1
|
Weber JL, Mejía CH, de Jong KP, de Jongh PE. Recent advances in bifunctional synthesis gas conversion to chemicals and fuels with a comparison to monofunctional processes. Catal Sci Technol 2024; 14:4799-4842. [PMID: 39206322 PMCID: PMC11347923 DOI: 10.1039/d4cy00437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
In order to meet the climate goals of the Paris Agreement and limit the potentially catastrophic consequences of climate change, we must move away from the use of fossil feedstocks for the production of chemicals and fuels. The conversion of synthesis gas (a mixture of hydrogen, carbon monoxide and/or carbon dioxide) can contribute to this. Several reactions allow to convert synthesis gas to oxygenates (such as methanol), olefins or waxes. In a consecutive step, these products can be further converted into chemicals, such as dimethyl ether, short olefins, or aromatics. Alternatively, fuels like gasoline, diesel, or kerosene can be produced. These two different steps can be combined using bifunctional catalysis for direct conversion of synthesis gas to chemicals and fuels. The synergistic effects of combining two different catalysts are discussed in terms of activity and selectivity and compared to processes based on consecutive reaction with single conversion steps. We found that bifunctional catalysis can be a strong tool for the highly selective production of dimethyl ether and gasoline with high octane numbers. In terms of selectivity bifunctional catalysis for short olefins or aromatics struggles to compete with processes consisting of single catalytic conversion steps.
Collapse
Affiliation(s)
- J L Weber
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| | - C Hernández Mejía
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| | - K P de Jong
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| | - P E de Jongh
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| |
Collapse
|
2
|
Jeske K, Kizilkaya AC, López-Luque I, Pfänder N, Bartsch M, Concepción P, Prieto G. Design of Cobalt Fischer-Tropsch Catalysts for the Combined Production of Liquid Fuels and Olefin Chemicals from Hydrogen-Rich Syngas. ACS Catal 2021; 11:4784-4798. [PMID: 33889436 PMCID: PMC8056389 DOI: 10.1021/acscatal.0c05027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/05/2021] [Indexed: 11/30/2022]
Abstract
Adjusting hydrocarbon product distributions in the Fischer-Tropsch (FT) synthesis is of notable significance in the context of so-called X-to-liquids (XTL) technologies. While cobalt catalysts are selective to long-chain paraffin precursors for synthetic jet- and diesel-fuels, lighter (C10-) alkane condensates are less valuable for fuel production. Alternatively, iron carbide-based catalysts are suitable for the coproduction of paraffinic waxes alongside liquid (and gaseous) olefin chemicals; however, their activity for the water-gas-shift reaction (WGSR) is notoriously detrimental when hydrogen-rich syngas feeds, for example, derived from (unconventional) natural gas, are to be converted. Herein the roles of pore architecture and oxide promoters of Lewis basic character on CoRu/Al2O3 FT catalysts are systematically addressed, targeting the development of catalysts with unusually high selectivity to liquid olefins. Both alkali and lanthanide oxides lead to a decrease in turnover frequency. The latter, particularly PrO x , prove effective to boost the selectivity to liquid (C5-10) olefins without undesired WGSR activity. In situ CO-FTIR spectroscopy suggests a dual promotion via both electronic modification of surface Co sites and the inhibition of Lewis acidity on the support, which has direct implications for double-bond isomerization reactivity and thus the regioisomery of liquid olefin products. Density functional theory calculations ascribe oxide promotion to an enhanced competitive adsorption of molecular CO versus hydrogen and olefins on oxide-decorated cobalt surfaces, dampening (secondary) olefin hydrogenation, and suggest an exacerbated metal surface carbophilicity to underlie the undesired induction of WGSR activity by strongly electron-donating alkali oxide promoters. Enhanced pore molecular transport within a multimodal meso-macroporous architecture in combination with PrO x as promoter, at an optimal surface loading of 1 Prat nm-2, results in an unconventional product distribution, reconciling benefits intrinsic to Co- and Fe-based FT catalysts, respectively. A chain-growth probability of 0.75, and thus >70 C% selectivity to C5+ products, is achieved alongside lighter hydrocarbon (C5-10) condensates that are significantly enriched in added-value chemicals (67 C%), predominantly α-olefins but also linear alcohols, remarkably with essentially no CO2 side-production (<1%). Such unusual product distributions, integrating precursors for synthetic fuels and liquid platform chemicals, might be desired to diversify the scope and improve the economics of small-scale gas- and biomass-to-liquid processes.
