1
|
Šketa B, Galman JL, Turner NJ, Žnidaršič-Plazl P. Immobilization of His 6-tagged amine transaminases in microreactors using functionalized nonwoven nanofiber membranes. N Biotechnol 2024; 83:46-55. [PMID: 38960020 DOI: 10.1016/j.nbt.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Process intensification is crucial for industrial implementation of biocatalysis and can be achieved by continuous process operation in miniaturized reactors with efficiently immobilized biocatalysts, enabling their long-term use. Due to their extremely large surface-to-volume ratio, nanomaterials are promising supports for enzyme immobilization. In this work, different functionalized nanofibrous nonwoven membranes were embedded in a two-plate microreactor to enable immobilization of hexahistidine (His6)-tagged amine transaminases (ATAs) in flow. A membrane coated with Cu2+ ions gave the best results regarding His6-tagged ATAs immobilization among the membranes tested yielding an immobilization yield of up to 95.3 % for the purified N-His6-ATA-wt enzyme. Moreover, an efficient one-step enzyme immobilization process from overproduced enzyme in Escherichia coli cell lysate was developed and yielded enzyme loads up to 1088 U mL-1. High enzyme loads resulted in up to 80 % yields of acetophenone produced from 40 mM (S)-α-methylbenzylamine in less than 4 min using a continuously operated microreactor. Up to 81 % of the initial activity was maintained in a 5-day continuous microreactor operation with immobilized His6-tagged ATA constructs. The highest turnover number within the indicated time was 7.23·106, which indicates that this immobilization approach using advanced material and reactor system is highly relevant for industrial implementation.
Collapse
Affiliation(s)
- Borut Šketa
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; Chair of Micro Process Engineering and Technology - COMPETE, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - James L Galman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nicholas J Turner
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Polona Žnidaršič-Plazl
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; Chair of Micro Process Engineering and Technology - COMPETE, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Bakunova AK, Matyuta IO, Minyaev ME, Boyko KM, Popov VO, Bezsudnova EY. Incorporation of pyridoxal-5'-phosphate into the apoenzyme: A structural study of D-amino acid transaminase from Haliscomenobacter hydrossis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1873:141056. [PMID: 39406293 DOI: 10.1016/j.bbapap.2024.141056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Pyridoxal-5'-phosphate (PLP)-dependent transaminases are key enzymes of amino acid metabolism in cells and remarkable biocatalysts of stereoselective amination for process chemistry applications. As cofactor-dependent enzymes, transaminases are prone to cofactor leakage. Here we discuss the holoenzyme-apoenzyme interconversion and the kinetics of PLP incorporation into the apo form of a PLP-dependent transaminase from Haliscomenobacter hydrossis. PLP binding to the apoenzyme was slow in buffer, but was accelerated in the presence of substrates. Two crystal structures of the apoenzyme were obtained: the directly obtained apoenzyme (PDB ID: 7P8O) and the one obtained by soaking crystals of the holoenzyme in a phenylhydrazine solution (PDB ID: 8YRU). The mechanism of PLP association with the apoenzyme was proposed on the basis of structural analysis of these apo forms. Three rearrangement steps, including (I) anchoring of the PLP via the phosphate group, (II) displacement of two loops, and (III) Schiff-bonding between the PLP and the ε-amino group of the catalytic lysine residue, reconstituted the active holo form of the transaminase from H. hydrossis. The results obtained allowed us to determine in the active site a permanent part and elements that are assembled by PLP, these findings may be useful for transaminase engineering for biocatalysis.
Collapse
Affiliation(s)
- Alina K Bakunova
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya O Matyuta
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
3
|
Giri P, Lim S, Khobragade TP, Pagar AD, Patil MD, Sarak S, Jeon H, Joo S, Goh Y, Jung S, Jang YJ, Choi SB, Kim YC, Kang TJ, Heo YS, Yun H. Biocatalysis enables the scalable conversion of biobased furans into various furfurylamines. Nat Commun 2024; 15:6371. [PMID: 39075048 PMCID: PMC11286754 DOI: 10.1038/s41467-024-50637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Biobased furans have emerged as chemical building blocks for the development of materials because of their diverse scaffolds and as they can be directly prepared from sugars. However, selective, efficient, and cost-effective scalable conversion of biobased furans remains elusive. Here, we report a robust transaminase (TA) from Shimia marina (SMTA) that enables the scalable amination of biobased furanaldehydes with high activity and broad substrate specificity. Crystallographic and mutagenesis analyses provide mechanistic insights and a structural basis for understanding SMTA, which enables a higher substrate conversion. The enzymatic cascade process established in this study allows one-pot synthesis of 2,5-bis(aminomethyl)furan (BAMF) and 5-(aminomethyl)furan-2-carboxylic acid from 5-hydroxymethylfurfural. The biosynthesis of various furfurylamines, including a one-pot cascade reaction for BAMF generation using whole cells, demonstrates their practical application in the pharmaceutical and polymer industries.
Collapse
Affiliation(s)
- Pritam Giri
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seonga Lim
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Taresh P Khobragade
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Mahesh D Patil
- Chemical Engineering and Process Development Division, CSIR- National Chemical Laboratory, Pune, 411008, India
| | - Sharad Sarak
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sangwoo Joo
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Younghwan Goh
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seohee Jung
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yu-Jeong Jang
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seung Beom Choi
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ye Chan Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Taek Jin Kang
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
4
|
Zhang DK, Song KY, Yan YQ, Zheng JT, Xu J, Da LT, Xu MJ. Structural and mechanistic investigations on CC bond forming α-oxoamine synthase allowing L-glutamate as substrate. Int J Biol Macromol 2024; 268:131696. [PMID: 38642679 DOI: 10.1016/j.ijbiomac.2024.131696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Carbon‑carbon (C-C) bonds serve as the fundamental structural backbone of organic molecules. As a critical CC bond forming enzyme, α-oxoamine synthase is responsible for the synthesis of α-amino ketones by performing the condensation reaction between amino acids and acyl-CoAs. We previously identified an α-oxoamine synthase (AOS), named as Alb29, involved in albogrisin biosynthesis in Streptomyces albogriseolus MGR072. This enzyme belongs to the α-oxoamine synthase family, a subfamily under the pyridoxal 5'-phosphate (PLP) dependent enzyme superfamily. In this study, we report the crystal structures of Alb29 bound to PLP and L-Glu, which provide the atomic-level structural insights into the substrate recognition by Alb29. We discover that Alb29 can catalyze the amino transformation from L-Gln to L-Glu, besides the condensation of L-Glu with β-methylcrotonyl coenzyme A. Subsequent structural analysis has revealed that one flexible loop in Alb29 plays an important role in both amino transformation and condensation. Based on the crystal structure of the S87G mutant in the loop region, we capture two distinct conformations of the flexible loop in the active site, compared with the wild-type Alb29. Our study offers valuable insights into the catalytic mechanism underlying substrate recognition of Alb29.
Collapse
Affiliation(s)
- Dai-Ke Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kai-Yuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ya-Qian Yan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jian-Ting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Min-Juan Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
5
|
Yi X, Yu H, Ye L. Rational design of transaminases based on comparative analysis of catalytically active and distance-free modes of the high-energy intermediate state. Biotechnol Bioeng 2024; 121:1005-1015. [PMID: 38108196 DOI: 10.1002/bit.28626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Bioproduction of chiral amines is limited by low transaminase (TA) activity on nonnatural substrates, leading to the need for protein engineering. To address the challenge of quickly and precisely identifying the engineering targets, a strategy was proposed based on analyzing the mode changes in the high-energy intermediate state (H-state) of the substrate-enzyme complex during catalysis. By substituting the residues with minimal structural changes in catalytically active mode (A-mode) and distance-free mode (F-mode) of the H-state complex with more conserved ones to stabilize it, a TA mutant M5(T295C/L387A/V436A) with 121.9-fold higher activity for synthesizing the (S)-Rivastigmine precursor (S)-1-(3-methoxyphenyl)ethylamine was created. The applicability of this strategy was also validated by engineering another TA for 1.52-fold higher activity and >99% selectivity toward (R)-3-amino-1-butanol biopreparation. The much higher stereoselectivity of the mutant compared with the wild type (28.3%) demonstrated that this strategy is not only advantageous in engineering enzyme activity but also applicable for modulating stereoselectivity.
