1
|
Katsiev K, Idriss H. Study of rutile TiO 2(110) single crystal by transient absorption spectroscopy in the presence of Ce 4+cations in aqueous environment. Implication on water splitting. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:325002. [PMID: 38701829 DOI: 10.1088/1361-648x/ad4763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Ce4+cations are commonly used as electron acceptors during the water oxidation to O2reaction over Ir- and Ru-based catalysts. They can also be reduced to Ce3+cations by excited electrons from the conduction band of an oxide semiconductor with a suitable energy level. In this work, we have studied their interaction with a rutile TiO2(110) single crystal upon band gap excitation by femtosecond transient absorption spectroscopy (TAS) in solution in the 350-900 nm range and up to 3.5 ns. Unlike excitation in the presence of water alone the addition of Ce4+resulted in a clear ground-state bleaching (GSB) signal at the band gap energy of TiO2(ca. 400 nm) with a time constantt= 4-5 ps. This indicated that the Ce4+cations presence has quenched the e-h recombination rate when compared to water alone. In addition to GSB, two positive signals are observed and are attributed to trapped holes (in the visible region, 450-550 nm) and trapped electrons in the IR region (>700 nm). Contrary to expectation, the lifetime of the positive signal between 450 and 550 nm decreased with increasing concentrations of Ce4+. We attribute the decrease in the lifetime of this signal to electrostatic repulsion between Ce4+at the surface of TiO2(110) and positively charged trapped holes. It was also found that at the very short time scale (<2-3 ps) the fast decaying TAS signal of excited electrons in the conduction band is suppressed because of the presence of Ce4+cations. Results point out that the presence of Ce4+cations increases the residence time (mobility) of excited electrons and holes at the conduction band and valence band energy levels (instead of being trapped). This might provide further explanations for the enhanced reaction rate of water oxidation to O2in the presence of Ce4+cations.
Collapse
Affiliation(s)
- K Katsiev
- Surface Science and Advanced Characterization, SABIC-CRD at KAUST, Thuwal 23955, Saudi Arabia
| | - H Idriss
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Xie J, Li X, Guo J, Luo L, Delgado JJ, Martsinovich N, Tang J. Highly selective oxidation of benzene to phenol with air at room temperature promoted by water. Nat Commun 2023; 14:4431. [PMID: 37481611 PMCID: PMC10363151 DOI: 10.1038/s41467-023-40160-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2022] [Accepted: 07/12/2023] [Indexed: 07/24/2023] Open
Abstract
Phenol is one of the most important fine chemical intermediates in the synthesis of plastics and drugs with a market size of ca. $30b1 and the commercial production is via a two-step selective oxidation of benzene, requiring high energy input (high temperature and high pressure) in the presence of a corrosive acidic medium, and causing serious environmental issues2-5. Here we present a four-phase interface strategy with well-designed Pd@Cu nanoarchitecture decorated TiO2 as a catalyst in a suspension system. The optimised catalyst leads to a turnover number of 16,000-100,000 for phenol generation with respect to the active sites and an excellent selectivity of ca. 93%. Such unprecedented results are attributed to the efficient activation of benzene by the atomically Cu coated Pd nanoarchitecture, enhanced charge separation, and an oxidant-lean environment. The rational design of catalyst and reaction system provides a green pathway for the selective conversion of symmetric organic molecules.
