWW Layered Zeolites (MCM-22, MCM-36, and ITQ-2) in Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. Molecules 2022; 27:molecules27092983. [PMID: 35566333 PMCID: PMC9104601 DOI: 10.3390/molecules27092983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 01/17/2023] Open
Abstract
The application of layered zeolites of MWW topology in environmental catalysis has attracted growing attention in recent years; however, only a few studies have explored their performance in selective catalytic reduction with ammonia (NH3-SCR). Thus, our work describes, for the first time, the one-pot synthesis of Fe-modified NH3-SCR catalysts supported on MCM-22, MCM-36, and ITQ-2. The calculated chemical composition of the materials was Si/Al of 30 and 5 wt.% of Fe. The reported results indicated a correlation between the arrangement of MWW layers and the form of iron in the zeolitic structure. We have observed that one-pot synthesis resulted in high dispersion of Fe3+ sites, which significantly enhanced low-temperature activity and prevented N2O generation during the reaction. All of the investigated samples exhibited almost 100% NO conversion at 250 °C. The most satisfactory activity was exhibited by Fe-modified MCM-36, since 50% of NO reduction was obtained at 150 °C for this catalyst. This effect can be explained by the abundance of isolated Fe3+ species, which are active in low-temperature NH3-SCR. Additionally, SiO2 pillars present in MCM-36 provided an additional surface for the deposition of the active phase.
Collapse
|
19
|
Liu W, Gao Z, Sun M, Gao J, Wang L, Zhao X, Yang R, Yu L. One-pot synthesis of CrαMnβCeTiOx mixed oxides as NH3-SCR catalysts with enhanced low-temperature catalytic activity and sulfur resistance. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Buttignol F, Garbujo A, Biasi P, Rentsch D, Kröcher O, Ferri D. Effect of an Al2O3-based binder on the structure of extruded Fe-ZSM-5. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
21
|
Qin K, Guo L, Ming S, Zhang S, Guo Y, Pang L, Li T. The Comparative Study of Reaction Mechanisms and Catalytic Performances of Cu–SSZ-13 and Fe–SSZ-13 for the NH3-SCR Reaction. CATALYSIS SURVEYS FROM ASIA 2022. [DOI: 10.1007/s10563-022-09353-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Sun G, Yu R, Xu L, Wang B, Zhang W. Enhanced hydrothermal stability and SO 2-tolerance of Cu–Fe modified AEI zeolite catalysts in NH 3-SCR of NO x. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02343h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu/Fe-SSZ-39 zeolites with AEI structure show significant enhancements on the NH3-SCR reactivity, hydrothermal stability and SO2-tolerance, which makes them very promising in deNOx applications.
Collapse
Affiliation(s)
- Gang Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Rui Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lulu Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bingchun Wang
- China Catalyst Holding Co., Ltd., Dalian 116308, China
| | - Weiping Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
23
|
Chen Y, Meng J, Bai D, Li C, Chen X, Liang C. Effect of Extra-Framework Fe Species in Pt/Fe/ZSM-23 Catalysts on Hydroisomerization Performance of n-Hexadecane. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c04065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yujing Chen
- State key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jipeng Meng
- State key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Di Bai
- State key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chuang Li
- State key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiao Chen
- State key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Changhai Liang
- State key Laboratory of Fine Chemicals & Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
24
|
Liu J, Cheng H, Zheng H, Zhang L, Liu B, Song W, Liu J, Zhu W, Li H, Zhao Z. Insight into the Potassium Poisoning Effect for Selective Catalytic Reduction of NOx with NH3 over Fe/Beta. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04497] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jixing Liu
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Huifang Cheng
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Huiling Zheng
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, People’s Republic of China
| | - Lu Zhang
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, People’s Republic of China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, People’s Republic of China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Huaming Li
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, People’s Republic of China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People’s Republic of China
| |
Collapse
|
25
|
Percival SJ, Henkelis SE, Li M, Schindelholz ME, Krumhansl JL, Small LJ, Lobo RF, Nenoff TM. Nickel-Loaded SSZ-13 Zeolite-Based Sensor for the Direct Electrical Readout Detection of NO 2. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Stephen J. Percival