Collapse
Affiliation(s)
- Xiaomin Yi
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Feng X, Hong S, Zhao H, Vuong TV, Master ER. Biocatalytic cascade to polysaccharide amination. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:34. [PMID: 38409122 PMCID: PMC10898118 DOI: 10.1186/s13068-024-02477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Chitin, the main form of aminated polysaccharide in nature, is a biocompatible, polycationic, and antimicrobial biopolymer used extensively in industrial processes. Despite the abundance of chitin, applications thereof are hampered by difficulties in feedstock harvesting and limited structural versatility. To address these problems, we proposed a two-step cascade employing carbohydrate oxidoreductases and amine transaminases for plant polysaccharide aminations via one-pot reactions. Using a galactose oxidase from Fusarium graminearum for oxidation, this study compared the performance of CvATA (from Chromobacterium violaceum) and SpATA (from Silicibacter pomeroyi) on a range of oxidized carbohydrates with various structures and sizes. Using a rational enzyme engineering approach, four point mutations were introduced on the SpATA surface, and their effects on enzyme activity were evaluated. RESULTS Herein, a quantitative colorimetric assay was developed to enable simple and accurate time-course measurement of the yield of transamination reactions. With higher operational stability, SpATA produced higher product yields in 36 h reactions despite its lower initial activity. Successful amination of oxidized galactomannan by SpATA was confirmed using a deuterium labeling method; higher aminated carbohydrate yields achieved with SpATA compared to CvATA were verified using HPLC and XPS. By balancing the oxidase and transaminase loadings, improved operating conditions were identified where the side product formation was largely suppressed without negatively impacting the product yield. SpATA mutants with multiple alanine substitutions besides E407A showed improved product yield. The E407A mutation reduced SpATA activity substantially, supporting its predicted role in maintaining the dimeric enzyme structure. CONCLUSIONS Using oxidase-amine transaminase cascades, the study demonstrated a fully enzymatic route to polysaccharide amination. Although the activity of SpATA may be further improved via enzyme engineering, the low operational stability of characterized amine transaminases, as a result of low retention of PMP cofactors, was identified as a key factor limiting the yield of the designed cascade. To increase the process feasibility, future efforts to engineer improved SpATA variants should focus on improving the cofactor affinity, and thus the operational stability of the enzyme.
Collapse
Affiliation(s)
- Xuebin Feng
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Siyi Hong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Hongbo Zhao
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.
| |
Collapse
|
7
|
Heinks T, Koopmeiners S, Montua N, Sewald N, Höhne M, Bornscheuer UT, Fischer von Mollard G. Co-Immobilization of a Multi-Enzyme Cascade: (S)-Selective Amine Transaminases, l-Amino Acid Oxidase and Catalase. Chembiochem 2023; 24:e202300425. [PMID: 37368451 DOI: 10.1002/cbic.202300425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/28/2023]
Abstract
An enzyme cascade was established previously consisting of a recycling system with an l-amino acid oxidase (hcLAAO4) and a catalase (hCAT) for different α-keto acid co-substrates of (S)-selective amine transaminases (ATAs) in kinetic resolutions of racemic amines. Only 1 mol % of the co-substrate was required and l-amino acids instead of α-keto acids could be applied. However, soluble enzymes cannot be reused easily. Immobilization of hcLAAO4, hCAT and the (S)-selective ATA from Vibrio fluvialis (ATA-Vfl) was addressed here. Immobilization of the enzymes together rather than on separate beads showed higher reaction rates most likely due to fast co-substrate channeling between ATA-Vfl and hcLAAO4 due to their close proximity. Co-immobilization allowed further reduction of the co-substrate amount to 0.1 mol % most likely due to a more efficient H2 O2 -removal caused by the stabilized hCAT and its proximity to hcLAAO4. Finally, the co-immobilized enzyme cascade was reused in 3 cycles of preparative kinetic resolutions to produce (R)-1-PEA with high enantiomeric purity (97.3 %ee). Further recycling was inefficient due to the instability of ATA-Vfl, while hcLAAO4 and hCAT revealed high stability. An engineered ATA-Vfl-8M was used in the co-immobilized enzyme cascade to produce (R)-1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethanamine, an apremilast-intermediate, with a 1,000 fold lower input of the co-substrate.
Collapse
Affiliation(s)
- Tobias Heinks
- Faculty of Chemistry, Biochemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Simon Koopmeiners
- Faculty of Chemistry, Biochemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Nicolai Montua
- Faculty of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Norbert Sewald
- Faculty of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Matthias Höhne
- Department of Chemistry/Biocatalysis, Technische Universität Berlin, Müller-Breslau-Str. 10, 10623, Berlin, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17487, Greifswald, Germany
| | | |
Collapse
|
8
|
Schober L, Dobiašová H, Jurkaš V, Parmeggiani F, Rudroff F, Winkler M. Enzymatic reactions towards aldehydes: An overview. FLAVOUR FRAG J 2023; 38:221-242. [PMID: 38505272 PMCID: PMC10947199 DOI: 10.1002/ffj.3739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/21/2024]
Abstract
Many aldehydes are volatile compounds with distinct and characteristic olfactory properties. The aldehydic functional group is reactive and, as such, an invaluable chemical multi-tool to make all sorts of products. Owing to the reactivity, the selective synthesis of aldehydic is a challenging task. Nature has evolved a number of enzymatic reactions to produce aldehydes, and this review provides an overview of aldehyde-forming reactions in biological systems and beyond. Whereas some of these biotransformations are still in their infancy in terms of synthetic applicability, others are developed to an extent that allows their implementation as industrial biocatalysts.
Collapse
Affiliation(s)
- Lukas Schober
- Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria
| | - Hana Dobiašová
- Institute of Chemical and Environmental EngineeringSlovak University of TechnologyBratislavaSlovakia
| | - Valentina Jurkaš
- Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria
| | - Fabio Parmeggiani
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”Politecnico di MilanoMilanItaly
| | - Florian Rudroff
- Institute of Applied Synthetic ChemistryTU WienViennaAustria
| | - Margit Winkler
- Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria
- Area BiotransformationsAustrian Center of Industrial BiotechnologyGrazAustria
| |
Collapse
|
9
|
Rocha RA, Esquirol L, Rolland V, Hands P, Speight RE, Scott C. Non-covalent binding tags for batch and flow biocatalysis. Enzyme Microb Technol 2023; 169:110268. [PMID: 37300919 DOI: 10.1016/j.enzmictec.2023.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Enzyme immobilization offers considerable advantage for biocatalysis in batch and continuous flow reactions. However, many currently available immobilization methods require that the surface of the carrier is chemically modified to allow site specific interactions with their cognate enzymes, which requires specific processing steps and incurs associated costs. Two carriers (cellulose and silica) were investigated here, initially using fluorescent proteins as models to study binding, followed by assessment of industrially relevant enzyme performance (transaminases and an imine reductase/glucose oxidoreductase fusion). Two previously described binding tags, the 17 amino acid long silica-binding peptide from the Bacillus cereus CotB protein and the cellulose binding domain from the Clostridium thermocellum, were fused to a range of proteins without impairing their heterologous expression. When fused to a fluorescent protein both tags conferred high avidity specific binding with their respective carriers (low nanomolar Kd values). The CotB peptide (CotB1p) induced protein aggregation in the transaminase and imine reductase/glucose oxidoreductase fusions when incubated with the silica carrier. The Clostridium thermocellum cellulose binding domain (CBDclos) allowed immobilization of all the proteins tested, but immobilization led to loss of enzymatic activity in the transaminases (< 2-fold) and imine reductase/glucose oxidoreductase fusion (> 80%). A transaminase-CBDclos fusion was then successfully used to demonstrate the application of the binding tag in repetitive batch and a continuous-flow reactor.