Collapse
Affiliation(s)
- Jijia Xie
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
- Sinopec Beijing Research Institute of Chemical Industry, Sinopec Group, Beijing, 100013, China
| | - Xiyi Li
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Jian Guo
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- College of Physics, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Lei Luo
- Key Lab of Synthetic and Natural Functional, Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Juan J Delgado
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
- IMEYMAT, Instituto de Microscopía Electrónica y Materiales, Puerto Real, 11510, Spain
| | | | - Junwang Tang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
- Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Li A, Kan E, Chen S, Du Z, Liu X, Wang T, Zhu W, Huo H, Ma J, Liu D, Song L, Feng H, Antonietti M, Gong J. Enabling High Loading in Single-Atom Catalysts on Bare Substrate with Chemical Scissors by Saturating the Anchoring Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200073. [PMID: 35257478 DOI: 10.1002/smll.202200073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/05/2022] [Revised: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Atomically dispersed metal catalysts often exhibit high catalytic performances, but the metal loading density must be kept low to avoid the formation of metal nanoparticles, making it difficult to improve the overall activity. Diverse strategies based on creating more anchoring sites (ASs) have been adopted to elevate the loading density. One problem of such traditional methods is that the single atoms always gather together before the saturation of all ASs. Here, a chemical scissors strategy is developed by selectively removing unwanted metallic materials after excessive loading. Different from traditional ways, the chemical scissors strategy places more emphasis on the accurate matching between the strength of etching agent and the bond energies of metal-metal/metal-substrate, thus enabling a higher loading up to 2.02 wt% even on bare substrate without any pre-treatment (the bare substrate without any pre-treatment generally only has a few ASs for single atom loading). It can be inferred that by combining with other traditional methods which can create more ASs, the loading could be further increased by saturating ASs. When used for CH3 OH generation via photocatalytic CO2 reduction, the as-made single-atom catalyst exhibits impressive catalytic activity of 597.8 ± 144.6 µmol h-1 g-1 and selectivity of 81.3 ± 3.8%.
Collapse
Affiliation(s)
- Ang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing, 210094, P. R. China
| | - Erjun Kan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing, 210094, P. R. China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Zhengwei Du
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing, 210094, P. R. China
| | - Xuan Liu
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing, 210094, P. R. China
| | - Tongyu Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing, 210094, P. R. China
| | - Wenjin Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Hailing Huo
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing, 210094, P. R. China
| | - Jingjing Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Ningxia, 750021, P. R. China
| | - Dong Liu
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing, 210094, P. R. China
| | - Li Song
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Hao Feng
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing, 210094, P. R. China
| | - Markus Antonietti
- Department of Colloids Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
4
|
Zhou Y, Qin H, Fang S, Wang Y, Li J, Mele G, Wang C. Photocatalytic hydrogen evolution over Pt–Pd dual atom sites anchored on TiO 2 nanosheets. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01314b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
The defective TiO2 nanosheets (Vo-TiO2) supported dual atomic catalyst (Pt–Pd SAs/Vo-TiO2) to product hydrogen.
Collapse
Affiliation(s)
- Yaxin Zhou
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi'an, 710069, China
| | - Hao Qin
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi'an, 710069, China
| | - Sihan Fang
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi'an, 710069, China
| | - Yangyang Wang
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi'an, 710069, China
| | - Jun Li
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, School of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Giuseppe Mele
- Department of Engineering for Innovation, University of Salento, Via Arnesano, 73100 Lecce, Italy
| | - Chen Wang
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi'an, 710069, China
| |
Collapse
|
5
|
Sun Y, Li Y, Li Z, Zhang D, Qiao W, Li Y, Niemantsverdriet H, Yin W, Su R. Flat and Stretched Delafossite α-AgGaO 2: Manipulating Redox Chemistry under Visible Light. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yue Sun
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy, Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou District, Beijing 101407, China
