1
|
Ohemeng PO, Godin R. Surface properties of carbon nitride materials used in photocatalytic systems for energy and environmental applications. Chem Commun (Camb) 2024; 60:12034-12061. [PMID: 39347587 DOI: 10.1039/d4cc03898c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The use of photocatalytic systems involving semiconductor materials for environmental and energy applications, such as water remediation and clean energy production, is highly significant. In line with this, a family of carbon-based polymeric materials known as carbon nitride (CNx) has emerged as a promising candidate for this purpose. Despite CNx's remarkable characteristics of performance, stability, and visible light responsiveness, its chemical inertness and poor surface properties hinder interfacial interactions, which are key to effective catalysis. This highlight reviews the literature focusing on the surface chemistry of CNx, especially its structural formation pathway, reactivity, and solvent interactions. It also explores recent advancements in the use of modified CNx for hydrogen production and arsenic remediation, offering recommendations for future material design improvements.
Collapse
Affiliation(s)
- Peter Osei Ohemeng
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
| | - Robert Godin
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
- Clean Energy Research Center, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
2
|
Sayyad US, Waghmare S, Mondal S. A proton-coupled electron transfer process from functionalized carbon dots to molecular substrates: the role of pH. NANOSCALE 2024; 16:18468-18476. [PMID: 39264128 DOI: 10.1039/d4nr02655a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Multiple electron and proton transfers in nanomaterials pose significant demands and challenges across the various fields such as renewable energy, chemical processes, biological applications, and photophysics. In this context, pH-responsive functional group-enriched carbon dots (C-Dots) emerge as superior proton-coupled electron transfer (PCET) agents owing to the presence of multiple functional groups (-COOH, -NH2, and -OH) on the surface and redox-active sites in the core. Here, we elucidate the 2e-/2H+ transfer ability of carboxyl-enriched C-Dots (C-Dot-COOH) and amine-enriched C-Dots (C-Dot-NH2) with molecular 2e-/2H+ acceptor (benzoquinone, BQ) as a function of pKa, facilitated by the formation of new O-H bonds. The ground state and excited state pKa values of different functional groups on the surface of C-Dots are determined using steady-state absorbance and photoluminescence (PL) spectroscopy. The optical spectroscopy and electrochemical studies are employed to comprehend the influence of the surface and core of C-Dots on the proton and electron transfer processes as a function of pH. The cyclic voltammetry analysis reveals a standard Nernstian shift in E1/2 per pH unit of 30 mV, indicating that the functionalized C-Dots hold promise as candidates for the 2e-/2H+ transfer process. The calculated bond dissociation free energy (BDFE) of the electroactive O-H/N-H bonds provides a more nuanced and detailed understanding of PCET thermodynamic landscapes. These findings underscore the potential of nanoscale functionalized C-Dots for facilitating multiple PCET reactions in future energy technologies.
Collapse
Affiliation(s)
- Umarfaruk S Sayyad
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India.
| | - Sapna Waghmare
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India.
| | - Somen Mondal
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India.
| |
Collapse
|
3
|
Seikh L, Dhara S, Singh AK, Singh A, Dey S, Indra A, Lahiri GK. The isomer-sensitive electrochemical HER of ruthenium(II)-hydrido complexes involving redox-active azoheteroaromatics. Dalton Trans 2024; 53:1746-1756. [PMID: 38168794 DOI: 10.1039/d3dt02925e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The article deals with the development of isomeric ruthenium(II)-hydrido complexes [RuII(H)(L1)(PPh3)2(CO)]ClO4 ([1a]ClO4-[1b]ClO4)/[RuII(H)(L2)(PPh3)2(CO)]ClO4 ([2a]ClO4-[2b]ClO4) involving azo coupled L1 [L1: (E)-1,2-bis(1-methyl-1H-pyrazol-3-yl)diazene]/L2 [L2: (E)-1,2-bis(4-iodo-1-methyl-1H-pyrazol-3-yl)diazene], respectively. Structural evaluation of the complexes affirmed the syn conformation of the coordinated/uncoordinated pyrazole groups of L and its unperturbed neutral azo (NN) state. Isomeric forms in [1a]ClO4/[1b]ClO4 or [2a]ClO4/[2b]ClO4 differed with respect to the cis and trans orientations of the coordinated CO and N(azo) donor of L, respectively. It also demonstrated the formation of intermolecular hydrogen-bonded dimeric or 1D-polymeric chains in [1a]ClO4/[2b]ClO4 or [1b]ClO4, respectively. Successive two-electron reductions of the complexes varied to an appreciable extent as a function of the heterocycles connected to L. The involvement of the azo function of L towards the reductions ([NN]0 → [NN]˙- → [NN]2-) was supported by the DFT calculated MOs and Mulliken spin density at the paramagnetic state, which was further validated by the radical EPR profile of the first reduced (S = 1/2) state. Isomeric [1a]ClO4/[1b]ClO4 or [2a]ClO4/[2b]ClO4 immobilised on the carbon cloth support underwent various electrochemical acidic HERs (hydrogen evolution reactions) with TOF/10-1 s-1: [1a]ClO4 (0.83) > [1b]ClO4 (0.68) > [2a]ClO4 (0.50) > [2b]ClO4 (0.37).
Collapse
Affiliation(s)
- Liton Seikh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Suman Dhara
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Ajit Kumar Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Aditi Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sanchaita Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
4
|
Bens T, Walter RRM, Beerhues J, Lücke C, Gabler J, Sarkar B. Isolation, Characterization and Reactivity of Key Intermediates Relevant to Reductive (Electro)catalysis with Cp*Rh Complexes Containing Pyridyl-MIC (MIC=Mesoionic Carbene) Ligands. Chemistry 2024; 30:e202302354. [PMID: 37768608 DOI: 10.1002/chem.202302354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
In recent years, metal complexes of pyridyl-mesoionic carbene (MIC) ligands have been reported as excellent homogeneous and molecular electrocatalysts. In combination with group 9 metals, such ligands form highly active catalysts for hydrogenation/transfer hydrogenation/hydrosilylation catalysis and electrocatalysts for dihydrogen production. Despite such progress, very little is known about the structural/electrochemical/spectroscopic properties of crucial intermediates for such catalytic reactions with these ligands: solvato complexes, reduced complexes and hydridic species. We present here a comprehensive study involving the isolation, crystallographic characterization, electrochemical/spectroelectrochemical/theoretical investigations, and in-situ reactivity studies of all the aforementioned crucial intermediates involving Cp*Rh and pyridyl-MIC ligands. A detailed mechanistic study of the precatalytic activation of [RhCp*] complexes with pyridyl-MIC ligands is presented. Intriguingly, amphiphilicity of the [RhCp*]-hydride complexes was observed, displaying the substrate dependent transfer of H+ , H or H- . To the best of our knowledge, this study is the first of its kind targeting intermediates and reactive species involving metal complexes of pyridyl-MIC ligands and investigating the interconversion amongst them.