Collapse
Affiliation(s)
- Kai Jeske
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Ali Can Kizilkaya
- Department of Chemical Engineering, Izmir Institute of Technology, Gülbahçe Kampüsü, 35430 Izmir, Turkey
| | - Iván López-Luque
- ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Norbert Pfänder
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße, 45470 Mülheim an der Ruhr, Germany
| | - Mathias Bartsch
- Faculty of Physics and CENIDE, Universität Duisburg-Essen, 47048 Duisburg, Germany
| | - Patricia Concepción
- ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Gonzalo Prieto
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
3
|
Kirsch H, Sommer U, Pfeifer P, Dittmeyer R. Power-to-fuel conversion based on reverse water-gas-shift, Fischer-Tropsch Synthesis and Hydrocracking: Mathematical modeling and simulation in Matlab/Simulink. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Zhang Q, Yu J, Corma A. Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002927. [PMID: 32697378 DOI: 10.1002/adma.202002927] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Indexed: 05/21/2023]
Abstract
C1 chemistry, which is the catalytic transformation of C1 molecules including CO, CO2 , CH4 , CH3 OH, and HCOOH, plays an important role in providing energy and chemical supplies while meeting environmental requirements. Zeolites are highly efficient solid catalysts used in the chemical industry. The design and development of zeolite-based mono-, bi-, and multifunctional catalysts has led to a booming application of zeolite-based catalysts to C1 chemistry. Combining the advantages of zeolites and metallic catalytic species has promoted the catalytic production of various hydrocarbons (e.g., methane, light olefins, aromatics, and liquid fuels) and oxygenates (e.g., methanol, dimethyl ether, formic acid, and higher alcohols) from C1 molecules. The key zeolite descriptors that influence catalytic performance, such as framework topologies, nanoconfinement effects, Brønsted acidities, secondary-pore systems, particle sizes, extraframework cations and atoms, hydrophobicity and hydrophilicity, and proximity between acid and metallic sites are discussed to provide a deep understanding of the significance of zeolites to C1 chemistry. An outlook regarding challenges and opportunities for the conversion of C1 resources using zeolite-based catalysts to meet emerging energy and environmental demands is also presented.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, València, 46022, Spain
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, València, 46022, Spain
| |
Collapse
|
5
|
Kirsch H, Brübach L, Loewert M, Riedinger M, Gräfenhahn A, Böltken T, Klumpp M, Pfeifer P, Dittmeyer R. CO
2
‐neutrale Fischer‐Tropsch‐Kraftstoffe aus dezentralen modularen Anlagen: Status und Perspektiven. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.201900120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hannah Kirsch
- Karlsruher Institut für Technologie (KIT)Institut für Mikroverfahrenstechnik Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Lucas Brübach
- Karlsruher Institut für Technologie (KIT)Institut für Mikroverfahrenstechnik Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Marcel Loewert
- Karlsruher Institut für Technologie (KIT)Institut für Mikroverfahrenstechnik Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Michael Riedinger
- Karlsruher Institut für Technologie (KIT)Institut für Mikroverfahrenstechnik Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Alexander Gräfenhahn
- Karlsruher Institut für Technologie (KIT)Institut für Mikroverfahrenstechnik Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Tim Böltken
- INERATEC GmbH Siemensallee 84 76187 Karlsruhe Deutschland
| | - Michael Klumpp
- Karlsruher Institut für Technologie (KIT)Institut für Mikroverfahrenstechnik Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Peter Pfeifer
- Karlsruher Institut für Technologie (KIT)Institut für Mikroverfahrenstechnik Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- INERATEC GmbH Siemensallee 84 76187 Karlsruhe Deutschland
| | - Roland Dittmeyer
- Karlsruher Institut für Technologie (KIT)Institut für Mikroverfahrenstechnik Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
6
|
Wang H, Huang S, Wang J, Zhao Q, Wang Y, Wang Y, Ma X. Effect of Ca Promoter on the Structure and Catalytic Behavior of FeK/Al
2
O
3
Catalyst in Fischer‐Tropsch Synthesis. ChemCatChem 2019. [DOI: 10.1002/cctc.201900501] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hongyu Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Shouying Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Jian Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Qiao Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Yifei Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Yue Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| |
Collapse
|
7
|
Kim MY, Kim JK, Lee ME, Lee S, Choi M. Maximizing Biojet Fuel Production from Triglyceride: Importance of the Hydrocracking Catalyst and Separate Deoxygenation/Hydrocracking Steps. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01326] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Myoung Yeob Kim
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae-Kon Kim
- Alternative Fuel R&D Team, Korea Petroleum Quality & Distribution Authority, Cheongju-City, Chungcheongbuk-do 28115, Republic of Korea
| | - Mi-Eun Lee
- Alternative Fuel R&D Team, Korea Petroleum Quality & Distribution Authority, Cheongju-City, Chungcheongbuk-do 28115, Republic of Korea
| | - Songhyun Lee
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Minkee Choi
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Duyckaerts N, Bartsch M, Trotuş IT, Pfänder N, Lorke A, Schüth F, Prieto G. Intermediate Product Regulation in Tandem Solid Catalysts with Multimodal Porosity for High-Yield Synthetic Fuel Production. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Nicolas Duyckaerts
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Mathias Bartsch
- Faculty of Physics and CENIDE; Universität Duisburg-Essen; Forsthausweg 2 Duisburg Germany
| | - Ioan-Teodor Trotuş
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Norbert Pfänder
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstrasse 34-36 45470 Mülheim an der Ruhr Germany
| | - Axel Lorke
- Faculty of Physics and CENIDE; Universität Duisburg-Essen; Forsthausweg 2 Duisburg Germany
| | - Ferdi Schüth
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Gonzalo Prieto
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
9
|
Intermediate Product Regulation in Tandem Solid Catalysts with Multimodal Porosity for High-Yield Synthetic Fuel Production. Angew Chem Int Ed Engl 2017; 56:11480-11484. [DOI: 10.1002/anie.201705714] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Indexed: 11/07/2022]
|
10
|
Halmenschlager CM, Brar M, Apan IT, de Klerk A. Oligomerization of Fischer–Tropsch Tail Gas over H-ZSM-5. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b03861] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cibele Melo Halmenschlager
- Department of Chemical and
Materials Engineering, University of Alberta, 9211 − 116th Street, Edmonton, Alberta T6G 1H9, Canada
| | - Maganjot Brar
- Department of Chemical and
Materials Engineering, University of Alberta, 9211 − 116th Street, Edmonton, Alberta T6G 1H9, Canada
| | - Ioan Tudor Apan
- Department of Chemical and
Materials Engineering, University of Alberta, 9211 − 116th Street, Edmonton, Alberta T6G 1H9, Canada
| | - Arno de Klerk
- Department of Chemical and
Materials Engineering, University of Alberta, 9211 − 116th Street, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|