Collapse
Affiliation(s)
- Raquel A Rocha
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, Qld 4000, Australia; CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - Lygie Esquirol
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - Vivien Rolland
- CSIRO Agriculture and Food, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - Philip Hands
- CSIRO Agriculture and Food, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - Robert E Speight
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, Qld 4000, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), Brisbane, Qld 4000, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia.
| |
Collapse
|
10
|
Transaminase-mediated chiral selective synthesis of (1R)-(3-methylphenyl)ethan-1-amine from 1-(3-methylphenyl)ethan-1-one: process minutiae, optimization, characterization and 'What If studies'. Bioprocess Biosyst Eng 2023; 46:207-225. [PMID: 36463332 DOI: 10.1007/s00449-022-02824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022]
Abstract
Transaminases capable of carrying out chiral selective transamination of 1-(3-methylphenyl)ethan-1-one to (1R)-(3-methylphenyl)ethan-1-amine were screened, and ATA-025 was the best enzyme, while dimethylsulfoxide (10% V/V) was the best co-solvent for said bioconversion. The variables such as enzyme loading, substrate loading, temperature, and pH for development of process displaying maximum conversion with good product formation and higher yield were optimized. The ambient processing conditions were 10% enzyme loading/50 g/L substrate loading/45 °C/pH 8.0, and 5% enzyme loading/36.78 g/L substrate loading/42.66 °C/pH 8.2 displaying maximum conversion 99.01 ± 2.47% and 96.115 ± 1.97%, and 76.93 ± 1.05% and 73.12 ± 1.04% yield with one factor at a time approach and numerical optimization with Box Behnken Design, respectively. In the final optimized reaction, ATA-025 showed the highest 99.22 ± 2.61% conversion, 49.55 g/L product formation, with an actual product recovery of 38.16 g corresponding to a product yield 77.03 ± 1.01% with respect to the product formed after reaction. The purity of recovered product (1R)-(3-methylphenyl)ethan-1-amine formed was ≥ 99% (RP-HPLC), and chiral purity ≥ 98.5% (Chiral-GC), and it was also confirmed and characterized with instrumental methods using boiling point, LC-MS, ATR-FTIR, and 1H NMR. The findings of 'What If' studies performed by investigating timely progress of reaction on gram scale by drastically changing the process parameters revealed a substantial modification in process variables to achieve desired results. (1R)-(3-methylphenyl)ethan-1-amine synthesized by green, facile and novel enzymatic approach with an optimized process could be used for synthesis of different active pharma entities.
Collapse
|
11
|
Comparison of Four Immobilization Methods for Different Transaminases. Catalysts 2023. [DOI: 10.3390/catal13020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Biocatalytic syntheses often require unfavorable conditions, which can adversely affect enzyme stability. Consequently, improving the stability of biocatalysts is needed, and this is often achieved by immobilization. In this study, we aimed to compare the stability of soluble and immobilized transaminases from different species. A cysteine in a consensus sequence was converted to a single aldehyde by the formylglycine-generating enzyme for directed single-point attachment to amine beads. This immobilization was compared to cross-linked enzyme aggregates (CLEAs) and multipoint attachments to glutaraldehyde-functionalized amine- and epoxy-beads. Subsequently, the reactivity and stability (i.e., thermal, storage, and solvent stability) of all soluble and immobilized transaminases were analyzed and compared under different conditions. The effect of immobilization was highly dependent on the type of enzyme, the immobilization strategy, and the application itself, with no superior immobilization technique identified. Immobilization of HAGA-beads often resulted in the highest activities of up to 62 U/g beads, and amine beads were best for the hexameric transaminase from Luminiphilus syltensis. Furthermore, the immobilization of transaminases enabled its reusability for at least 10 cycles, while maintaining full or high activity. Upscaled kinetic resolutions (partially performed in a SpinChemTM reactor) resulted in a high conversion, maintained enantioselectivity, and high product yields, demonstrating their applicability.
Collapse
|
12
|
Koplányi G, Bell E, Molnár Z, Katona G, Lajos Neumann P, Ender F, Balogh GT, Žnidaršič-Plazl P, Poppe L, Balogh-Weiser D. Novel Approach for the Isolation and Immobilization of a Recombinant Transaminase: Applying an Advanced Nanocomposite System. Chembiochem 2023; 24:e202200713. [PMID: 36653306 DOI: 10.1002/cbic.202200713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
The increasing application of recombinant enzymes demands not only effective and sustainable fermentation, but also highly efficient downstream processing and further stabilization of the enzymes by immobilization. In this study, a novel approach for the isolation and immobilization of His-tagged transaminase from Chromobacterium violaceum (CvTA) has been developed. A recombinant of CvTA was simultaneously isolated and immobilized by binding on silica nanoparticles (SNPs) with metal affinity linkers and additionally within poly(lactic acid) (PLA) nanofibers. The linker length and the nature of the metal ion significantly affected the enzyme binding efficiency and biocatalytic activity of CvTA-SNPs. The formation of PLA nanofibers by electrospinning enabled rapid embedding of CvTA-SNPs biocatalysts and ensured enhanced stability and activity. The developed advanced immobilization method reduces the time required for enzyme isolation, purification and immobilization by more than fourfold compared to a classical stepwise technique.
Collapse
Affiliation(s)
- Gábor Koplányi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary
| | - Evelin Bell
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary
| | - Zsófia Molnár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary.,Institute of Enzymology, ELKH Research Center of Natural Sciences, 1117, Magyar tudosók krt. 2. Budapest, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720, Eötvös u. 6., Szeged, Hungary
| | - Péter Lajos Neumann
- Department of Electron Devices, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary.,Centre for Energy Research, Institute for Technical Physics and Materials Science, 1121, Konkoly-Thege M. út 29-33., Budapest, Hungary
| | - Ferenc Ender
- Department of Electron Devices, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary.,SpinSplit Llc., 1025, Vend u. 17., Budapest, Hungary
| | - György T Balogh
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary.,Institute of Pharmacodynamics and Biopharmacy, University of Szeged, 6720, Eötvös u. 6., Szeged, Hungary
| | - Polona Žnidaršič-Plazl
- Faculty of Chemistry and Chemical Technology, University of Ljubljana Večna pot 113., 1000, Ljubljana, Slovenia
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary.,Biocatalysis and Biotransformation Research Center Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028, Arany János Str. 11, Cluj-Napoca, Romania
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary.,Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1111, Műegyetem rkp. 3., Budapest, Hungary
| |
Collapse
|
13
|
Asymmetric Synthesis of Enantiomerically Pure Aliphatic and Aromatic D-Amino Acids Catalyzed by Transaminase from Haliscomenobacter hydrossis. Catalysts 2022. [DOI: 10.3390/catal12121551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
D-amino acids are valuable building blocks for the synthesis of biologically active compounds and pharmaceuticals. The asymmetric synthesis of chiral amino acids from prochiral ketones using stereoselective enzymes is a well-known but far from exhausted approach for large-scale production. Herein, we investigated a pyridoxal-5′-phosphate-dependent D-amino acid transaminase from Haliscomenobacter hydrossis as a potential biocatalyst for the enzymatic asymmetric synthesis of optically pure aliphatic and aromatic D-amino acids. We studied the catalytic efficiency and stereoselectivity of transaminase from H. hydrossis in the amination of aliphatic and aromatic α-keto acids, using D-glutamate as a source of the amino group. We constructed a one-pot three-enzyme system, which included transaminase and two auxiliary enzymes, hydroxyglutarate dehydrogenase, and glucose dehydrogenase, to produce D-amino acids with a product yield of 95–99% and an enantiomeric excess of more than 99%. We estimated the stability of the transaminase and the cofactor leakage under reaction conditions. It was found that a high concentration of α-keto acids as well as a low reaction temperature (30 °C) can reduce the cofactor leakage under reaction conditions. The obtained results demonstrated the efficiency of transaminase from H. hydrossis in the asymmetric synthesis of enantiomerically pure D-amino acids.