Collapse
Affiliation(s)
- Tobias Bens
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Robert R M Walter
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Julia Beerhues
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
- Current Address, Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans 16, 43007, Tarragona, Spain
| | - Clemens Lücke
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Julia Gabler
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Biprajit Sarkar
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| |
Collapse
|
5
|
Zaar F, Moyses Araujo C, Emanuelsson R, Strømme M, Sjödin M. Tetraphenylporphyrin electrocatalysts for the hydrogen evolution reaction: applicability of molecular volcano plots to experimental operating conditions. Dalton Trans 2023; 52:10348-10362. [PMID: 37462421 DOI: 10.1039/d3dt01250f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Recent years have seen an increasing interest in molecular electrocatalysts for the hydrogen evolution reaction (HER). Efficient hydrogen evolution would play an important role in a sustainable fuel economy, and molecular systems could serve as highly specific and tunable alternatives to traditional noble metal surface catalysts. However, molecular catalysts are currently mostly used in homogeneous setups, where quantitative evaluation of catalytic activity is non-standardized and cumbersome, in particular for multistep, multielectron processes. The molecular design community would therefore be well served by a straightforward model for prediction and comparison of the efficiency of molecular catalysts. Recent developments in this area include attempts at applying the Sabatier principle and the volcano plot concept - popular tools for comparing metal surface catalysts - to molecular catalysis. In this work, we evaluate the predictive power of these tools in the context of experimental operating conditions, by applying them to a series of tetraphenylporphyrins employed as molecular electrocatalysts of the HER. We show that the binding energy of H and the redox chemistry of the porphyrins depend solely on the electron withdrawing ability of the central metal ion, and that the thermodynamics of the catalytic cycle follow a simple linear free energy relation. We also find that the catalytic efficiency of the porphyrins is almost exclusively determined by reaction kinetics and therefore cannot be explained by thermodynamics alone. We conclude that the Sabatier principle, linear free energy relations and molecular volcano plots are insufficient tools for predicting and comparing activity of molecular catalysts, and that experimentally useful information of catalytic performance can still only be obtained through detailed knowledge of the catalytic pathway for each individual system.
Collapse
Affiliation(s)
- Felicia Zaar
- Department of Materials Science and Engineering, Division of Nanotechnology and Functional Materials, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden.
| | - C Moyses Araujo
- Materials Theory Division, Department of Physics and Astronomy, Ångström Laboratory, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Department of Engineering and Physics, Karlstad University, 651 88 Karlstad, Sweden
| | - Rikard Emanuelsson
- Department of Chemistry - BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Maria Strømme
- Department of Materials Science and Engineering, Division of Nanotechnology and Functional Materials, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden.
| | - Martin Sjödin
- Department of Materials Science and Engineering, Division of Nanotechnology and Functional Materials, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden.
| |
Collapse
|
6
|
Dey A, Ghorai N, Das A, Ghosh HN. Effects of hydrogen bonding on intramolecular/intermolecular proton-coupled electron transfer using a Ruthenium-anthraquinone dyad in ultrafast time domain. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Hernández-Toledo HC, Flores-Alamo M, Castillo I. Bis(benzimidazole)amino thio- and selenoether Iron(II) complexes as proton reduction electrocatalysts. J Inorg Biochem 2023; 241:112128. [PMID: 36701986 DOI: 10.1016/j.jinorgbio.2023.112128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Two novel Iron (II) complexes featuring tetrapodal bis(benzimidazole)amino thio- and selenoether ligands (LS and LSe) were synthesized, characterized, and tested as electrocatalysts for the hydrogen evolution reaction. The bromide complexes [Fe(LS,LSe)Br2] (1-2) are highly insoluble, but their DMSO solvates were characterized by single crystal X-ray diffraction, revealing an octahedral coordination environment that does not feature coordination of the chalcogen atoms. The corresponding triflate derivatives [Fe(LS,LSe)(MeCN)3]OTf2 (1c-2c) were employed for electrocatalytic proton reduction, with 1c exhibiting higher activity, thus suggesting that the thioether may participate as a more competent pendant ligand for proton transfer.
Collapse
Affiliation(s)
- Hugo C Hernández-Toledo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU 04510, Mexico
| | - Marcos Flores-Alamo
- Facultad de Química, División de Estudios de Posgrado, Universidad Nacional Autónoma de México, Circuito Exterior, CU 04510, Mexico
| | - Ivan Castillo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU 04510, Mexico.
| |
Collapse
|
8
|
Hernandez-Tovar JV, López-Tenés M, Gonzalez J. Square Wave Voltcoulommetry of two-electron molecular electrocatalytic processes with adsorbed species. Application to the surface O2 reduction in acetonitrile at anthraquinone-modified glassy carbon electrodes. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Salamatian AA, Bren KL. Bioinspired and biomolecular catalysts for energy conversion and storage. FEBS Lett 2023; 597:174-190. [PMID: 36331366 DOI: 10.1002/1873-3468.14533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Metalloenzymes are remarkable for facilitating challenging redox transformations with high efficiency and selectivity. In the area of alternative energy, scientists aim to capture these properties in bioinspired and engineered biomolecular catalysts for the efficient and fast production of fuels from low-energy feedstocks such as water and carbon dioxide. In this short review, efforts to mimic biological catalysts for proton reduction and carbon dioxide reduction are highlighted. Two important recurring themes are the importance of the microenvironment of the catalyst active site and the key role of proton delivery to the active site in achieving desired reactivity. Perspectives on ongoing and future challenges are also provided.
Collapse
Affiliation(s)
| | - Kara L Bren
- Department of Chemistry, University of Rochester, NY, USA
| |
Collapse
|
10
|
Weder N, Grundmann NS, Probst B, Blacque O, Ketkaew R, Creazzo F, Luber S, Alberto R. Two Novel Dinuclear Cobalt Polypyridyl Complexes in Electro- and Photocatalysis for Hydrogen Production: Cooperativity Increases Performance. CHEMSUSCHEM 2022; 15:e202201049. [PMID: 35765252 PMCID: PMC9545343 DOI: 10.1002/cssc.202201049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Syntheses and mechanisms of two dinuclear Co-polypyridyl catalysts for the H2 evolution reaction (HER) were reported and compared to their mononuclear analogue (R1). In both catalysts, two di-(2,2'-bipyridin-6-yl)-methanone units were linked by either 2,2'-bipyridin-6,6'-yl or pyrazin-2,5-yl. Complexation with CoII gave dinuclear compounds bridged by pyrazine (C2) or bipyridine (C1). Photocatalytic HER gave turnover numbers (TONs) of up to 20000 (C2) and 7000 (C1) in water. Electrochemically, C1 was similar to the R1, whereas C2 showed electronic coupling between the two Co centers. The E(CoII/I ) split by 360 mV into two separate waves. Proton reduction in DMF was investigated for R1 with [HNEt3 ](BF4 ) by simulation, foot of the wave analysis, and linear sweep voltammetry (LSV) with in-line detection of H2 . All methods agreed well with an (E)ECEC mechanism and the first protonation being rate limiting (≈104 m-1 s-1 ). The second reduction was more anodic than the first one. pKa values of around 10 and 7.5 were found for the two protonations. LSV analysis with H2 detection for all catalysts and acids with different pKa values [HBF4 , pKa (DMF)≈3.4], intermediate {[HNEt3 ](BF4 ), pKa (DMF)≈9.2} to weak [AcOH, pKa (DMF)≈13.5] confirmed electrochemical H2 production, distinctly dependent on the pKa values. Only HBF4 protonated CoI intermediates. The two metals in the dualcore C2 cooperated with an increase in rate to a competitive 105 m-1 s-1 with [HNEt3 ](BF4 ). The overpotential decreased compared to R1 by 100 mV. Chronoamperometry established high stabilities for all catalysts with TONlim of 100 for R1 and 320 for C1 and C2.