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| | - Susan E. Henkelis
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| | - Muyuan Li
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Mara E. Schindelholz
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| | - James L. Krumhansl
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| | - Leo J. Small
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| | - Raul F. Lobo
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Tina M. Nenoff
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
26
|
Chen Z, Bian C, Guo Y, Pang L, Li T. Efficient Strategy to Regenerate Phosphorus-Poisoned Cu-SSZ-13 Catalysts for the NH 3-SCR of NO x: The Deactivation and Promotion Mechanism of Phosphorus. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03752] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ce Bian
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yanbing Guo
- College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lei Pang
- DongFeng Trucks R&D Center, Zhushanhu Road No. 653, Wuhan 430056, P. R. China
| | - Tao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
27
|
Bols ML, Devos J, Rhoda HM, Plessers D, Solomon EI, Schoonheydt RA, Sels BF, Dusselier M. Selective Formation of α-Fe(II) Sites on Fe-Zeolites through One-Pot Synthesis. J Am Chem Soc 2021; 143:16243-16255. [PMID: 34570975 DOI: 10.1021/jacs.1c07590] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
α-Fe(II) active sites in iron zeolites catalyze N2O decomposition and form highly reactive α-O that selectively oxidizes unreactive hydrocarbons, such as methane. How these α-Fe(II) sites are formed remains unclear. Here different methods of iron introduction into zeolites are compared to derive the limiting factors of Fe speciation to α-Fe(II). Postsynthetic iron introduction procedures on small pore zeolites suffer from limited iron diffusion and dispersion leading to iron oxides. In contrast, by introducing Fe(III) in the hydrothermal synthesis mixture of the zeolite (one-pot synthesis) and the right treatment, crystalline CHA can be prepared with >1.6 wt % Fe, of which >70% is α-Fe(II). The effect of iron on the crystallization is investigated, and the intermediate Fe species are tracked using UV-vis-NIR, FT-IR, and Mössbauer spectroscopy. These data are supplemented with online mass spectrometry in each step, with reactivity tests in α-O formation and with methanol yields in stoichiometric methane activation at room temperature and pressure. We recover up to 134 μmol methanol per gram in a single cycle through H2O/CH3CN extraction and 183 μmol/g through steam desorption, a record yield for iron zeolites. A general scheme is proposed for iron speciation in zeolites through the steps of drying, calcination, and activation. The formation of two cohorts of α-Fe(II) is discovered, one before and one after high temperature activation. We propose the latter cohort depends on the reshuffling of aluminum in the zeolite lattice to accommodate thermodynamically favored α-Fe(II).
Collapse
Affiliation(s)
- Max L Bols
- Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Julien Devos
- Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Hannah M Rhoda
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Bert F Sels
- Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Michiel Dusselier
- Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| |
Collapse
|
28
|
Yu Y, Tan W, An D, Tang C, Zou W, Ge C, Tong Q, Gao F, Sun J, Dong L. Activity enhancement of WO3 modified FeTiO catalysts for the selective catalytic reduction of NO by NH3. Catal Today 2021. [DOI: 10.1016/j.cattod.2019.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Lin F, Andana T, Wu Y, Szanyi J, Wang Y, Gao F. Catalytic site requirements for N2O decomposition on Cu-, Co-, and Fe-SSZ-13 zeolites. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Investigation on removing of 60Co2+ radionuclide from radioactive waste water by Fe(III)-modified Algerian bentonite. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07895-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
The selective deposition of Fe species inside ZSM-5 for the oxidation of cyclohexane to cyclohexanone. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9968-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
González JM, Villa AL. High Temperature SCR Over Cu-SSZ-13 and Cu-SSZ-13 + Fe-SSZ-13: Activity of Cu2+ and [CuOH]1+ Sites and the Apparent Promoting Effect of Adding Fe into Cu-SSZ-13 Catalyst. Catal Letters 2021. [DOI: 10.1007/s10562-021-03550-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Yu Y, Yi X, Zhang J, Tong Z, Chen C, Ma M, He C, Wang J, Chen J, Chen B. Application of ReOx/TiO2 catalysts with excellent SO2 tolerance for the selective catalytic reduction of NOx by NH3. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00467k] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The adsorption of SO2 on ReOx/TiO2 catalysts was rather weak; thus, ReOx/TiO2 catalysts exhibited excellent SO2 tolerance in the NH3-SCR reaction.