| | - Yajiao Li
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy, Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Zhihao Li
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy, Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Dongsheng Zhang
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy, Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou District, Beijing 101407, China
| | - Wei Qiao
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy, Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yongwang Li
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou District, Beijing 101407, China
| | - Hans Niemantsverdriet
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou District, Beijing 101407, China
- SynCat@DIFFER, Syngaschem BV, 6336 HH Eindhoven, The Netherlands
| | - Wanjian Yin
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy, Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Ren Su
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy, Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou District, Beijing 101407, China
| |
Collapse
|
6
|
High-Performance Pd/AC Catalyst for Meropenem Synthesis Based on Selective Surface Modification of Activated Carbon. Catal Letters 2021. [DOI: 10.1007/s10562-021-03783-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/20/2022]
|
7
|
Zhu C, Xian Q, He Q, Chen C, Zou W, Sun C, Wang S, Duan X. Edge-Rich Bicrystalline 1T/2H-MoS 2 Cocatalyst-Decorated {110} Terminated CeO 2 Nanorods for Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35818-35827. [PMID: 34310105 DOI: 10.1021/acsami.1c09651] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
Developing all-solid-state Z-scheme systems with highly active photocatalysts are of huge interest in realizing long-term solar-to-fuel conversion. Here we reported an innovative hybrid of {110}-oriented CeO2 nanorods with edge-enriched bicrystalline 1T/2H-MoS2 coupling as efficient photocatalysts for water splitting. In the composites, the metallic 1T phase acts as an excellent solid state electron mediator in the Z-scheme, while the 2H phase and CeO2 are the adsorption sites of the photosensitizer and reactant (H2O), respectively. Through optimal structure and phase engineering, 1T/2H-MoS2@CeO2 heterojunctions simultaneously achieve high charge separation efficiency, proliferated density of exposed active sites, and excellent affinity to reactant molecules, reaching a superior hydrogen evolution rate of 73.1 μmol/h with an apparent quantum yield of 8.2% at 420 nm. Furthermore, density functional theory calculations show that 1T/2H-MoS2@CeO2 possesses the advantages of intensive electronic interaction from the built-in electric field (negative MoS2 and positive charged CeO2) and reduced H2O adsorption/dissociation energies. This work sheds light on the design of on-demand noble-metal-free Z-scheme heterostructures for solar energy conversion.
Collapse
Affiliation(s)
- Chengzhang Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Qiuying He
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Chuanxiang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Weixin Zou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
- Jiangsu Key Laboratory of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
8
|
Zhao Z, Liu J, Sa G, Xu A. Electronic properties and photodegradation ability of Nd-TiO2 for phenol. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/20/2022]
|
9
|
Influence of Photo-Deposited Pt and Pd onto Chromium Doped TiO2 Nanotubes in Photo-Electrochemical Water Splitting for Hydrogen Generation. Catalysts 2021. [DOI: 10.3390/catal11020212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023] Open
Abstract
Hydrogen (H2) is considered as an ideal fuel for the future. The photo-electrochemical (PEC) water splitting employing semiconducting materials and induced irradiation, preferably of solar spectrum, presents a viable route for H2 production. In this work, self-ordered chromium-doped TiO2 nanotube (CT) was fabricated using in-situ electro-anodization. CT surface modification was then performed by photo-deposition of Pt and Pd particles, producing Pt-CT and Pd-CT catalysts, respectively. Their morphological features, crystallinity, surface composition, and optical absorption have been inspected by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), Raman, and UV–vis absorption spectroscopy. Linear sweep voltammetry, chronoamperometry, and open circuit potential methods have been applied to study PEC activities of Pt-CT and Pd-CT catalysts in a form of electrodes. It was found that Pt-CT and Pd-CT electrodes possess excellent photo-generated electron/hole (e−/h+) separation and transport properties. The enhanced photocurrent responses of 4 and 3 times more than that of CT are revealed for Pt-CT and Pd-CT, respectively. The activity of as-prepared Pt-CT and Pd-CT catalysts was then tested for H2 generation. The maximum amount of the evolved H2 followed decreasing order: 1.08 > 0.65 > 0.26 mL cm−2 h−1 for Pt-CT, Pd-CT, and CT electrodes, respectively, clearly showing the positive contribution of photo-deposited (nano)particles onto CT surface.