Collapse
Affiliation(s)
- Nicola Weder
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 190Switzerland
| | - Nora S. Grundmann
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 190Switzerland
| | - Benjamin Probst
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 190Switzerland
| | - Olivier Blacque
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 190Switzerland
| | - Rangsiman Ketkaew
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 190Switzerland
| | - Fabrizio Creazzo
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 190Switzerland
| | - Sandra Luber
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 190Switzerland
| | - Roger Alberto
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 190Switzerland
| |
Collapse
|
11
|
Quantitative analysis of the electrochemical performance of multi-redox molecular electrocatalysts. A mechanistic study of chlorate electrocatalytic reduction in presence of a molybdenium polyoxometalate. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Thangamuthu M, Ruan Q, Ohemeng PO, Luo B, Jing D, Godin R, Tang J. Polymer Photoelectrodes for Solar Fuel Production: Progress and Challenges. Chem Rev 2022; 122:11778-11829. [PMID: 35699661 PMCID: PMC9284560 DOI: 10.1021/acs.chemrev.1c00971] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Converting solar energy to fuels has attracted substantial interest over the past decades because it has the potential to sustainably meet the increasing global energy demand. However, achieving this potential requires significant technological advances. Polymer photoelectrodes are composed of earth-abundant elements, e.g. carbon, nitrogen, oxygen, hydrogen, which promise to be more economically sustainable than their inorganic counterparts. Furthermore, the electronic structure of polymer photoelectrodes can be more easily tuned to fit the solar spectrum than inorganic counterparts, promising a feasible practical application. As a fast-moving area, in particular, over the past ten years, we have witnessed an explosion of reports on polymer materials, including photoelectrodes, cocatalysts, device architectures, and fundamental understanding experimentally and theoretically, all of which have been detailed in this review. Furthermore, the prospects of this field are discussed to highlight the future development of polymer photoelectrodes.
Collapse
Affiliation(s)
- Madasamy Thangamuthu
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Qiushi Ruan
- School
of Materials Science and Engineering, Southeast
University, Nanjing 211189, China
| | - Peter Osei Ohemeng
- Department
of Chemistry, The University of British
Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Bing Luo
- School
of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- International
Research Center for Renewable Energy & State Key Laboratory of
Multiphase Flow in Power Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Dengwei Jing
- International
Research Center for Renewable Energy & State Key Laboratory of
Multiphase Flow in Power Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Robert Godin
- Department
of Chemistry, The University of British
Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Junwang Tang
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
13
|
Sun F, Tang Q, Jiang DE. Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - De-en Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
14
|
Wiedner ES, Appel AM, Raugei S, Shaw WJ, Bullock RM. Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines. Chem Rev 2022; 122:12427-12474. [PMID: 35640056 DOI: 10.1021/acs.chemrev.1c01001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pendant amines play an invaluable role in chemical reactivity, especially for molecular catalysts based on earth-abundant metals. As inspired by [FeFe]-hydrogenases, which contain a pendant amine positioned for cooperative bifunctionality, synthetic catalysts have been developed to emulate this multifunctionality through incorporation of a pendant amine in the second coordination sphere. Cyclic diphosphine ligands containing two amines serve as the basis for a class of catalysts that have been extensively studied and used to demonstrate the impact of a pendant base. These 1,5-diaza-3,7-diphosphacyclooctanes, now often referred to as "P2N2" ligands, have profound effects on the reactivity of many catalysts. The resulting [Ni(PR2NR'2)2]2+ complexes are electrocatalysts for both the oxidation and production of H2. Achieving the optimal benefit of the pendant amine requires that it has suitable basicity and is properly positioned relative to the metal center. In addition to the catalytic efficacy demonstrated with [Ni(PR2NR'2)2]2+ complexes for the oxidation and production of H2, catalysts with diphosphine ligands containing pendant amines have also been demonstrated for several metals for many different reactions, both in solution and immobilized on surfaces. The impact of pendant amines in catalyst design continues to expand.
Collapse
|
15
|
Klimaeva LA, Ganz OY, Chugunov DB, Mazhorova AV, Dolganov AV, Knyazev AV. Electrocatalytic Activity of 4,4'-Bipyridine in the Production of Molecular Hydrogen in the Presence of Acids of Different Nature. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422050156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Brown J, Ovens J, Richeson D. Elucidating Two Distinct Pathways for Electrocatalytic Hydrogen Production Using Co II Pincer Complexes. CHEMSUSCHEM 2022; 15:e202102542. [PMID: 35041773 DOI: 10.1002/cssc.202102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen gas is a sustainable energy source with water as the sole combustion product. As a result, efforts to catalyze H2 production are pertinent and widespread. The electrocatalytic H2 generating capabilities of two CoII complexes, [Co(κ3 -2,6-{Ph2 PNR}2 (NC5 H3 ))Br2 ] with R=H (I) or R=Me (II), were presented for a variety of proton sources including trifluoroacetic acid (TFA), acetic acid (AA), and trifluoroethanol (TFE). Cyclic voltammetry and controlled potential coulometry demonstrated that electrocatalysis from I and II occurred at two different potentials and are associated with different reduction processes. Density functional theory analysis provided insight into the identities of the catalyst and supported two distinct reaction pathways for electrocatalytic proton reduction. Specifically, stronger acids (e. g., AA, TFA) proceeded at -1.31 to -1.45 V through a MI /MIII pathway while sources with higher pKa values (e. g., TFE, H2 O) generated hydrogen at -2.4 V via M0 /MII ligand-assisted metal-centered reduction.
Collapse
Affiliation(s)
- Josh Brown
- Department of Chemistry and Biomolecular Sciences Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1 N 6 N5, Canada
| | - Jeffrey Ovens
- Department of Chemistry and Biomolecular Sciences Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1 N 6 N5, Canada
| | - Darrin Richeson
- Department of Chemistry and Biomolecular Sciences Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1 N 6 N5, Canada
| |
Collapse
|
17
|
Nazarova AL, Zayat B, Fokin VV, Narayan SR. Electrochemical Studies of the Cycloaddition Activity of Bismuth(III) Acetylides Towards Organic Azides Under Copper(I)-Catalyzed Conditions. Front Chem 2022; 10:830237. [PMID: 36204144 PMCID: PMC9531323 DOI: 10.3389/fchem.2022.830237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022] Open
Abstract
Time-dependent monitoring of the reactive intermediates provides valuable information about the mechanism of a synthetic transformation. However, the process frequently involves intermediates with short lifetimes that significantly challenge the accessibility of the desired kinetic data. We report in situ cyclic voltammetry (CV) and nuclear magnetic resonance (NMR) spectroscopy studies of the cycloaddition reaction of organobismuth(III) compounds with organic azides under the copper(I)-catalyzed conditions. A series of bismuth(III) acetylides carrying diphenyl sulfone scaffolds have been synthesized to study the underlying electronic and steric effects of the tethered moieties capable of transannular oxygen O···Bi interactions and para-functionality of the parent phenylacetylene backbones. While belonging to the family of copper-catalyzed azide-alkyne cycloaddition reactions, the reaction yielding 5-bismuth(III)-triazolide is the sole example of a complex catalytic transformation that features activity of bismuth(III) acetylides towards organic azides under copper(I)-catalyzed conditions. Stepwise continuous monitoring of the copper(I)/copper(0) redox activity of the copper(I) catalyst by cyclic voltammetry provided novel insights into the complex catalytic cycle of the bismuth(III)-triazolide formation. From CV-derived kinetic data, reaction rate parameters of the bismuth(III) acetylides coordination to the copper(I) catalyst (KA) and equilibrium concentration of the copper species [cat]eq. are compared with the overall 5-bismuth(III)-triazolide formation rate constant kobs obtained by 1H-NMR kinetic analysis.