Collapse
|
14
|
Marchini V, Benítez‐Mateos AI, Hutter SL, Paradisi F. Fusion of Formate Dehydrogenase and Alanine Dehydrogenase as an Amino Donor Regenerating System Coupled to Transaminases. Chembiochem 2022; 23:e202200428. [PMID: 36066500 PMCID: PMC9828552 DOI: 10.1002/cbic.202200428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Fusion enzymes are attractive tools for facilitating the assembly of biocatalytic cascades for chemical synthesis. This approach can offer great advantages for cooperative redox cascades that need the constant supply of a donor molecule. In this work, we have developed a self-sufficient bifunctional enzyme that can be coupled to transaminase-catalyzed reactions for the efficient recycling of the amino donor (L-alanine). By genetic fusion of an alanine dehydrogenase (AlaDH) and a formate dehydrogenase (FDH), a redox-complementary system was applied to recycle the amino donor and the cofactor (NADH), respectively. AlaDH and FDH were assembled in both combinations (FDH-AlaDH and AlaDH-FDH), with a 2.5-fold higher enzymatic activity of the latter system. Then, AlaDH-FDH was coupled to two different S-selective transaminases for the synthesis of vanillyl amine (10 mM) reaching up to 99 % conversion in 24 h in both cases. Finally, the multienzyme system was reused for at least 3 consecutive cycles when implemented in dialysis-assisted biotransformations.
Collapse
Affiliation(s)
- Valentina Marchini
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Ana I. Benítez‐Mateos
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Sofia L. Hutter
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Francesca Paradisi
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| |
Collapse
|
15
|
Gal CA, Barabás LE, Varga A, Csuka P, Bencze LC, Toșa MI, Poppe L, Paizs C. How to identify and characterize novel transaminases? Two novel transaminases with opposite enantioselectivity for the synthesis of optically active amines. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Kollipara M, Matzel P, Bornscheuer U, Höhne M. Activity Levels of Amine Transaminases Correlate with Active Site Hydrophobicity. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manideep Kollipara
- University of Greifswald Institute of Biochemistry, Protein Biochemistry Felix-Hausdorff-Straße 4 17489 Greifswald Germany
| | - Philipp Matzel
- University of Greifswald Institute of Biochemistry, Protein Biochemistry Felix-Hausdorff-Straße 4 17489 Greifswald Germany
| | - Uwe Bornscheuer
- University of Greifswald Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis Felix-Hausdorff-Straße 4 17489 Greifswald Germany
| | - Matthias Höhne
- University of Greifswald Institute of Biochemistry, Protein Biochemistry Felix-Hausdorff-Straße 4 17489 Greifswald Germany
| |
Collapse
|
17
|
Characterization of proteins from the 3N5M family reveals an operationally stable amine transaminase. Appl Microbiol Biotechnol 2022; 106:5563-5574. [PMID: 35932295 PMCID: PMC9418295 DOI: 10.1007/s00253-022-12071-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 01/24/2023]
Abstract
Abstract Amine transaminases (ATA) convert ketones into optically active amines and are used to prepare active pharmaceutical ingredients and building blocks. Novel ATA can be identified in protein databases due to the extensive knowledge of sequence-function relationships. However, predicting thermo- and operational stability from the amino acid sequence is a persisting challenge and a vital step towards identifying efficient ATA biocatalysts for industrial applications. In this study, we performed a database mining and characterized selected putative enzymes of the β-alanine:pyruvate transaminase cluster (3N5M) — a subfamily with so far only a few described members, whose tetrameric structure was suggested to positively affect operational stability. Four putative transaminases (TA-1: Bilophilia wadsworthia, TA-5: Halomonas elongata, TA-9: Burkholderia cepacia, and TA-10: Burkholderia multivorans) were obtained in a soluble form as tetramers in E. coli. During comparison of these tetrameric with known dimeric transaminases we found that indeed novel ATA with high operational stabilities can be identified in this protein subfamily, but we also found exceptions to the hypothesized correlation that a tetrameric assembly leads to increased stability. The discovered ATA from Burkholderia multivorans features a broad substrate specificity, including isopropylamine acceptance, is highly active (6 U/mg) in the conversion of 1-phenylethylamine with pyruvate and shows a thermostability of up to 70 °C under both, storage and operating conditions. In addition, 50% (v/v) of isopropanol or DMSO can be employed as co-solvents without a destabilizing effect on the enzyme during an incubation time of 16 h at 30 °C. Key points • Database mining identified a thermostable amine transaminase in the β-alanine:pyruvate transaminase subfamily. • The tetrameric transaminase tolerates 50% DMSO and isopropanol under operating conditions at 30 °C. • A tetrameric structure is not necessarily associated with a higher operational stability Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12071-1.
Collapse
|
18
|
Heinks T, Paulus J, Koopmeiners S, Beuel T, Sewald N, Höhne M, Bornscheuer UT, Fischer von Mollard G. Recombinant L-Amino Acid Oxidase with broad substrate spectrum for Co-Substrate Recycling in (S)-Selective Transaminase-Catalyzed Kinetic Resolutions. Chembiochem 2022; 23:e202200329. [PMID: 35713203 PMCID: PMC9543090 DOI: 10.1002/cbic.202200329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/15/2022] [Indexed: 11/08/2022]
Abstract
Chiral and enantiopure amines can be produced by enantioselective transaminases via kinetic resolution of amine racemates. This transamination reaction requires stoichiometric amounts of co-substrate. A dual-enzyme recycling system overcomes this limitation: L-amino acid oxidases (LAAO) recycle the accumulating co-product of ( S )-selective transaminases in the kinetic resolution of racemic amines to produce pure ( R )-amines. However, availability of suitable LAAOs is limited. Here we use the heterologously produced, highly active fungal hcLAAO4 with broad substrate spectrum. H 2 O 2 as by-product of hcLAAO4 is detoxified by a catalase. The final system allows using sub-stoichiometric amounts of 1 mol% of the transaminase co-substrate as well as the initial application of L-amino acids instead of α-keto acids. With an optimized protocol, synthetic potential of this kinetic resolution cascade was proven at the preparative scale (>90 mg) by the synthesis of highly enantiomerically pure ( R )-methylbenzylamine (>99 %ee) at complete conversion (50 %).
Collapse
Affiliation(s)
- Tobias Heinks
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Biochemistry, GERMANY
| | - Jannik Paulus
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Organic and Bioorganic Chemistry, GERMANY
| | - Simon Koopmeiners
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Biochemistry, GERMANY
| | - Tobias Beuel
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Biochemistry, GERMANY
| | - Norbert Sewald
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Organic and Bioorganic Chemistry, GERMANY
| | - Matthias Höhne
- University of Greifswald: Universitat Greifswald, Institute of Biochemistry, GERMANY
| | - Uwe T Bornscheuer
- University of Greifswald: Universitat Greifswald, Institute of Biochemistry, GERMANY
| | - Gabriele Fischer von Mollard
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Biochemistry, Universitätsstr. 25, 33615, Bielefeld, GERMANY
| |
Collapse
|
19
|
Koper K, Han SW, Pastor DC, Yoshikuni Y, Maeda HA. Evolutionary Origin and Functional Diversification of Aminotransferases. J Biol Chem 2022; 298:102122. [PMID: 35697072 PMCID: PMC9309667 DOI: 10.1016/j.jbc.2022.102122] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Aminotransferases (ATs) are pyridoxal 5′-phosphate–dependent enzymes that catalyze the transamination reactions between amino acid donor and keto acid acceptor substrates. Modern AT enzymes constitute ∼2% of all classified enzymatic activities, play central roles in nitrogen metabolism, and generate multitude of primary and secondary metabolites. ATs likely diverged into four distinct AT classes before the appearance of the last universal common ancestor and further expanded to a large and diverse enzyme family. Although the AT family underwent an extensive functional specialization, many AT enzymes retained considerable substrate promiscuity and multifunctionality because of their inherent mechanistic, structural, and functional constraints. This review summarizes the evolutionary history, diverse metabolic roles, reaction mechanisms, and structure–function relationships of the AT family enzymes, with a special emphasis on their substrate promiscuity and multifunctionality. Comprehensive characterization of AT substrate specificity is still needed to reveal their true metabolic functions in interconnecting various branches of the nitrogen metabolic network in different organisms.