Collapse
|
10
|
Wang T, Tao X, Li X, Zhang K, Liu S, Li B. Synergistic Pd Single Atoms, Clusters, and Oxygen Vacancies on TiO 2 for Photocatalytic Hydrogen Evolution Coupled with Selective Organic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006255. [PMID: 33325647 DOI: 10.1002/smll.202006255] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/08/2020] [Revised: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Developing efficient photocatalysts for synchronously producing H2 and high value-added chemicals holds great promise to enhance solar energy conversion. Herein, a facile strategy of simultaneously engineering Pd cocatalyst and oxygen vacancies (VO s) on TiO2 to promote H2 production coupled with selective oxidation of benzylamine is demonstrated. The optimized PdSA+C /TiO2 -VO photocatalyst containing Pd single atoms (SAs), clusters (C), and VO s exhibits much superior performance to those of TiO2 -VO and PdSA /TiO2 -VO counterparts. The production rates of H2 and N-benzylidenebenzylamine over PdSA+C /TiO2 -VO are 52.7 and 1.5 times those over TiO2 -VO , respectively. Both experimental and theoretical studies have elucidated the synergistic effect of Pd SAs, clusters, and VO s on TiO2 in boosting the photocatalytic reaction. The presence of Pd SAs facilitates the generation and stabilization of abundant VO s by the formation of PdOTi3+ atomic interface, while Pd clusters promote the photogenerated charge separation and afford the optimum active sites for H2 evolution. Surface VO s of TiO2 guarantee the efficient adsorption and dissociation/activation of reactant molecules. This study reveals the effect of active-site engineering on the photocatalysis and is expected to shed substantial light on future structure design and modulation of semiconductor photocatalysts.
Collapse
Affiliation(s)
- Ting Wang
- Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xueqin Tao
- Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xiaoli Li
- Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Kun Zhang
- Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Shoujie Liu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Benxia Li
- Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
11
|
Holm A, Goodman ED, Stenlid JH, Aitbekova A, Zelaya R, Diroll BT, Johnston-Peck AC, Kao KC, Frank CW, Pettersson LGM, Cargnello M. Nanoscale Spatial Distribution of Supported Nanoparticles Controls Activity and Stability in Powder Catalysts for CO Oxidation and Photocatalytic H 2 Evolution. J Am Chem Soc 2020; 142:14481-14494. [PMID: 32786792 PMCID: PMC7924732 DOI: 10.1021/jacs.0c03842] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
Abstract
Supported metal nanoparticles are essential components of high-performing catalysts, and their structures are intensely researched. In comparison, nanoparticle spatial distribution in powder catalysts is conventionally not quantified, and the influence of this collective property on catalyst performance remains poorly investigated. Here, we demonstrate a general colloidal self-assembly method to control uniformity of nanoparticle spatial distribution on common industrial powder supports. We quantify distributions on the nanoscale using image statistics and show that the type of nanospatial distribution determines not only the stability, but also the activity of heterogeneous catalysts. Widely investigated systems (Au-TiO2 for CO oxidation thermocatalysis and Pd-TiO2 for H2 evolution photocatalysis) were used to showcase the universal importance of nanoparticle spatial organization. Spatially and temporally resolved microkinetic modeling revealed that nonuniformly distributed Au nanoparticles suffer from local depletion of surface oxygen, and therefore lower CO oxidation activity, as compared to uniformly distributed nanoparticles. Nanoparticle spatial distribution also determines the stability of Pd-TiO2 photocatalysts, because nonuniformly distributed nanoparticles sinter while uniformly distributed nanoparticles do not. This work introduces new tools to evaluate and understand catalyst collective (ensemble) properties in powder catalysts, which thereby pave the way to more active and stable heterogeneous catalysts.