Collapse
Affiliation(s)
- Antonina L. Nazarova
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, United States
- Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Billal Zayat
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, United States
| | - Valery V. Fokin
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, United States
- Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Valery V. Fokin, ; Sri R. Narayan,
| | - Sri R. Narayan
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Valery V. Fokin, ; Sri R. Narayan,
| |
Collapse
|
18
|
Reid AG, Moreno JJ, Hooe SL, Baugh KR, Thomas IH, Dickie DA, Machan CW. Inverse Potential Scaling in Co-Electrocatalytic Activity for CO 2 Reduction Through Redox Mediator Tuning and Catalyst Design. Chem Sci 2022; 13:9595-9606. [PMID: 36091894 PMCID: PMC9400620 DOI: 10.1039/d2sc03258a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Electrocatalytic CO2 reduction is an attractive strategy to mitigate the continuous rise in atmospheric CO2 concentrations and generate value-added chemical products. A possible strategy to increase the activity of molecular...
Collapse
Affiliation(s)
- Amelia G Reid
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Juan J Moreno
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Shelby L Hooe
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Kira R Baugh
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Isobel H Thomas
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Diane A Dickie
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Charles W Machan
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| |
Collapse
|
19
|
Stern CM, Meche DD, Elgrishi N. Impact of the choice of buffer on the electrochemical reduction of Cr( vi) in water on carbon electrodes. RSC Adv 2022; 12:32592-32599. [DOI: 10.1039/d2ra05943f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The nature of the buffer influences the PCET step gating Cr(vi) reduction in water at pH 4.75, as well as the extent of deposition on carbon electrodes. Electrode activity is recovered without polishing, through a simple acid wash step.
Collapse
Affiliation(s)
- Callie M. Stern
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| | - Devin D. Meche
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| | - Noémie Elgrishi
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| |
Collapse
|
20
|
Liu J, Liao RZ, Heinemann FW, Meyer K, Thummel RP, Zhang Y, Tong L. Electrocatalytic Hydrogen Evolution by Cobalt Complexes with a Redox Non-Innocent Polypyridine Ligand. Inorg Chem 2021; 60:17976-17985. [PMID: 34808047 DOI: 10.1021/acs.inorgchem.1c02539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Novel cobalt and zinc complexes with the tetradentate ppq (8-(1″,10″-phenanthrol-2″-yl)-2-(pyrid-2'-yl)quinoline) ligand have been synthesized and fully characterized. Electrochemical measurements have shown that the formal monovalent complex [Co(ppq)(PPh3)]+ (2) undergoes two stepwise ligand-based electroreductions in DMF, affording a [Co(ppq)DMF]-1 species. Theoretical calculations have described the electronic structure of [Co(ppq)DMF]-1 as a low-spin Co(II) center coupling with a triple-reduced ppq radical ligand. In the presence of triethylammonium as the proton donor, the cobalt complex efficiently drives electrocatalytic hydrogen evolution with a maximum turnover frequency of thousands per second. A mechanistic investigation proposes an EECC H2-evolving pathway, where the second ligand-based redox process (E), generating the [Co(ppq)DMF]-1 intermediate, initiates proton reduction, and the second proton transfer process (C) is the rate-determining step. This work provides a unique example for understanding the role of redox-active ligands in electrocatalytic H2 evolution by transition metal sites.
Collapse
Affiliation(s)
- Jiale Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Randolph P Thummel
- Department of Chemistry, 112 Fleming Building, University of Houston, Houston, Texas 77204-5003, United States
| | - Yaqiong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lianpeng Tong
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Higher Education Mega Center, Guangzhou, 510006, PR China
| |
Collapse
|
21
|
Gamache MT, Auvray T, Kurth DG, Hanan GS. Dinuclear 2,4-di(pyridin-2-yl)-pyrimidine based ruthenium photosensitizers for hydrogen photo-evolution under red light. Dalton Trans 2021; 50:16528-16538. [PMID: 34698748 DOI: 10.1039/d1dt00868d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we report two dinuclear Ru(II) complexes C1 and C2 and compare them to their mononuclear analogues Ref1 and Ref2. The dinuclear species exhibit a much stronger absorption, longer excited-state lifetimes and higher luminescence quantum yields than the mononuclear complexes. In addition, C1 and C2 are easier to reduce. An estimation of the driving forces for the electron transfer processes relevant to photocatalytic hydrogen evolution suggests that C1 and Ref2 possess similar activity as photosensitizer (PS). Yet, the improved photophysical properties of C1 make it a more promising candidate for hydrogen evolution. In hydrogen evolution experiments, C1 indeed exhibits increased activity as PS, however, the catalytic system loses its activity after only a few hours. C2 is less active than the mononuclear complexes despite its superior photophysical properties. This observation is attributed to a lack of driving force for the electron transfer towards the catalyst. Further studies of the dinuclear complex C1 show that it is indeed the PS, which decomposes under the catalytic conditions, presumably due to the electron transfer towards the catalyst being the rate-limiting step.
Collapse
Affiliation(s)
- Mira T Gamache
- Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany.,Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V-03B, Canada
| | - Thomas Auvray
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V-03B, Canada
| | - Dirk G Kurth
- Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Garry S Hanan
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V-03B, Canada
| |
Collapse
|
22
|
Wang W, Yuan T, Tang H, Hu Z, Wang Y, Liu Q. Ruthenium nanoparticles supported on carbon oxide nanotubes for electrocatalytic hydrogen evolution in alkaline media. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Determining the Overpotential of Electrochemical Fuel Synthesis Mediated by Molecular Catalysts: Recommended Practices, Standard Reduction Potentials, and Challenges. ChemElectroChem 2021. [DOI: 10.1002/celc.202100576] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Margarit CG, Asimow NG, Thorarinsdottir AE, Costentin C, Nocera DG. Impactful Role of Cocatalysts on Molecular Electrocatalytic Hydrogen Production. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Charles G. Margarit
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Naomi G. Asimow
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Agnes E. Thorarinsdottir
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cyrille Costentin
- Département de Chimie Moléculaire, Université Grenoble-Alpes, CNRS, UMR 5250, 38000 Grenoble, France
- Université de Paris, 75013 Paris, France
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
25
|
Synthesis of Novel Heteroleptic Oxothiolate Ni(II) Complexes and Evaluation of Their Catalytic Activity for Hydrogen Evolution. Catalysts 2021. [DOI: 10.3390/catal11030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two heteroleptic nickel oxothiolate complexes, namely [Ni(bpy)(mp)] (1) and [Ni(dmbpy)(mp)] (2), where mp = 2-hydroxythiophenol, bpy = 2,2′-bipyridine and dmbpy = 4,4′-dimethyl-2,2′-bipyridine were synthesized and characterized with various physical and spectroscopic methods. Complex 2 was further characterized by single crystal X-ray diffraction data. The complex crystallizes in the monoclinic P 21/c system and in its neutral form. The catalytic properties of both complexes for proton reduction were evaluated with photochemical and electrochemical studies. Two different in their nature photosensitizers, namely fluorescein and CdTe-TGA-coated quantum dots, were tested under various conditions. The role of the electron donating character of the methyl substituents was revealed in the light of the studies. Thus, catalyst 2 performs better than 1, reaching 39.1 TONs vs. 4.63 TONs in 3 h, respectively, in electrochemical experiments. In contrast, complex 1 is more photocatalytically active than 2, achieving a TON of over 6700 in 120 h of irradiation. This observed reverse catalytic activity suggests that HER mechanism follows different pathways in electrocatalysis and photocatalysis.