Collapse
Affiliation(s)
- Kaan Koper
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sang-Woo Han
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Yasuo Yoshikuni
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Global Center for Food, Land, and Water Resources, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
20
|
Engineering Novel ( R)-Selective Transaminase for Efficient Symmetric Synthesis of d-Alanine. Appl Environ Microbiol 2022; 88:e0006222. [PMID: 35465694 DOI: 10.1128/aem.00062-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
d-Alanine belongs to nonessential amino acids that have diverse applications in the fields of food and health care. (R)-transaminase [(R)-TA]-catalyzed asymmetric amination of pyruvate is a feasible alternative for the synthesis of d-alanine, but low catalytic efficiency and thermostability limit enzymatic utilization. In this work, several potential (R)-TAs were discovered using NCBI database mining synchronously with enzymatic structure-function analysis, among which Capronia epimyces TA (CeTA) showed the highest activity for amination of pyruvate using (R)-α-methylbenzylamine as the donor. Furthermore, enzymatic residues surrounding a large catalysis pocket were subjected to saturation and combinatorial mutagenesis, and positive mutant F113T showed dramatic improvement in activity and thermostability. Molecular modeling indicated that the substitution of phenylalanine with threonine afforded alleviation of steric hindrance in the pocket and induced formation of additional hydrogen bonds with neighboring residues. Finally, using recombinant cells containing F113T as a biocatalyst, the conversion yield of amination of 100 mM pyruvate to d-alanine achieved up to 95.2%, which seemed to be the highest level in the literature regarding synthesis of d-alanine using TAs. The inherent characteristics rendered CeTA F113T a promising platform for efficient preparation of d-alanine operating with high productivity. IMPORTANCE d-Alanine is an important compound with many valuable applications. Its asymmetric synthesis employing (R)-ω-TA is considered an attractive choice. According to the stereoselectivity, ω-TAs have either (R)- or (S)-enantiopreference. There has been a variety of literature regarding screening, characterizing, and molecular modification of (S)-ω-TAs; in contrast, the research about (R)-ω-TA has lagged behind. In this work, we identify several (R)-ω-TAs and succeeded in creating mutant F113T, which showed not only better efficiency toward pyruvate but also higher thermostability compared with the original enzyme. The obtained original enzymes and positive mutants displayed important application value for pushing symmetric synthesis of d-alanine to a higher level.
Collapse
|
21
|
Janson N, Heinks T, Beuel T, Alam S, Höhne M, Bornscheuer UT, Fischer von Mollard G, Sewald N. Efficient Site‐Selective Immobilization of Aldehyde‐Tagged Peptides and Proteins by Knoevenagel Ligation. ChemCatChem 2021. [DOI: 10.1002/cctc.202101485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nils Janson
- Faculty of Chemistry Organic and Bioorganic Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Tobias Heinks
- TFaculty of Chemistry, Biochemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Tobias Beuel
- TFaculty of Chemistry, Biochemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Sarfaraz Alam
- TFaculty of Chemistry, Biochemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Matthias Höhne
- Institute of Biochemistry Greifswald University Felix-Hausdorff-Straße 4 17487 Greifswald Germay
| | - Uwe T. Bornscheuer
- Institute of Biochemistry Greifswald University Felix-Hausdorff-Straße 4 17487 Greifswald Germay
| | | | - Norbert Sewald
- Faculty of Chemistry Organic and Bioorganic Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
22
|
Reetz MT, Garcia-Borràs M. The Unexplored Importance of Fleeting Chiral Intermediates in Enzyme-Catalyzed Reactions. J Am Chem Soc 2021; 143:14939-14950. [PMID: 34491742 PMCID: PMC8461649 DOI: 10.1021/jacs.1c04551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 02/07/2023]
Abstract
Decades of extensive research efforts by biochemists, organic chemists, and protein engineers have led to an understanding of the basic mechanisms of essentially all known types of enzymes, but in a formidable number of cases an essential aspect has been overlooked. The occurrence of short-lived chiral intermediates formed by symmetry-breaking of prochiral precursors in enzyme catalyzed reactions has been systematically neglected. We designate these elusive species as fleeting chiral intermediates and analyze such crucial questions as "Do such intermediates occur in homochiral form?" If so, what is the absolute configuration, and why did Nature choose that particular stereoisomeric form, even when the isolable final product may be achiral? Does the absolute configuration of a chiral product depend in any way on the absolute configuration of the fleeting chiral precursor? How does this affect the catalytic proficiency of the enzyme? If these issues continue to be unexplored, then an understanding of the mechanisms of many enzyme types remains incomplete. We have systematized the occurrence of these chiral intermediates according to their structures and enzyme types. This is followed by critical analyses of selected case studies and by final conclusions and perspectives. We hope that the fascinating concept of fleeting chiral intermediates will attract the attention of scientists, thereby opening an exciting new research field.
Collapse
Affiliation(s)
- Manfred T. Reetz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Marc Garcia-Borràs
- Institute
of Computational Chemistry and Catalysis (IQCC) and Departament de
Química, Universitat de Girona, Carrer Maria Aurèlia Capmany
69, 17003 Girona, Spain
| |
Collapse
|
23
|
Chiral Synthesis of 3-Amino-1-phenylbutane by a Multi-Enzymatic Cascade System. Catalysts 2021. [DOI: 10.3390/catal11080973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Asymmetric synthesis of chiral amines from prochiral ketones using transaminases is an attractive biocatalytic strategy. Nevertheless, it is hampered by its unfavorable thermodynamic equilibrium. In the present work, an insitu by-product removal strategy was applied for the synthesis of 3-amino-1-phenylbutane (3-APB) by coupling a transaminase with a pyruvate decarboxylase (PDC), which does not require the use of any expensive additional cofactor. Using this strategy, the pyruvate obtained in the transamination reaction is transformed by PDC into acetaldehyde and CO2 which are of high volatility. Two different transaminases from Chromobacterium violaceum (CviTA) and Vibrio fluvialis (VflTA) were characterized to find out the appropriate pH conditions. In both cases, the addition of PDC dramatically enhanced 3-APB synthesis. Afterwards, different reaction conditions were tested to improve reaction conversion and yield. It was concluded that 30 °C and a 20-fold alanine excess lead to the best process metrics. Under the mentioned conditions, yields higher than 60% were reached with nearly 90% selectivity using both CviTA and VflTA. Moreover, high stereoselectivity for (S)-3-APB was obtained and ee of around 90% was achieved in both cases. For the first time, the asymmetric synthesis of 3-APB using PDC as by-product removal system using CviTA is reported.
Collapse
|
24
|
Gerlach T, Nugroho DL, Rother D. The Effect of Visible Light on the Catalytic Activity of PLP-Dependent Enzymes. ChemCatChem 2021; 13:2398-2406. [PMID: 34249169 PMCID: PMC8251830 DOI: 10.1002/cctc.202100163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Indexed: 11/08/2022]
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are a versatile class of biocatalysts and feature a variety of industrial applications. However, PLP is light sensitive and can cause inactivation of enzymes in certain light conditions. As most of the PLP-dependent enzymes are usually not handled in dark conditions, we evaluated the effect of visible light on the activity of PLP-dependent enzymes during production as well as transformation. We tested four amine transaminases, from Chromobacterium violaceum, Bacillus megaterium, Vibrio fluvialis and a variant from Arthrobacter species as well as two lysine decarboxylases, from Selenomonas ruminantium and the LDCc from Escherichia coli. It appeared that five of these six enzymes suffered from a significant decrease in activity by up to 90 % when handled in laboratory light conditions. Surprisingly, only the amine transaminase variant from Arthrobacter species appeared to be unaffected by light exposure and even showed an activation to 150 % relative activity over the course of 6 h regardless of the light conditions.