Collapse
Affiliation(s)
- Alexander Holm
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305, USA
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Emmett D. Goodman
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305, USA
| | - Joakim Halldin Stenlid
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aisulu Aitbekova
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305, USA
| | - Rosadriana Zelaya
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305, USA
| | - Benjamin T. Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, USA
| | - Aaron C. Johnston-Peck
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Kun-Che Kao
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305, USA
| | - Curtis W. Frank
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Lars G. M. Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Matteo Cargnello
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Xu Q, Li E, Zhao R, Liang T, Zhang H, Hu W, Zhang N. Preparation of organic porous materials-TiO2/cu composite with excellent photocatalytic degradation performances toward degradation of organic pollutants in wastewater. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02163-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023]
|
13
|
Porous Polymer-Titanium Dioxide/Copper Composite with Improved Photocatalytic Activity toward Degradation of Organic Pollutants in Wastewater: Fabrication and Characterization as Well as Photocatalytic Activity Evaluation. Catalysts 2020. [DOI: 10.3390/catal10030310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
Titanium dioxide (TiO2) and TiO2/copper (denoted as TC) composite were prepared via hydrothermal process. In the meantime, divinylbenzene (DVB) and bismaleimide (BMI) monomers were allowed to participate in in-situ radical polymerization in the presence of azobisisobutyronitrile (AIBN) initiator to afford porous polymers (abridged as PP). The as-obtained PP were mixed together with tetrabutyl titanate (TBT) and CuSO4·5H2O in vacuum to obtain PP/TC composite (denoted as PPTC) containing incorporated TC composite in the pores of PP. The as-prepared TiO2, TC, and PPTC were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, fluorescence spectrometry, and electron spin resonance spectrometry, and so on. Furthermore, their photocatalytic activity for the degradation of N,N-dimethylformamide, methyl orange, phenol, and methylene blue under the irradiation of simulated sunlight (Xe lamp light) and natural sunlight were investigated. Findings indicated that, whether under simulated sunlight or nature sunlight irradiation, PPTC exhibited much better photocatalytic performance than TiO2 and TC for the degradation of the tested organic pollutants. Particularly, it allowed N,N-dimethylformamide (DMF) to be degraded by a rate of 73.7% under simulated sunlight irradiation and it retained photocatalytic activity even after six cycles of reuse, exhibiting promising potential for the removal of organic pollutants in wastewater (including industrial water, aquaculture wastewater, and domestic sewage). The desired photocatalytic performance of the as-prepared PPTC is attributed to two aspects. Namely, the incorporation of Cu2+ into the fine structure of TiO2 contributes to increasing photocatalyst activity and producing more free radical while the embedding of TC composite into the PP pores improves to the contact area between the photocatalyst and organic pollutants, and both are beneficial for improving the adsorption capacity and activity of the photocatalyst, thereby enhancing the degradation of the organic pollutants.
Collapse
|
14
|
Abstract
A series of Ag/Pd/m-BiVO4 (monoclinic) bimetallic photocatalytic materials with different loading amounts and different mass ratios of Ag and Pd were synthesized by a hydrothermal method and an NaBH4 reduction method. The Ag/Pd/m-BiVO4 photocatalyst with a total Ag and Pd loading of 2 wt% and an Ag-to-Pd mass ratio of 2:1 can selectively oxidize benzyl alcohol to benzaldehyde under visible light irradiation, the conversion rate was up to 89.9%, and the selectivity was greater than 99%. The conversion rate on Ag/Pd/m-BiVO4 was higher than those on Ag/m-BiVO4 and Pd/m-BiVO4. The photocatalysts were characterized by X-ray powder diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, N2 adsorption-desorption isothermal curves (BET) and other means. The effects of different light wavelengths and light intensities were compared. Then, the effects of different alcohol derivatives on the reactions were explored. The cycle experiments proved that the Ag/Pd/m-BiVO4 photocatalyst had good light stability and thermal stability. In addition, the capturing experiment of active species shows that the selective oxidation of benzyl alcohol is mainly accomplished through the synergistic action of h+, e−, •OH and •O2−.