Collapse
|
34
|
Zhang T, Qiu Y, Liu G, Chen J, Peng Y, Liu B, Li J. Nature of active Fe species and reaction mechanism over high-efficiency Fe/CHA catalysts in catalytic decomposition of N2O. J Catal 2020. [DOI: 10.1016/j.jcat.2020.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Fe-Exchanged Small-Pore Zeolites as Ammonia Selective Catalytic Reduction (NH3-SCR) Catalysts. Catalysts 2020. [DOI: 10.3390/catal10111324] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cu-exchanged small-pore zeolites have been extensively studied in the past decade as state-of-the-art selective catalytic reduction (SCR) catalysts for diesel engine exhaust NOx abatement for the transportation industry. During this time, Fe-exchanged small-pore zeolites, e.g., Fe/SSZ-13, Fe/SAPO-34, Fe/SSZ-39 and high-silica Fe/LTA, have also been investigated but much less extensively. In comparison to their Cu-exchanged counterparts, such Fe/zeolite catalysts display inferior low-temperature activities, but improved stability and high-temperature SCR selectivities. Such characteristics entitle these catalysts to be considered as key components of highly efficient emission control systems to improve the overall catalyst performance. In this short review, recent studies on Fe-exchanged small-pore zeolite SCR catalysts are summarized, including (1) the synthesis of small-pore Fe/zeolites; (2) nature of the SCR active Fe species in these catalysts as determined by experimental and theoretical approaches, including Fe species transformation during hydrothermal aging; (3) SCR reactions and structure-function correlations; and (4) a few aspects on industrial applications.
Collapse
|
36
|
Chen J, Peng G, Liang T, Zhang W, Zheng W, Zhao H, Guo L, Wu X. Catalytic Performances of Cu/MCM-22 Zeolites with Different Cu Loadings in NH 3-SCR. NANOMATERIALS 2020; 10:nano10112170. [PMID: 33143192 PMCID: PMC7694057 DOI: 10.3390/nano10112170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
The NH3-SCR activities and hydrothermal stabilities of five xCu/MCM-22 zeolites with different Cu loadings (x = 2–10 wt%) prepared by incipient wetness impregnation method were systematically investigated. The physicochemical properties of xCu/MCM-22 zeolites were analyzed by XRD, nitrogen physisorption, ICP-AES, SEM, NH3-TPD, UV-vis, H2-TPR and XPS experiments. The Cu species existing in xCu/MCM-22 are mainly isolated Cu2+, CuOx and unreducible copper species. The concentrations of both isolated Cu2+ and CuOx species in xCu/MCM-22 increase with Cu contents, but the increment of CuOx species is more distinct, especially in high Cu loadings (>4 wt%). NH3-SCR experimental results demonstrated that the activity of xCu/MCM-22 is sensitive to Cu content at low Cu loadings (≤4 wt%). When the Cu loading exceeds 4 wt%, the NH3-SCR activity of xCu/MCM-22 is irrelevant to Cu content due to the severe pore blockage effects caused by aggregated CuOx species. Among the five xCu/MCM-22 zeolites, 4Cu/MCM-22 with moderate Cu content has the best NH3-SCR performance, which displays higher than 80% NOx conversions in a wide temperature window (160–430 °C). Furthermore, the hydrothermal aging experiments (xCu/MCM-22 was treated at 750 °C for 10 h under 10% water vapor atmosphere) illustrated that all the xCu/MCM-22 zeolites exhibit high hydrothermal stability in NH3-SCR reactions.
Collapse
Affiliation(s)
- Jialing Chen
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (G.P.); (W.Z.); (W.Z.); (H.Z.)