Collapse
Affiliation(s)
- Tim Gerlach
- Institute of Bio- and Geosciences: Biotechnology Forschungszentrum Jülich GmbHWilhelm-Johnen-Straße52428JülichGermany
- Department Aachen Biology and BiotechnologyRWTH Aachen UniversityWorringer Weg 152062AachenGermany
| | - David Limanhadi Nugroho
- Institute of Bio- and Geosciences: Biotechnology Forschungszentrum Jülich GmbHWilhelm-Johnen-Straße52428JülichGermany
| | - Dörte Rother
- Institute of Bio- and Geosciences: Biotechnology Forschungszentrum Jülich GmbHWilhelm-Johnen-Straße52428JülichGermany
- Department Aachen Biology and BiotechnologyRWTH Aachen UniversityWorringer Weg 152062AachenGermany
| |
Collapse
|
25
|
Efficient Amino Donor Recycling in Amination Reactions: Development of a New Alanine Dehydrogenase in Continuous Flow and Dialysis Membrane Reactors. Catalysts 2021. [DOI: 10.3390/catal11040520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transaminases have arisen as one of the main biocatalysts for amine production but despite their many advantages, their stability is still a concern for widespread application. One of the reasons for their instability is the need to use an excess of the amino donor when trying to synthesise amines with unfavourable equilibria. To circumvent this, recycling systems for the amino donor, such as amino acid dehydrogenases or aldolases, have proved useful to push the equilibria while avoiding high amino donor concentrations. In this work, we report the use of a new alanine dehydrogenase from the halotolerant bacteria Halomonas elongata which exhibits excellent stability to different cosolvents, combined with the well characterised CbFDH as a recycling system of L-alanine for the amination of three model substrates with unfavourable equilibria. In a step forward, the amino donor recycling system has been co-immobilised and used in flow with success as well as re-used as a dialysis enclosed system for the amination of an aromatic aldehyde.
Collapse
|
26
|
ω-Transaminase-Mediated Asymmetric Synthesis of (S)-1-(4-Trifluoromethylphenyl)Ethylamine. Catalysts 2021. [DOI: 10.3390/catal11030307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pivotal role played by ω-transaminases (ω-TAs) in the synthesis of chiral amines used as building blocks for drugs and pharmaceuticals is widely recognized. However, chiral bulky amines are challenging to produce. Herein, a ω-TA (TR8) from a marine bacterium was used to synthesize a fluorine chiral amine from a bulky ketone. An analysis of the reaction conditions for process development showed that isopropylamine concentrations above 75 mM had an inhibitory effect on the enzyme. Five different organic solvents were investigated as co-solvents for the ketone (the amine acceptor), among which 25–30% (v/v) dimethyl sulfoxide (DMSO) produced the highest enzyme activity. The reaction reached equilibrium after 18 h at 30% of conversion. An in situ product removal (ISPR) approach using an aqueous organic two-phase system was tested to mitigate product inhibition. However, the enzyme activity initially decreased because the ketone substrate preferentially partitioned into the organic phase, n-hexadecane. Consequently, DMSO was added to the system to increase substrate mass transfer without affecting the ability of the organic phase to prevent inhibition of the enzyme activity by the product. Thus, the enzyme reaction was maintained, and the product amount was increased for a 62 h reaction time. The investigated ω-TA can be used in the bioconversion of bulky ketones to chiral amines for future bioprocess applications.
Collapse
|
27
|
Velasco-Lozano S, Jackson E, Ripoll M, López-Gallego F, Betancor L. Stabilization of ω-transaminase from Pseudomonas fluorescens by immobilization techniques. Int J Biol Macromol 2020; 164:4318-4328. [PMID: 32898544 DOI: 10.1016/j.ijbiomac.2020.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
Transaminases are a class of enzymes with promising applications for the preparation and resolution of a vast diversity of valued amines. Their poor operational stability has fueled many investigations on its stabilization due to their biotechnological relevance. In this work, we screened the stabilization of the tetrameric ω-transaminase from Pseudomonas fluorescens (PfωTA) through both carrier-bound and carrier-free immobilization techniques. The best heterogeneous biocatalyst was the PfωTA immobilized as cross-linked enzyme aggregates (PfωTA-CLEA) which resulted after studying different parameters as the precipitant, additives and glutaraldehyde concentrations. The best conditions for maximum recovered activity (29 %) and maximum thermostability at 60 ºC and 70 ºC (100 % and 71 % residual activity after 1 h, respectively) were achieved by enzyme precipitation with 90% acetone or ethanol, in presence of BSA (100 mg/mL) and employing glutaraldehyde (100 mM) as cross-linker. Studies on different conditions for PfωTA-CLEA preparation yielded a biocatalyst that exhibited 31 and 4.6 times enhanced thermal stability at 60 °C and 70 °C, respectively, compared to its soluble counterpart. The PfωTA-CLEA was successfully used in the bioamination of 4-hydroxybenzaldehyde to 4-hydroxybenzylamine. To the best of our knowledge, this is the first report describing a transaminase cross-linked enzyme aggregates as immobilization strategy to generate a biocatalyst with outstanding thermostability.
Collapse
Affiliation(s)
- Susana Velasco-Lozano
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain; Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain.
| | - Erienne Jackson
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Cuareim 1441, 11100 Montevideo, Uruguay
| | - Magdalena Ripoll
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Cuareim 1441, 11100 Montevideo, Uruguay
| | - Fernando López-Gallego
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain; Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Cuareim 1441, 11100 Montevideo, Uruguay.
| |
Collapse
|
28
|
Li R, Chen Y, Du K, Feng W. Peptide Bond Formation Between the Hetrosubunits of ω-Transaminase, Alanine Dehydrogenase, and Formate Dehydrogenase Through Subunit Splicing Promoted by Heterodimerization of Leucine Zipper Motifs. Front Bioeng Biotechnol 2020; 8:686. [PMID: 32695764 PMCID: PMC7338344 DOI: 10.3389/fbioe.2020.00686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
For the multimeric enzymes R-ω-transaminase (RTA), alanine dehydrogenase (AlaDH), and formate dehydrogenase (FDH), peptide bond formation between the hetrosubunits has been achieved by the intein-mediated in vivo subunit splicing. The subunit ligation is triggered by the heterodimerization of an arginine rich leucine zipper motif with a glutamic acid rich leucine zipper motif. The one-by-one ligation of hetrosubunits constructs the pairing enzymes RTA&AlaDH and AlaDH&FDH. The ligation modes were analyzed based on blue native polyacrylamide gel electrophoresis (BN-PAGE). The spectra of circular dichroism (CD), fluorescence, and two-dimensional FTIR provide information on the secondary structures and stability of the pairing enzymes. The enzyme-substrate interaction was analyzed based on microscale thermophoresis analysis. In contrast to the mixed three enzymes RTA + AlaDH + FDH, the ligated enzymes RTA&AlaDH + AlaDH&FDH exhibited a much larger substrate affinity, higher stability, and significantly enhanced activity.
Collapse
Affiliation(s)
- Rong Li
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yao Chen
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Kun Du
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Wei Feng
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
29
|
Heckmann CM, Gourlay LJ, Dominguez B, Paradisi F. An ( R)-Selective Transaminase From Thermomyces stellatus: Stabilizing the Tetrameric Form. Front Bioeng Biotechnol 2020; 8:707. [PMID: 32793563 PMCID: PMC7387707 DOI: 10.3389/fbioe.2020.00707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
The identification and 3D structural characterization of a homolog of the (R)-selective transaminase (RTA) from Aspergillus terreus (AtRTA), from the thermotolerant fungus Thermomyces stellatus (TsRTA) is here reported. The thermostability of TsRTA (40% retained activity after 7 days at 40°C) was initially attributed to its tetrameric form in solution, however subsequent studies of AtRTA revealed it also exists predominantly as a tetramer yet, at 40°C, it is inactivated within 48 h. The engineering of a cysteine residue to promote disulfide bond formation across the dimer-dimer interface stabilized both enzymes, with TsRTA_G205C retaining almost full activity after incubation at 50°C for 7 days. Thus, the role of this mutation was elucidated and the importance of stabilizing the tetramer for overall stability of RTAs is highlighted. TsRTA accepts the common amine donors (R)-methylbenzylamine, isopropylamine, and d-alanine as well as aromatic and aliphatic ketones and aldehydes.