Collapse
|
15
|
Schechtel E, Dören R, Frerichs H, Panthöfer M, Mondeshki M, Tremel W. Mixed Ligand Shell Formation upon Catechol Ligand Adsorption on Hydrophobic TiO 2 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12518-12531. [PMID: 31487189 DOI: 10.1021/acs.langmuir.9b02496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
Modifying the surfaces of metal oxide nanoparticles (NPs) with monolayers of ligands provides a simple and direct method to generate multifunctional coatings by altering their surface properties. This works best if the composition of the monolayers can be controlled. Mussel-inspired, noninnocent catecholates stand out from other ligands like carboxylates and amines because they are redox-active and allow for highly efficient surface binding and enhanced electron transfer to the surface. However, a comprehensive understanding of their surface chemistry, including surface coverage and displacement of the native ligand, is still lacking. Here, we unravel the displacement of oleate (OA) ligands on hydrophobic, OA-stabilized TiO2 NPs by catecholate ligands using a combination of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy techniques. Conclusive pictures of the ligand shells before and after surface modification with catecholate were obtained by 1H and 13C NMR spectroscopy (the 13C chemical shift being more sensitive and with a broader range). The data could be explained using a Langmuir-type approach. Gradual formation of a mixed ligand shell was observed, and the surface processes of catecholate adsorption and OA desorption were quantified. Contrary to the prevailing view, catecholate displaces only a minor fraction (∼20%) of the native OA ligand shell. At the same time, the total ligand density more than doubled from 2.3 nm-2 at native oleate coverage to 4.8 nm-2 at maximum catecholate loading. We conclude that the catecholate ligand adsorbs preferably to unoccupied Ti surface sites rather than replacing native OA ligands. This unexpected behavior, reminiscent of the Vroman effect for protein corona formation, appears to be a fundamental feature in the widely used surface modification of hydrophobic metal oxide NPs with catecholate ligands. Moreover, our findings show that ligand displacement on OA-capped TiO2 NPs is not suited for a full ligand shell refunctionalization because it produces only mixed ligand shells. Therefore, our results contribute to a better understanding and performance of photocatalytic applications based on catecholate ligand-sensitized TiO2 NPs.
Collapse
Affiliation(s)
- Eugen Schechtel
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - René Dören
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Hajo Frerichs
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Martin Panthöfer
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Mihail Mondeshki
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Wolfgang Tremel
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| |
Collapse
|
16
|
Chu J, Sun G, Han X, Chen X, Wang J, Hu W, Waluyo I, Hunt A, Du Y, Song B, Xu P. Ultrafine CoO nanoparticles as an efficient cocatalyst for enhanced photocatalytic hydrogen evolution. NANOSCALE 2019; 11:15633-15640. [PMID: 31408076 DOI: 10.1039/c9nr05086h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
In order to further enhance the performance of photocatalysts, cocatalysts are used to accelerate the photocatalytic reactions. Herein, ultrafine cobalt oxide (CoO) nanoparticles are synthesized through a novel bottom-up strategy and explored as an efficient non-noble cocatalyst to dramatically promote the photocatalytic hydrogen evolution rate of CdS nanorods. CdS/CoO heterostructures, consisting of highly dispersed 3-5 nm CoO nanoparticles anchored on the CdS nanorods, can provide a high photocatalytic hydrogen evolution rate of 6.45 mmol g-1 h-1 (∼36 times higher than that of bare CdS nanorods) in the visible-light region (>420 nm). Combined X-ray photoelectron spectroscopy and X-ray absorption near edge spectroscopy analyses suggest Co-S bond formation between CoO and CdS, which guarantees efficient migration and separation of photogenerated charge carriers. This work provides a new avenue for adopting CoO as an effective cocatalyst for enhanced photocatalytic hydrogen production in the visible-light region.
Collapse
Affiliation(s)
- Jiayu Chu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Guoji Sun
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen 518055, China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xin Chen
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Jiajun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Wen Hu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Iradwikanari Waluyo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Adrian Hunt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Bo Song
- Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001, China.