- Correspondence: (J.C.); (L.G.); (X.W.)
| | - Gang Peng
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (G.P.); (W.Z.); (W.Z.); (H.Z.)
| | - Tingyu Liang
- Key Laboratory for Green Chemical Process of Ministry of Education, and Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China;
| | - Wenbo Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (G.P.); (W.Z.); (W.Z.); (H.Z.)
| | - Wei Zheng
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (G.P.); (W.Z.); (W.Z.); (H.Z.)
| | - Haoran Zhao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (G.P.); (W.Z.); (W.Z.); (H.Z.)
| | - Li Guo
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (G.P.); (W.Z.); (W.Z.); (H.Z.)
- Correspondence: (J.C.); (L.G.); (X.W.)
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; (G.P.); (W.Z.); (W.Z.); (H.Z.)
- Correspondence: (J.C.); (L.G.); (X.W.)
| |
Collapse
|
37
|
Babucci M, Guntida A, Gates BC. Atomically Dispersed Metals on Well-Defined Supports including Zeolites and Metal–Organic Frameworks: Structure, Bonding, Reactivity, and Catalysis. Chem Rev 2020; 120:11956-11985. [DOI: 10.1021/acs.chemrev.0c00864] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Melike Babucci
- Department of Chemical Engineering, University of California, Davis, California, 95616, United States
| | - Adisak Guntida
- Department of Chemical Engineering, University of California, Davis, California, 95616, United States
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, California, 95616, United States
| |
Collapse
|
38
|
Influence of calcination temperature on the evolution of Fe species over Fe-SSZ-13 catalyst for the NH3-SCR of NO. Catal Today 2020. [DOI: 10.1016/j.cattod.2020.06.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
|
40
|
Niu K, Li G, Liu J, Wei Y. One step synthesis of Fe-SSZ-13 zeolite by hydrothermal method. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Song L, Yue H, Ma K, Tian W, Liu W, Liu C, Tang S, Liang B. Mechanistic Aspects of Highly Efficient FeaSbTiOx Catalysts for the NH3-SCR Reaction: Insight into the Synergistic Effect of Fe and S Species. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Song
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hairong Yue
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| | - Kui Ma
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wen Tian
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Weizao Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Changjun Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| | - Siyang Tang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Bin Liang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| |
Collapse
|
42
|
Juneau M, Liu R, Peng Y, Malge A, Ma Z, Porosoff MD. Characterization of Metal‐zeolite Composite Catalysts: Determining the Environment of the Active Phase. ChemCatChem 2020. [DOI: 10.1002/cctc.201902039] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mitchell Juneau
- Department of Chemical EngineeringUniversity of Rochester Rochester NY-14627 USA
| | - Renjie Liu
- Department of Chemical EngineeringUniversity of Rochester Rochester NY-14627 USA
| | - Yikang Peng
- Department of Chemical EngineeringUniversity of Rochester Rochester NY-14627 USA
| | - Akhilesh Malge
- Department of Chemical EngineeringUniversity of Rochester Rochester NY-14627 USA
| | - Zhiqiang Ma
- Department of Chemical EngineeringUniversity of Rochester Rochester NY-14627 USA
| | - Marc D. Porosoff
- Department of Chemical EngineeringUniversity of Rochester Rochester NY-14627 USA
| |
Collapse
|
43
|
Grünert W, Kydala Ganesha P, Ellmers I, Pérez Vélez R, Huang H, Bentrup U, Schünemann V, Brückner A. Active Sites of the Selective Catalytic Reduction of NO by NH3 over Fe-ZSM-5: Combining Reaction Kinetics with Postcatalytic Mössbauer Spectroscopy at Cryogenic Temperatures. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wolfgang Grünert
- Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | - Inga Ellmers
- Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Roxana Pérez Vélez
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
| | - Heming Huang
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Ursula Bentrup
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
| | - Volker Schünemann
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Angelika Brückner
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
| |
Collapse
|
44
|
Chen J, Peng G, Zheng W, Zhang W, Guo L, Wu X. Excellent performance of one-pot synthesized Fe-containing MCM-22 zeolites for the selective catalytic reduction of NOx with NH3. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00989j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One-pot synthesized OP-Fe/M22 zeolites exhibit excellent performances in NH3-SCR reactions.