Collapse
Affiliation(s)
| | - Louise J. Gourlay
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | - Francesca Paradisi
- School of Chemistry, University of Nottingham, Nottingham, United Kingdom
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Bezsudnova EY, Stekhanova TN, Ruzhitskiy AO, Popov VO. Effects of pH and temperature on (S)-amine activity of transaminase from the cold-adapted bacterium Psychrobacter cryohalolentis. Extremophiles 2020; 24:537-549. [PMID: 32418069 DOI: 10.1007/s00792-020-01174-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
(7R,8S)-diaminopelargonic acid transaminase from the cold-adapted Gram-negative bacterium Psychrobacter cryohalolentis (Pcryo361) is able to react with unnatural substrates including (S)-( +)-1-phenylethylamine, aldehydes and α-diketones. Additionally, Pcryo361 is active at 0-50 °C and retains up to 10% of the maximum activity at 0 °C. Here, we report a detailed study on the stability and low temperature activity of Pcryo361. At the optimal pH for (S)-amine activity (pH 10.0), the enzyme was stable at 0-10 °C and no decrease in the enzyme activity was observed within 24 h in a slightly alkaline medium, pH 8.0, at 35 °C. Pcryo361 was solvent stable and was activated in 10% DMSO and DMFA at 35 °C. An analysis of the efficiency of catalysis of Pcryo361 at 35 °C and 10 °C showed that the specificity towards (S)-( +)-1-phenylethylamine dropped at 10 °C; however, the specificity towards 2,3-butanedione remained unchanged. Inhibition analysis showed that Pcryo361 activity was not inhibited by acetophenone but inhibited by amines (products of aldehyde amination). The observed pH stability and low temperature activity of Pcryo361 with activated keto substrates are attractive features in the field of development of stereoselective amination at low temperatures.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russian Federation.
| | - Tatiana N Stekhanova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russian Federation
| | - Aleksandr O Ruzhitskiy
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russian Federation
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russian Federation.,Kurchatov Complex of NBICS-Technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, Moscow, 123182, Russian Federation
| |
Collapse
|
31
|
Velasco‐Lozano S, Santiago‐Arcos J, Mayoral JA, López‐Gallego F. Co‐immobilization and Colocalization of Multi‐Enzyme Systems for the Cell‐Free Biosynthesis of Aminoalcohols. ChemCatChem 2020. [DOI: 10.1002/cctc.201902404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Susana Velasco‐Lozano
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas Instituto de Sïntesis Química y Catálisis Homogénea (ISQCH-CSIC)University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Javier Santiago‐Arcos
- Heterogeneous biocatalysis laboratory Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA) Paseo de Miramon 194 20014 Donostia San Sebastián Spain
| | - José A. Mayoral
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas Instituto de Sïntesis Química y Catálisis Homogénea (ISQCH-CSIC)University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Fernando López‐Gallego
- Heterogeneous biocatalysis laboratory Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA) Paseo de Miramon 194 20014 Donostia San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Spain
| |
Collapse
|
32
|
Meng Q, Capra N, Palacio CM, Lanfranchi E, Otzen M, van Schie LZ, Rozeboom HJ, Thunnissen AMWH, Wijma HJ, Janssen DB. Robust ω-Transaminases by Computational Stabilization of the Subunit Interface. ACS Catal 2020; 10:2915-2928. [PMID: 32953233 PMCID: PMC7493286 DOI: 10.1021/acscatal.9b05223] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/31/2020] [Indexed: 12/25/2022]
Abstract
Transaminases are attractive catalysts for the production of enantiopure amines. However, the poor stability of these enzymes often limits their application in biocatalysis. Here, we used a framework for enzyme stability engineering by computational library design (FRESCO) to stabilize the homodimeric PLP fold type I ω-transaminase from Pseudomonas jessenii. A large number of surface-located point mutations and mutations predicted to stabilize the subunit interface were examined. Experimental screening revealed that 10 surface mutations out of 172 tested were indeed stabilizing (6% success), whereas testing 34 interface mutations gave 19 hits (56% success). Both the extent of stabilization and the spatial distribution of stabilizing mutations showed that the subunit interface was critical for stability. After mutations were combined, 2 very stable variants with 4 and 6 mutations were obtained, which in comparison to wild type (T m app = 62 °C) displayed T m app values of 80 and 85 °C, respectively. These two variants were also 5-fold more active at their optimum temperatures and tolerated high concentrations of isopropylamine and cosolvents. This allowed conversion of 100 mM acetophenone to (S)-1-phenylethylamine (>99% enantiomeric excess) with high yield (92%, in comparison to 24% with the wild-type transaminase). Crystal structures mostly confirmed the expected structural changes and revealed that the most stabilizing mutation, I154V, featured a rarely described stabilization mechanism: namely, removal of steric strain. The results show that computational interface redesign can be a rapid and powerful strategy for transaminase stabilization.
Collapse
Affiliation(s)
- Qinglong Meng
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nikolas Capra
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Cyntia M. Palacio
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Elisa Lanfranchi
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Otzen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Luc Z. van Schie
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Henriëtte J. Rozeboom
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andy-Mark W. H. Thunnissen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hein J. Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dick B. Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
33
|
Gavin DP, Reen FJ, Rocha-Martin J, Abreu-Castilla I, Woods DF, Foley AM, Sánchez-Murcia PA, Schwarz M, O'Neill P, Maguire AR, O'Gara F. Genome mining and characterisation of a novel transaminase with remote stereoselectivity. Sci Rep 2019; 9:20285. [PMID: 31889089 PMCID: PMC6937235 DOI: 10.1038/s41598-019-56612-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/20/2019] [Indexed: 01/27/2023] Open
Abstract
Microbial enzymes from pristine niches can potentially deliver disruptive opportunities in synthetic routes to Active Pharmaceutical Ingredients and intermediates in the Pharmaceutical Industry. Advances in green chemistry technologies and the importance of stereochemical control, further underscores the application of enzyme-based solutions in chemical synthesis. The rich tapestry of microbial diversity in the oceanic ecosystem encodes a capacity for novel biotransformations arising from the chemical complexity of this largely unexplored bioactive reservoir. Here we report a novel ω-transaminase discovered in a marine sponge Pseudovibrio sp. isolate. Remote stereoselection using a transaminase has been demonstrated for the first time using this novel protein. Application to the resolution of an intermediate in the synthesis of sertraline highlights the synthetic potential of this novel biocatalyst discovered through genomic mining. Integrated chemico-genomics revealed a unique substrate profile, while molecular modelling provided structural insights into this ‘first in class’ selectivity at a remote chiral centre.