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
17
|
Zhou X, Dong H. A Theoretical Perspective on Charge Separation and Transfer in Metal Oxide Photocatalysts for Water Splitting. ChemCatChem 2019. [DOI: 10.1002/cctc.201900567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xin Zhou
- College of Environment and Chemical EngineeringDalian University No. 10 Xuefu Street Dalian Economic Technological Development Zone Dalian 116622, Liaoning P.R. China
| | - Hao Dong
- School of Chemistry and Chemical EngineeringLiaoning Normal University No. 850 Huanghe Road Shahekou District Dalian 116029, Liaoning P.R. China
| |
Collapse
|
18
|
Affiliation(s)
- Xin Li
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Xiaobo Chen
- Department of Chemistry, University of Missouri—Kansas City, Kansas City, Missouri 64110, United States
| |
Collapse
|
19
|
Nauth AM, Schechtel E, Dören R, Tremel W, Opatz T. TiO2 Nanoparticles Functionalized with Non-innocent Ligands Allow Oxidative Photocyanation of Amines with Visible/Near-Infrared Photons. J Am Chem Soc 2018; 140:14169-14177. [DOI: 10.1021/jacs.8b07539] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
Affiliation(s)
- Alexander M. Nauth
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Eugen Schechtel
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - René Dören
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Wolfgang Tremel
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Till Opatz
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
20
|
Affiliation(s)
- Giulia Tarantino
- Cardiff Catalysis Institute, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| | - Ceri Hammond
- Cardiff Catalysis Institute, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
21
|
Li C, Wang X, Cheruvathur A, Shen Y, Xiang H, Li Y, (Hans) Niemantsverdriet J, Su R. In-situ probing photocatalytic C C bond cleavage in ethylene glycol under ambient conditions and the effect of metal cocatalyst. J Catal 2018. [DOI: 10.1016/j.jcat.2018.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/28/2022]
|
22
|
Hazarika D, Saikia D, Gupta K, Mandal M, Karak N. Photoluminescence, Self cleaning and Photocatalytic Behavior of Waterborne Hyperbranched Polyester/Carbon dot@TiO2
Nanocomposite. ChemistrySelect 2018. [DOI: 10.1002/slct.201801160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Affiliation(s)
- Deepshikha Hazarika
- Advanced Polymer and Nanomaterial Laboratory; Center for Polymer Science and Technology; Department of Chemical Sciences; Tezpur University, Napaam; Tezpur 784028, Assam India
| | - Devabrata Saikia
- Department of Molecular Biology and Biotechnology; Tezpur University, Napaam; Tezpur, 784028, Assam, India
| | - Kuldeep Gupta
- Department of Molecular Biology and Biotechnology; Tezpur University, Napaam; Tezpur, 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology; Tezpur University, Napaam; Tezpur, 784028, Assam, India
| | - Niranjan Karak
- Advanced Polymer and Nanomaterial Laboratory; Center for Polymer Science and Technology; Department of Chemical Sciences; Tezpur University, Napaam; Tezpur 784028, Assam India
| |
Collapse
|
23
|
Dodekatos G, Schünemann S, Tüysüz H. Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01317] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Affiliation(s)
- Georgios Dodekatos
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Stefan Schünemann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
24
|
Cheng YF, Jiao W, Li Q, Zhang Y, Li S, Li D, Che R. Two hybrid Au-ZnO aggregates with different hierarchical structures: A comparable study in photocatalysis. J Colloid Interface Sci 2018; 509:58-67. [DOI: 10.1016/j.jcis.2017.08.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022]
|
25
|
Jiao W, Cheng Y, Zhang J, Che R. Self-Assembled 3D Hierarchical Copper Hydroxyphosphate Modified by the Oxidation of Copper Foil as a Recyclable, Wide Wavelength Photocatalyst. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13649-13656. [PMID: 29111745 DOI: 10.1021/acs.langmuir.7b03157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/07/2023]
Abstract
In this work, three-dimensional flower-like and petal-like copper hydroxyphosphate Cu5(OH)4(PO4)2 (CHP) based on the self-assembly of numerous nanosheets has been successfully fabricated on a copper foil by a mild one-pot wet-chemical method without ligand assistance. This research contributes to the development of the method to change the morphology of the CHP active material by varying the degree of substrate oxidation. The two different CHP architectures were used to photocatalytically degrade rhodamine 6G (Rh 6G) under solar light, which can absorb wide-range light wavelength from the UV to the near-infrared region. They all exhibit high photocatalytic activity and good durability, which are potential candidates for high performance and recyclable wide wavelength photocatalysis.