Collapse
|
26
|
Kurtz DA, Dhar D, Elgrishi N, Kandemir B, McWilliams SF, Howland WC, Chen CH, Dempsey JL. Redox-Induced Structural Reorganization Dictates Kinetics of Cobalt(III) Hydride Formation via Proton-Coupled Electron Transfer. J Am Chem Soc 2021; 143:3393-3406. [DOI: 10.1021/jacs.0c11992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Daniel A. Kurtz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Debanjan Dhar
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Noémie Elgrishi
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, United States
| | - Banu Kandemir
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Sean F. McWilliams
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - William C. Howland
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Chun-Hsing Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jillian L. Dempsey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
27
|
Brown SE, Shakib FA. Recent progress in approximate quantum dynamics methods for the study of proton-coupled electron transfer reactions. Phys Chem Chem Phys 2021; 23:2535-2556. [PMID: 33367437 DOI: 10.1039/d0cp05166g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proton-coupled electron transfer (PCET) reactions are ubiquitous natural processes at the heart of energy conversion reactions in photosynthesis and respiration, DNA repair, and diverse enzymatic reactions. Theoretical formulation and computational method developments have eyed modeling of thermal and photoinduced PCET for the last three decades. The accumulation of these studies, collected in dozens of reviews, accounts, and perspectives, has firmly established the influence of quantum effects, including non-adiabatic electronic transitions, vibrational relaxation, zero-point energy, and proton tunneling, on the rate and mechanism of PCET reactions. Here, we focus on some recently-developed methods, spanning the last eight years, that can quantitatively capture these effects in the PCET context and provide efficient means for their qualitative description in complex systems. The theoretical background of each method and their accuracy with respect to exact results are discussed and the results of relevant PCET simulations based on each method are presented.
Collapse
Affiliation(s)
- Sandra E Brown
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Farnaz A Shakib
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
28
|
Kaim V, Kaur-Ghumaan S. Mononuclear Mn complexes featuring N,S-/N,N-donor and 1,3,5-triaza-7-phosphaadamantane ligands: synthesis and electrocatalytic properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj02104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mononuclear Mn(i) carbonyl complexes incorporating 2-mercaptobenzothiazole or 2-mercaptobenzimidazole and phosphaadamantane ligands were evaluated as electrocatalysts for the HER both in acetonitrile and acetonitrile/water.
Collapse
Affiliation(s)
- Vishakha Kaim
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
29
|
Walaijai K, Cavill SA, Whitwood AC, Douthwaite RE, Perutz RN. Electrocatalytic Proton Reduction by a Cobalt(III) Hydride Complex with Phosphinopyridine PN Ligands. Inorg Chem 2020; 59:18055-18067. [PMID: 33275426 DOI: 10.1021/acs.inorgchem.0c02505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cobalt complexes with 2-(diisopropylphosphinomethyl)pyridine (PN) ligands have been synthesized with the aim of demonstrating electrocatalytic proton reduction to dihydrogen with a well-defined hydride complex of an Earth-abundant metal. Reactions of simple cobalt precursors with 2-(diisopropylphosphino-methyl)pyridine (PN) yield [CoII(PN)2(MeCN)][BF4]2 1, [CoIII(PN)2(H)(MeCN)][PF6]2 2, and [CoIII(PN)2(H)(Cl)][PF6] 3. Complexes 1 and 3 have been characterized crystallographically. Unusually for a bidentate PN ligand, all three exhibit geometries with mutually trans phosphorus and nitrogen ligands. Complex 1 exhibits a distorted square-pyramidal geometry with an axial MeCN ligand in a low-spin electronic state. In complexes 2 and 3, the PN ligands lie in a plane leaving the hydride trans to MeCN or chloride, respectively. The redox behavior of the three complexes has been studied by cyclic voltammetry at variable scan rates and by spectroelectrochemistry. A catalytic wave is observed in the presence of trifluoroacetic acid (TFA) at an applied potential close to the Co(II/I) couple of 1. Bulk electrolysis of 1, 2, or 3 at a potential of ca. -1.4 V vs E(Fc+/Fc) in the presence of TFA yields H2 with Faradaic yields close to 100%. A catalytic mechanism is proposed in which the pyridine moiety of a PN ligand acts as a pendant proton donor following opening of the chelate ring. Additional mechanisms may also operate, especially in the presence of high acid concentration where speciation changes.
Collapse
Affiliation(s)
- Khanittha Walaijai
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Stuart A Cavill
- Department of Physics, University of York, York YO10 5DD, United Kingdom
| | - Adrian C Whitwood
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | | - Robin N Perutz
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
30
|
Gretarsdottir JM, Jonsdottir S, Lewis W, Hambley TW, Suman SG. Water-Soluble α-Amino Acid Complexes of Molybdenum as Potential Antidotes for Cyanide Poisoning: Synthesis and Catalytic Studies of Threonine, Methionine, Serine, and Leucine Complexes. Inorg Chem 2020; 59:18190-18204. [PMID: 33249838 DOI: 10.1021/acs.inorgchem.0c02672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Water-soluble complexes are desirable for the aqueous detoxification of cyanide. Molybdenum complexes with α-amino acid and disulfide ligands with the formula K[(L)Mo2O2(μ-S)2(S2)] (L = leu (1), met (2), thr (3), and ser (4)) were synthesized in a reaction of [(DMF)3MoO(μ-S)2(S2)] with deprotonated α-amino acids; leu, met, thr, and ser are the carboxylate anions of l-leucine, l-methionine, l-threonine, and l-serine, respectively. Potassium salts of α-amino acids (leu (1a), met (2a), thr (3a), and ser (4a)) were prepared as precursors for complexes 1-4, respectively, by employing a nonaqueous synthesis route. The ligand exchange reaction of [Mo2O2(μ-S)2(DMF)6](I)2 with deprotonated α-amino acids afforded bis-α-amino acid complexes, [(L)2Mo2O2(μ-S)2] (6-8). A tris-α-amino acid complex, [(leu)2Mo2O2(μ-S)2(μ-leu + H)] (5; leu + H is the carboxylate anion of l-leucine with the amine protonated), formed in the reaction with leucine. 5 crystallized from methanol with a third weakly bonded leucine as a bridging bidentate carboxylate. An adduct of 8 with SCN- coordinated, 9, crystallized and was structurally characterized. Complexes 1-4 are air stable and highly water-soluble chiral molecules. Cytotoxicity studies in the A549 cell line gave IC50 values that range from 80 to 400 μM. Cyclic voltammetry traces of 1-8 show solvent-dependent irreversible electrochemical behavior. Complexes 1-4 demonstrated the ability to catalyze the reaction of thiosulfate and cyanide in vitro to exhaustively transform cyanide to thiocyanate in less than 1 h.
Collapse
Affiliation(s)
| | | | - William Lewis
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Trevor W Hambley
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sigridur G Suman
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| |
Collapse
|
31
|
Wild U, Walter P, Hübner O, Kaifer E, Himmel H. Evaluation of the Synthetic Scope and the Reaction Pathways of Proton-Coupled Electron Transfer with Redox-Active Guanidines in C-H Activation Processes. Chemistry 2020; 26:16504-16513. [PMID: 32893902 PMCID: PMC7756729 DOI: 10.1002/chem.202003424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Indexed: 11/28/2022]
Abstract
Proton-coupled electron transfer (PCET) is currently intensively studied because of its importance in synthetic chemistry and biology. In recent years it was shown that redox-active guanidines are capable PCET reagents for the selective oxidation of organic molecules. In this work, the scope of their PCET reactivity regarding reactions that involve C-H activation is explored and kinetic studies carried out to disclose the reaction mechanisms. Organic molecules with potential up to 1.2 V vs. ferrocenium/ferrocene are efficiently oxidized. Reactions are initiated by electron transfer, followed by slow proton transfer from an electron-transfer equilibrium.