Collapse
Affiliation(s)
- Jialing Chen
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials
- School of Chemistry and Chemical Engineering
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Gang Peng
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials
- School of Chemistry and Chemical Engineering
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Wei Zheng
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials
- School of Chemistry and Chemical Engineering
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Wenbo Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials
- School of Chemistry and Chemical Engineering
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Li Guo
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials
- School of Chemistry and Chemical Engineering
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Xiaoqing Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials
- School of Chemistry and Chemical Engineering
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| |
Collapse
|
45
|
Bols ML, Rhoda HM, Snyder BER, Solomon EI, Pierloot K, Schoonheydt RA, Sels BF. Advances in the synthesis, characterisation, and mechanistic understanding of active sites in Fe-zeolites for redox catalysts. Dalton Trans 2020; 49:14749-14757. [PMID: 33140781 DOI: 10.1039/d0dt01857k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The recent research developments on the active sites in Fe-zeolites for redox catalysis are discussed. Building on the characterisation of the α-Fe/α-O active sites in the beta and chabazite zeolites, we demonstrate a bottom-up approach to successfully understand and develop Fe-zeolite catalysts. We use the room temperature benzene to phenol reaction as a relevant example. We then suggest how the spectroscopic identification of other monomeric and dimeric iron sites could be tackled. The challenges in the characterisation of active sites and intermediates in NOX selective catalytic reduction catalysts and further development of catalysts for mild partial methane oxidation are briefly discussed.
Collapse
Affiliation(s)
- Max L Bols
- Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium.
| | | | | | | | | | | | | |
Collapse
|
46
|
Low-Temperature Selective Catalytic Reduction of NO with NH3 over Natural Iron Ore Catalyst. Catalysts 2019. [DOI: 10.3390/catal9110956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The selective catalytic reduction of NO with NH3 at low temperatures has been investigated with natural iron ore catalysts. Four iron ore raw materials from different locations were taken and processed to be used as catalysts. The methods of X-ray diffraction (XRD), X-ray fluorescence (XRF), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), hydrogen temperature-programmed reduction (H2-TPR), ammonia temperature-programmed desorption (NH3-TPD), scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used to characterize the materials. The results showed that the sample A (comprised mainly of α-Fe2O3 and γ-Fe2O3), calcined at 250 °C, achieved excellent selective catalytic reduction (SCR) activity (above 80% at 170–350 °C) and N2 selectivity (above 90% up to 250 °C) at low temperatures. Suitable calcination temperature, large surface area, high concentration of surface-adsorbed oxygen, good reducibility, lots of acid sites and adsorption of the reactants were responsible for the excellent SCR performance of the iron ore. However, the addition of H2O and SO2 in the feed gas showed some adverse effects on the SCR activity. The FT-IR analysis indicated the formation of sulfate salts on the surface of the catalyst during the SCR reaction in the presence of SO2, which could cause pore plugging and result in the suppression of the catalytic activity.
Collapse
|
47
|
Shi J, Zhang Y, Zhu Y, Chen M, Zhang Z, Shangguan W. Efficient Fe-ZSM-5 catalyst with wide active temperature window for NH3 selective catalytic reduction of NO: Synergistic effect of isolated Fe3+ and Fe2O3. J Catal 2019. [DOI: 10.1016/j.jcat.2019.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Li W, Sun L, Xie L, Deng X, Guan N, Li L. Coordinatively unsaturated sites in zeolite matrix: Construction and catalysis. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63381-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Han L, Cai S, Gao M, Hasegawa JY, Wang P, Zhang J, Shi L, Zhang D. Selective Catalytic Reduction of NOx with NH3 by Using Novel Catalysts: State of the Art and Future Prospects. Chem Rev 2019; 119:10916-10976. [DOI: 10.1021/acs.chemrev.9b00202] [Citation(s) in RCA: 568] [Impact Index Per Article: 113.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lupeng Han
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Sixiang Cai
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- School of Materials Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Min Gao
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Jun-ya Hasegawa
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Penglu Wang
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jianping Zhang
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
50
|
Zhang T, Qin X, Peng Y, Wang C, Chang H, Chen J, Li J. Effect of Fe precursors on the catalytic activity of Fe/SAPO-34 catalysts for N2O decomposition. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|