Collapse
Affiliation(s)
- Wenling Jiao
- Advanced Materials Laboratory & Department of Chemistry, Fudan University , Shanghai 200433, People's Republic of China
| | - Yifeng Cheng
- Advanced Materials Laboratory & Department of Chemistry, Fudan University , Shanghai 200433, People's Republic of China
| | - Jie Zhang
- Advanced Materials Laboratory & Department of Chemistry, Fudan University , Shanghai 200433, People's Republic of China
| | - Renchao Che
- Advanced Materials Laboratory & Department of Chemistry, Fudan University , Shanghai 200433, People's Republic of China
| |
Collapse
|
26
|
Yang X, Zhao H, Feng J, Chen Y, Gao S, Cao R. Visible-light-driven selective oxidation of alcohols using a dye-sensitized TiO2-polyoxometalate catalyst. J Catal 2017. [DOI: 10.1016/j.jcat.2017.03.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
|
27
|
Xu Q, Jiang C, Cheng B, Yu J. Enhanced visible-light photocatalytic H2-generation activity of carbon/g-C3N4 nanocomposites prepared by two-step thermal treatment. Dalton Trans 2017; 46:10611-10619. [DOI: 10.1039/c7dt00629b] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
Brown carbon/g-C3N4 nanocomposites synthesized by two-step calcination exhibited a wide visible light response range and improved photocatalytic H2-generation performance.
Collapse
Affiliation(s)
- Quanlong Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Chuanjia Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- P. R. China
- Department of Physics
| |
Collapse
|
28
|
Singh P, Ojha A, Borthakur A, Singh R, Lahiry D, Tiwary D, Mishra PK. Emerging trends in photodegradation of petrochemical wastes: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22340-22364. [PMID: 27566154 DOI: 10.1007/s11356-016-7373-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/16/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
Various human activities like mining and extraction of mineral oils have been used for the modernization of society and well-beings. However, the by-products such as petrochemical wastes generated from such industries are carcinogenic and toxic, which had increased environmental pollution and risks to human health several folds. Various methods such as physical, chemical and biological methods have been used to degrade these pollutants from wastewater. Advance oxidation processes (AOPs) are evolving techniques for efficient sequestration of chemically stable and less biodegradable organic pollutants. In the present review, photocatalytic degradation of petrochemical wastes containing monoaromatic and poly-aromatic hydrocarbons has been studied using various heterogeneous photocatalysts (such as TiO2, ZnO and CdS. The present article seeks to offer a scientific and technical overview of the current trend in the use of the photocatalyst for remediation and degradation of petrochemical waste depending upon the recent advances in photodegradation of petrochemical research using bibliometric analysis. We further outlined the effect of various heterogeneous catalysts and their ecotoxicity, various degradation pathways of petrochemical wastes, the key regulatory parameters and the reactors used. A critical analysis of the available literature revealed that TiO2 is widely reported in the degradation processes along with other semiconductors/nanomaterials in visible and UV light irradiation. Further, various degradation studies have been carried out at laboratory scale in the presence of UV light. However, further elaborative research is needed for successful application of the laboratory scale techniques to pilot-scale operation and to develop environmental friendly catalysts which support the sustainable treatment technology with the "zero concept" of industrial wastewater. Nevertheless, there is a need to develop more effective methods which consume less energy and are more efficient in pilot scale for the demineralization of pollutant.
Collapse
Affiliation(s)
- Pardeep Singh
- Department of Chemistry, Indian Institute of Technology (IIT-BHU), Varanasi, 221005, India.
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, 110068, India.
| | - Ankita Ojha
- Department of Chemistry, Indian Institute of Technology (IIT-BHU), Varanasi, 221005, India
| | - Anwesha Borthakur
- Centre for Studies in Science Policy, Jawaharlal Nehru University (JNU), New Delhi, 110067, India
| | - Rishikesh Singh
- Institute of Environment and Sustainable Development (IESD), Banaras Hindu University, Varanasi, 221005, India
| | - D Lahiry
- Rajghat Education Centre, KFI, Varanasi, 221005, India
| | - Dhanesh Tiwary
- Department of Chemistry, Indian Institute of Technology (IIT-BHU), Varanasi, 221005, India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (IIT-BHU), Varanasi, 221005, India
| |
Collapse
|