Collapse
Affiliation(s)
- Ute Wild
- Institut für Anorganische ChemieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Petra Walter
- Institut für Anorganische ChemieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Olaf Hübner
- Institut für Anorganische ChemieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Elisabeth Kaifer
- Institut für Anorganische ChemieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Institut für Anorganische ChemieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
32
|
|
33
|
Zhang Q, Wong KMC. Photophysical, ion-sensing and biological properties of rhodamine-containing transition metal complexes. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213336] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Burgos-Castillo RC, Garcia-Mendoza A, Alvarez-Gallego Y, Fransaer J, Sillanpää M, Dominguez-Benetton X. pH Transitions and electrochemical behavior during the synthesis of iron oxide nanoparticles with gas-diffusion electrodes. NANOSCALE ADVANCES 2020; 2:2052-2062. [PMID: 36132494 PMCID: PMC9419531 DOI: 10.1039/c9na00738e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/13/2020] [Indexed: 05/31/2023]
Abstract
Gas diffusion electrocrystallization (GDEx) was explored for the synthesis of iron oxide nanoparticles (IONPs). A gas-diffusion cathode was employed to reduce oxygen, producing hydroxyl ions (OH-) and oxidants (H2O2 and HO2 -), which acted as reactive intermediates for the formation of stable IONPs. The IONPs were mainly composed of pure magnetite. However, their composition strongly depended on the presence of a weak acid, i.e., ammonium chloride (NH4Cl), and on the applied electrode potential. Pure magnetite was obtained due to the simultaneous action of H2O2 and the buffer capacity of the added NH4Cl. Magnetite and goethite were identified as products under different operating conditions. The presence of NH4Cl facilitated an acid-base reaction and, in some cases, led to cathodic deprotonation, forming a surplus of hydrogen peroxide, while adding the weak acid promoted gradual changes in the pH by slightly enhancing H2O2 production when increasing the applied potential. This also resulted in smaller average crystallite sizes as follows: 20.3 ± 0.6 at -0.350 V, 14.7 ± 2.1 at -0.550 and 12.0 ± 2.0 at -0.750 V. GDEx is also demonstrated to be a green, effective, and efficient cathodic process to recover soluble iron to IONPs, being capable of removing >99% of the iron initially present in the solution.
Collapse
Affiliation(s)
- Rutely C Burgos-Castillo
- Separation and Conversion Technologies, Flemish Institute for Technological Research (VITO) Boeretang 200 2400 Mol Belgium
- Department of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology Sammonkatu 12 FI-50130 Mikkeli Finland
| | - Arturo Garcia-Mendoza
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, C.U Mexico City 04510 Mexico
| | - Yolanda Alvarez-Gallego
- Separation and Conversion Technologies, Flemish Institute for Technological Research (VITO) Boeretang 200 2400 Mol Belgium
- SIM vzw Technologiepark 935 BE-9052 Zwijnaarde Belgium
| | - Jan Fransaer
- SIM vzw Technologiepark 935 BE-9052 Zwijnaarde Belgium
- Department of Materials Engineering, Katholieke Universiteit Leuven (KU Leuven) Kasteelpark Arenberg 44 - bus 2450 B-3001 Leuven Belgium
| | - Mika Sillanpää
- Department of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology Sammonkatu 12 FI-50130 Mikkeli Finland
| | - Xochitl Dominguez-Benetton
- Separation and Conversion Technologies, Flemish Institute for Technological Research (VITO) Boeretang 200 2400 Mol Belgium
- SIM vzw Technologiepark 935 BE-9052 Zwijnaarde Belgium
| |
Collapse
|
35
|
Huang T, Rodriguez TM, Gruninger CT, Kurtz DA, Jordan AM, Chen CH, Dempsey JL. Electrosynthetic Route to Cyclopentadienyl Rhenium Hydride Complexes Enabled by Electrochemical Investigations of their Redox-Induced Formation. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tao Huang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Tayliz M. Rodriguez
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Cole T. Gruninger
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Daniel A. Kurtz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Aldo M. Jordan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Chun-Hsing Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jillian L. Dempsey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
36
|
LeBlond T, Dinolfo PH. Density Functional Theory Prediction of the Electrocatalytic Mechanism of Proton Reduction by a Dicobalt Tetrakis(Schiff Base) Macrocycle. Inorg Chem 2020; 59:3764-3774. [PMID: 32133844 DOI: 10.1021/acs.inorgchem.9b03411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A dicobalt tetrakis(Schiff base) macrocycle has recently been reported to electrochemically catalyze the reduction of H+ to H2 in an acetonitrile solution. Density functional theory (DFT) calculations using the ωB97X-D functional are shown to produce structural and thermodynamic results in good agreement with the experimental data. A mechanistic model based on thermodynamics is developed that incorporates electrochemical and magnetic details of the complex, accounting for electron-spin reorganization of the metal center after redox steps. The model is validated through a comparison of the predicted electrochemical potentials with the irreversible cyclic voltammogram of [Co2LAc]+, which shows redox-coupled spin-crossover (RCSCO) behavior for the CoII/III transitions. Using our model, we predict the thermodynamically favored mechanism of H2 evolution by [Co2L]2+ to be one of heterolytic proton attack on a [CoII2L(μ-H)]+ species. Understanding the electronic details and thermodynamically preferred mechanism of this catalyst will aid in improving its efficiency and the future design of bimetallic Co-based H+ electrocatalysts. Also, this work will assist in the future DFT modeling of bimetallic RCSCO complexes.
Collapse
Affiliation(s)
- Tyler LeBlond
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 125 Cogswell Laboratory, 110 Eighth Street, Troy, New York 12180, United States
| | - Peter H Dinolfo
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 125 Cogswell Laboratory, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
37
|
Swords WB, Meyer GJ, Hammarström L. Excited-state proton-coupled electron transfer within ion pairs. Chem Sci 2020; 11:3460-3473. [PMID: 34109019 PMCID: PMC8152629 DOI: 10.1039/c9sc04941j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The use of light to drive proton-coupled electron transfer (PCET) reactions has received growing interest, with recent focus on the direct use of excited states in PCET reactions (ES-PCET). Electrostatic ion pairs provide a scaffold to reduce reaction orders and have facilitated many discoveries in electron-transfer chemistry. Their use, however, has not translated to PCET. Herein, we show that ion pairs, formed solely through electrostatic interactions, provide a general, facile means to study an ES-PCET mechanism. These ion pairs formed readily between salicylate anions and tetracationic ruthenium complexes in acetonitrile solution. Upon light excitation, quenching of the ruthenium excited state occurred through ES-PCET oxidation of salicylate within the ion pair. Transient absorption spectroscopy identified the reduced ruthenium complex and oxidized salicylate radical as the primary photoproducts of this reaction. The reduced reaction order due to ion pairing allowed the first-order PCET rate constants to be directly measured through nanosecond photoluminescence spectroscopy. These PCET rate constants saturated at larger driving forces consistent with approaching the Marcus barrierless region. Surprisingly, a proton-transfer tautomer of salicylate, with the proton localized on the carboxylate functional group, was present in acetonitrile. A pre-equilibrium model based on this tautomerization provided non-adiabatic electron-transfer rate constants that were well described by Marcus theory. Electrostatic ion pairs were critical to our ability to investigate this PCET mechanism without the need to covalently link the donor and acceptor or introduce specific hydrogen bonding sites that could compete in alternate PCET pathways.
Collapse
Affiliation(s)
- Wesley B Swords
- Department of Chemistry, Ångström Laboratories, Uppsala University Box 523 SE75120 Uppsala Sweden .,Department of Chemistry, University of North Carolina at Chapel Hill Chapel Hill 27599 USA
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill Chapel Hill 27599 USA
| | - Leif Hammarström
- Department of Chemistry, Ångström Laboratories, Uppsala University Box 523 SE75120 Uppsala Sweden
| |
Collapse
|
38
|
Tang H, Brothers EN, Grapperhaus CA, Hall MB. Electrocatalytic Hydrogen Evolution and Oxidation with Rhenium Tris(thiolate) Complexes: A Competition between Rhenium and Sulfur for Electrons and Protons. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04579] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hao Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | | | - Craig A. Grapperhaus
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
39
|
Wu ZY, Xue H, Wang T, Guo Y, Meng YS, Li X, Zheng J, Brückner C, Rao G, Britt RD, Zhang JL. Mimicking of Tunichlorin: Deciphering the Importance of a β-Hydroxyl Substituent on Boosting the Hydrogen Evolution Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.9b03985] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhuo-Yan Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Haozong Xue
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Teng Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yanru Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yin-Shan Meng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xingguo Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jie Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Christian Brückner
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Guodong Rao
- Department of Chemistry, University of California Davis, Davis, California 95161, United States
| | - R. David Britt
- Department of Chemistry, University of California Davis, Davis, California 95161, United States
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
40
|
Drosou M, Kamatsos F, Mitsopoulou CA. Recent advances in the mechanisms of the hydrogen evolution reaction by non-innocent sulfur-coordinating metal complexes. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01113g] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review comments on the homogeneous HER mechanisms for catalysts carrying S-non-innocent ligands in the light of experimental and computational data.
Collapse
Affiliation(s)
- Maria Drosou
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- Panepistimiopolis
- Greece
| | - Fotios Kamatsos
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- Panepistimiopolis
- Greece
| | - Christiana A. Mitsopoulou
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- Panepistimiopolis
- Greece
| |
Collapse
|
41
|
Oldacre AN, Young ER. Electrochemical proton-coupled electron transfer of an anthracene-based azo dye. RSC Adv 2020; 10:14804-14811. [PMID: 35497176 PMCID: PMC9052096 DOI: 10.1039/d0ra01643h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/02/2020] [Indexed: 11/21/2022] Open
Abstract
Herein, we report the thermodynamics, kinetics, and mechanism for electrochemical proton-coupled electron transfer involving the anthracene-based azo dye azo-OMe.
Collapse
Affiliation(s)
- Amanda N. Oldacre
- Department of Chemistry
- St. Lawrence University
- New York
- USA
- Department of Chemistry
| | | |
Collapse
|
42
|
Jackson MN, Surendranath Y. Molecular Control of Heterogeneous Electrocatalysis through Graphite Conjugation. Acc Chem Res 2019; 52:3432-3441. [PMID: 31714746 DOI: 10.1021/acs.accounts.9b00439] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The efficient interconversion of electrical and chemical energy requires catalysts capable of accelerating multielectron reactions at or near electrified interfaces. These reactions can be performed at metallic surface sites on heterogeneous electrocatalysts or through redox mediation at molecular electrocatalysts. The relative ease of synthesis and characterization for homogeneous catalysts has allowed for molecular-level control over the active site and permitted systematic tuning of activity and selectivity. Similar control is difficult to achieve with heterogeneous electrocatalysts, because they typically exhibit a distribution of active site geometries and local electronic structures, which are challenging to modify with molecular precision. However, metallic heterogeneous electrocatalysts benefit from a continuum of electronic states that distribute the redox burden of multielectron transformations, enabling more efficient catalysis. We envisioned that we could combine the attractive properties of molecular and heterogeneous catalysts by integrating tunable molecular active sites into the delocalized band states of a conductive solid. The Surendranath group has developed a class of electrocatalysts in which molecules are strongly electronically coupled to graphitic electrodes through a conductive, aromatic pyrazine linkage such that they behave like metallic surface active sites. In this Account, we discuss the dual role of these graphite-conjugated catalysts (GCCs) as a platform with which to answer molecular-level questions of metallic active sites and as a tool with which to fundamentally alter the mechanism and enhance the performance of molecular active sites. We begin by describing the electrochemical and spectroscopic studies that demonstrated that GCC sites behave like metallic active sites rather than simply as redox mediators attached to electrode surfaces. We then discuss how electrochemical studies of a series of graphite-conjugated acids enabled the construction of a molecular model for the thermochemistry of proton-coupled electron transfer reactions at GCC sites based on the pKa of the molecular analogue of the conjugated site and the potential of zero free charge of the electrode. In the final section, we discuss the effects of graphite conjugation on the mechanism and rate of oxygen reduction, hydrogen evolution, and carbon dioxide reduction catalysis across four different GCC platforms involving N-heterocycle, organometallic, and metalloporphyrin active sites. We discuss how molecular-level tuning at graphite-conjugated active sites directly correlates to changes in catalytic activity for the oxygen reduction reaction. We demonstrate that graphite-conjugated porphyrins show enhanced catalytic oxygen reduction activity over amide-linked porphyrins. Lastly, we describe how catalysis at graphite-conjugated sites proceeds through mechanisms involving concerted electron transfer and substrate activation, in stark contrast to the mechanisms observed for molecular analogues. Overall, we showcase how GCCs provide a rich platform for controlling heterogeneous catalysis at the molecular level.
Collapse
Affiliation(s)
- Megan N. Jackson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yogesh Surendranath
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Wild U, Hübner O, Himmel H. Redox-Active Guanidines in Proton-Coupled Electron-Transfer Reactions: Real Alternatives to Benzoquinones? Chemistry 2019; 25:15988-15992. [PMID: 31535741 PMCID: PMC7065378 DOI: 10.1002/chem.201903438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 01/24/2023]
Abstract
Guanidino-functionalized aromatics (GFAs) are readily available, stable organic redox-active compounds. In this work we apply one particular GFA compound, 1,2,4,5-tetrakis(tetramethylguanidino)benzene, in its oxidized form in a variety of oxidation/oxidative coupling reactions to demonstrate the scope of its proton-coupled electron transfer (PCET) reactivity. Addition of an excess of acid boosts its oxidation power, enabling the oxidative coupling of substrates with redox potentials of at least +0.77 V vs. Fc+ /Fc. The green recyclability by catalytic re-oxidation with dioxygen is also shown. Finally, a direct comparison indicates that GFAs are real alternatives to toxic halo- or cyano-substituted benzoquinones.
Collapse
Affiliation(s)
- Ute Wild
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Olaf Hübner
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
44
|
Optimal functionalization of a molecular electrocatalyst for hydride transfer. Proc Natl Acad Sci U S A 2019; 116:22953-22958. [PMID: 31659020 DOI: 10.1073/pnas.1911948116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optimization of hydride transfer (HT) catalysts to enhance rates and selectivities of (photo)electroreduction reactions could be a crucial component of a sustainable chemical industry. Here, we analyze how ring functionalization of the adsorbed transient intermediate 2-pyridinide (2-PyH-*)-predicted to form in situ from pyridine (Py) in acidified water at a cathode surface and to be the key to selective CO2 photoelectroreduction on p-GaP-may enhance catalytic activity. Earlier studies revealed that 2-PyH-*'s instability results from a protonation side reaction producing adsorbed dihydropyridine (DHP*), which is relatively HT-inactive. Reducing the electron density on 2-PyH-* could limit this protonation, with the trade-off that it may become less active for HT from 2-PyH-*-R to CO2 We explore here how Py functionalization affects the electron distribution and in turn tunes the catalytic performance of 2-PyH-*. We indeed find that electron-withdrawing groups could enhance the stability of 2-PyH-* by reducing its electron density on the ring. Furthermore, we find that the change in the number of electrons on the substituting group of the hydride donor is a good descriptor for both the stability against protonation and the magnitude of the HT barrier. We predict that -CH2-CH2F is the best candidate substituent, as it significantly improves the stability of 2-PyH-* with only a small increase in HT barrier. -CH=CH2 and -CH2F also could be promising, although they require further investigation due to a larger HT-barrier increase.
Collapse
|
45
|
Goh YXC, Tang HM, Loke WLJ, Fan WY. Bis(cyclopentadienyl)nickel(II) μ-Thiolato Complexes as Proton Reduction Electrocatalysts. Inorg Chem 2019; 58:12178-12183. [DOI: 10.1021/acs.inorgchem.9b01507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yong Xin Christel Goh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hui Min Tang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wen Liang James Loke
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wai Yip Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
46
|
Jackson MN, Kaminsky CJ, Oh S, Melville JF, Surendranath Y. Graphite Conjugation Eliminates Redox Intermediates in Molecular Electrocatalysis. J Am Chem Soc 2019; 141:14160-14167. [PMID: 31353897 PMCID: PMC6748662 DOI: 10.1021/jacs.9b04981] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The efficient interconversion
of electrical and chemical energy
requires the intimate coupling of electrons and small-molecule substrates
at catalyst active sites. In molecular electrocatalysis, the molecule
acts as a redox mediator which typically undergoes oxidation or reduction
in a separate step from substrate activation. These mediated pathways
introduce a high-energy intermediate, cap the driving force for substrate
activation at the reduction potential of the molecule, and impede
access to high rates at low overpotentials. Here we show that electronically
coupling a molecular hydrogen evolution catalyst to a graphitic electrode
eliminates stepwise pathways and forces concerted electron transfer
and proton binding. Electrochemical and X-ray absorption spectroscopy
data establish that hydrogen evolution catalysis at the graphite-conjugated
Rh molecule proceeds without first reducing the metal center. These
results have broad implications for the molecular-level design of
energy conversion catalysts.
Collapse
Affiliation(s)
- Megan N Jackson
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Corey J Kaminsky
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Seokjoon Oh
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Jonathan F Melville
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Yogesh Surendranath
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
47
|
Wang S, Pullen S, Weippert V, Liu T, Ott S, Lomoth R, Hammarström L. Direct Spectroscopic Detection of Key Intermediates and the Turnover Process in Catalytic H 2 Formation by a Biomimetic Diiron Catalyst. Chemistry 2019; 25:11135-11140. [PMID: 31210385 DOI: 10.1002/chem.201902100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 11/08/2022]
Abstract
[FeFe(Cl2 -bdt)(CO)6 ] (1; Cl2 -bdt=3,6-dichlorobenzene-1,2-dithiolate), inspired by the active site of FeFe-hydrogenase, shows a chemically reversible 2 e- reduction at -1.20 V versus the ferrocene/ferrocenium couple. The rigid and aromatic bdt bridging ligand lowers the reduction potential and stabilizes the reduced forms, compared with analogous complexes with aliphatic dithiolates; thus allowing details of the catalytic process to be characterized. Herein, time-resolved IR spectroscopy is used to provide kinetic and structural information on key catalytic intermediates. This includes the doubly reduced, protonated complex 1H- , which has not been previously identified experimentally. In addition, the first direct spectroscopic observation of the turnover process for a molecular H2 evolving catalyst is reported, allowing for straightforward determination of the turnover frequency.
Collapse
Affiliation(s)
- Shihuai Wang
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Sonja Pullen
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden.,Current Address: Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Str. 6, 44227, Dortmund, Germany
| | - Valentin Weippert
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Tianfei Liu
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Reiner Lomoth
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Leif Hammarström
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| |
Collapse
|
48
|
Sandford C, Edwards MA, Klunder KJ, Hickey DP, Li M, Barman K, Sigman MS, White HS, Minteer SD. A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms. Chem Sci 2019; 10:6404-6422. [PMID: 31367303 PMCID: PMC6615219 DOI: 10.1039/c9sc01545k] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
Monitoring reactive intermediates can provide vital information in the study of synthetic reaction mechanisms, enabling the design of new catalysts and methods. Many synthetic transformations are centred on the alteration of oxidation states, but these redox processes frequently pass through intermediates with short life-times, making their study challenging. A variety of electroanalytical tools can be utilised to investigate these redox-active intermediates: from voltammetry to in situ spectroelectrochemistry and scanning electrochemical microscopy. This perspective provides an overview of these tools, with examples of both electrochemically-initiated processes and monitoring redox-active intermediates formed chemically in solution. The article is designed to introduce synthetic organic and organometallic chemists to electroanalytical techniques and their use in probing key mechanistic questions.
Collapse
Affiliation(s)
- Christopher Sandford
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Martin A Edwards
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Kevin J Klunder
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - David P Hickey
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Min Li
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Koushik Barman
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Matthew S Sigman
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Henry S White
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| | - Shelley D Minteer
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA . ; ;
| |
Collapse
|
49
|
Child SN, Raychev R, Moss N, Howchen B, Horton PN, Prior CC, Oganesyan VS, Fielden J. Cobalt-based molecular electrocatalysis of nitrile reduction: evolving sustainability beyond hydrogen. Dalton Trans 2019; 48:9576-9580. [PMID: 31184345 DOI: 10.1039/c9dt00773c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two new cobalt bis-iminopyridines, [Co(DDP)(H2O)2](NO3)2 (1, DDP = cis-[1,3-bis(2-pyridinylenamine)] cyclohexane) and [Co(cis-DDOP)(NO3)](NO3) (2, cis-DDOP = cis-3,5-bis[(2-Pyridinyleneamin]-trans-hydroxycyclohexane) electrocatalyse the 4-proton, 4-electron reduction of acetonitrile to ethylamine. For 1, this reduction occurs in preference to reduction of protons to H2. A coordinating hydroxyl proton relay in 2 reduces the yield of ethylamine and biases the catalytic system back towards H2.
Collapse
Affiliation(s)
- Simon N Child
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Gueret R, Castillo CE, Rebarz M, Thomas F, Sliwa M, Chauvin J, Dautreppe B, Pécaut J, Fortage J, Collomb MN. Cobalt(II) Pentaaza-Macrocyclic Schiff Base Complex as Catalyst for Light-Driven Hydrogen Evolution in Water: Electrochemical Generation and Theoretical Investigation of the One-Electron Reduced Species. Inorg Chem 2019; 58:9043-9056. [DOI: 10.1021/acs.inorgchem.9b00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Robin Gueret
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | | | - Mateusz Rebarz
- Université de Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000 Lille, France
| | | | - Michel Sliwa
- Université de Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000 Lille, France
| | | | - Baptiste Dautreppe
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- Univ. Grenoble Alpes, CEA, CNRS, IRI, SYMMES 38000 Grenoble, France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, IRI, SYMMES 38000 Grenoble, France
| | | | | |
Collapse
|