Collapse
Affiliation(s)
- D P Gavin
- School of Chemistry; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland.,Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - F J Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, T12 K8AF, Cork, Ireland
| | - J Rocha-Martin
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - I Abreu-Castilla
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - D F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - A M Foley
- School of Chemistry, School of Pharmacy, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - P A Sánchez-Murcia
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, A-1090, Vienna, Austria
| | - M Schwarz
- School of Chemistry; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - P O'Neill
- Pfizer Process Development Centre, Loughbeg, Cork, Ireland
| | - A R Maguire
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland. .,School of Chemistry, School of Pharmacy, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland.
| | - F O'Gara
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland. .,BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland. .,Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia and Telethon Kids Institute, Perth, WA, 6008, Australia.
| |
Collapse
|
34
|
Ruggieri F, Campillo-Brocal JC, Chen S, Humble MS, Walse B, Logan DT, Berglund P. Insight into the dimer dissociation process of the Chromobacterium violaceum (S)-selective amine transaminase. Sci Rep 2019; 9:16946. [PMID: 31740704 PMCID: PMC6861513 DOI: 10.1038/s41598-019-53177-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
One of the main factors hampering the implementation in industry of transaminase-based processes for the synthesis of enantiopure amines is their often low storage and operational stability. Our still limited understanding of the inactivation processes undermining the stability of wild-type transaminases represents an obstacle to improving their stability through enzyme engineering. In this paper we present a model describing the inactivation process of the well-characterized (S)-selective amine transaminase from Chromobacterium violaceum. The cornerstone of the model, supported by structural, computational, mutagenesis and biophysical data, is the central role of the catalytic lysine as a conformational switch. Upon breakage of the lysine-PLP Schiff base, the strain associated with the catalytically active lysine conformation is dissipated in a slow relaxation process capable of triggering the known structural rearrangements occurring in the holo-to-apo transition and ultimately promoting dimer dissociation. Due to the occurrence in the literature of similar PLP-dependent inactivation models valid for other non-transaminase enzymes belonging to the same fold-class, the role of the catalytic lysine as conformational switch might extend beyond the transaminase enzyme group and offer new insight to drive future non-trivial engineering strategies.
Collapse
Affiliation(s)
- Federica Ruggieri
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Jonatan C Campillo-Brocal
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
| | - Shan Chen
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
| | - Maria S Humble
- Pharem Biotech AB, Biovation Park, SE-151 36, Södertälje, Sweden
| | - Björn Walse
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Derek T Logan
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Per Berglund
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
35
|
Roura Padrosa D, Alaux R, Smith P, Dreveny I, López-Gallego F, Paradisi F. Enhancing PLP-Binding Capacity of Class-III ω-Transaminase by Single Residue Substitution. Front Bioeng Biotechnol 2019; 7:282. [PMID: 31681755 PMCID: PMC6813460 DOI: 10.3389/fbioe.2019.00282] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/04/2019] [Indexed: 11/25/2022] Open
Abstract
Transaminases are pyridoxal-5′-phosphate (PLP) binding enzymes, broadly studied for their potential industrial application. Their affinity for PLP has been related to their performance and operational stability and while significant differences in PLP requirements have been reported, the environment of the PLP-binding pocket is highly conserved. In this study, thorough analysis of the residue interaction network of three homologous transaminases Halomonas elongata (HeTA), Chromobacterium violaceum (CvTA), and Pseudomonas fluorescens (PfTA) revealed a single residue difference in their PLP binding pocket: an asparagine at position 120 in HeTA. N120 is suitably positioned to interact with an aspartic acid known to protonate the PLP pyridinium nitrogen, while the equivalent position is occupied by a valine in the other two enzymes. Three different mutants were constructed (HeTA-N120V, CvTA-V124N, and PfTA-V129N) and functionally analyzed. Notably, in HeTA and CvTA, the asparagine variants, consistently exhibited a higher thermal stability and a significant decrease in the dissociation constant (Kd) for PLP, confirming the important role of N120 in PLP binding. Moreover, the reaction intermediate pyridoxamine-5′-phosphate (PMP) was released more slowly into the bulk, indicating that the mutation also enhances their PMP binding capacity. The crystal structure of PfTA, elucidated in this work, revealed a tetrameric arrangement with the PLP binding sites near the subunit interface. In this case, the V129N mutation had a negligible effect on PLP-binding, but it reduced its temperature stability possibly destabilizing the quaternary structure.
Collapse
Affiliation(s)
| | - Raphael Alaux
- School of Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Phillip Smith
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ingrid Dreveny
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Fernando López-Gallego
- Instituto de Síntesis Química y Catálisis Homogénea, Zaragoza, Spain.,ARAID Foundation, Zaragoza, Spain
| | - Francesca Paradisi
- School of Chemistry, University of Nottingham, Nottingham, United Kingdom.,Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
36
|
Kwon S, Lee JH, Kim CM, Ha HJ, Lee SH, Lee CS, Jeon JH, So I, Park HH. Structural insights into the enzyme specificity of a novel ω-transaminase from the thermophilic bacterium Sphaerobacter thermophilus. J Struct Biol 2019; 208:107395. [PMID: 31560999 DOI: 10.1016/j.jsb.2019.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 10/26/2022]
Abstract
Transaminases are pyridoxal 5'-phosphate-dependent enzymes that reversibly catalyze transamination reactions from an amino group donor substrate to an amino group acceptor substrate. ω-Transaminases (ωTAs) utilize compounds with an amino group not at α-carbon position as their amino group donor substrates. Recently, a novel ωTA with broad substrate specificity and high thermostability from the thermophilic bacterium Sphaerobacter thermophilus (St-ωTA) has been reported. Although St-ωTA has been biochemically characterized, little is known about its determinants of substrate specificity. In the present study, we determined the crystal structure of St-ωTA at 1.9 Å resolution to clarify in detail its mechanism of substrate recognition. The structure of St-ωTA revealed that it has a voluminous active site resulting from the unique spatial arrangement of residues comprising its active site. In addition, our molecular docking simulation results suggest that substrate compounds may bind to active site residues via electrostatic interactions or hydrophobic interactions that can be induced by subtle rearrangements of active site residues. On the basis of these structural analyses, we propose a plausible working model of the enzymatic mechanism of St-ωTA. Our results provide profound structural insights into the substrate specificity of St-ωTA and extend the boundaries of knowledge of TAs.
Collapse
Affiliation(s)
- Sunghark Kwon
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Chang Min Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ji Ha
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
37
|
Márquez SL, Atalah J, Blamey JM. Characterization of a novel thermostable (S)-amine-transaminase from an Antarctic moderately-thermophilic bacterium Albidovulum sp. SLM16. Enzyme Microb Technol 2019; 131:109423. [PMID: 31615676 DOI: 10.1016/j.enzmictec.2019.109423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Amine-transaminases (ATAs) are enzymes that catalyze the reversible transfer of an amino group between primary amines and carbonyl compounds. They have been widely studied in the last decades for their application in stereoselective synthesis of chiral amines, which are one of the most valuable building blocks in pharmaceuticals manufacturing. Their excellent enantioselectivity, use of low-cost substrates and no need for external cofactors has turned these enzymes into a promising alternative to the chemical synthesis of chiral amines. Nevertheless, its application at industrial scale remains limited mainly because most of the available ATAs are scarcely tolerant to harsh reaction conditions such as high temperatures and presence of organic solvents. In this work, a novel (S)-ATA was discovered in a thermophilic bacterium, Albidovulum sp. SLM16, isolated from a geothermal Antarctic environmental sample, more specifically from a shoreline fumarole in Deception Island. The transaminase-coding gene was identified in the genome of the microorganism, cloned and overexpressed in Escherichia coli for biochemical characterization. The activity of the recombinant ATA was optimal at 65 °C and pH 9.5. Molecular mass estimates suggest a 75 kDa homodimeric structure. The enzyme turned out to be highly thermostable, maintaining 80% of its specific activity after 5 days of incubation at 50 °C. These results indicate that ATA_SLM16 is an excellent candidate for potential applications in biocatalytic synthesis. To the best of our knowledge, this would be the first report of the characterization of a thermostable (S)-ATA discovered by means of in vivo screening of thermophilic microorganisms.
Collapse
Affiliation(s)
- Sebastián L Márquez
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile; Fundación Científica y Cultural Biociencia, Santiago, Chile
| | - Joaquín Atalah
- Fundación Científica y Cultural Biociencia, Santiago, Chile
| | - Jenny M Blamey
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile; Fundación Científica y Cultural Biociencia, Santiago, Chile.
| |
Collapse
|
38
|
Contente ML, Paradisi F. Transaminase‐Catalyzed Continuous Synthesis of Biogenic Aldehydes. Chembiochem 2019; 20:2830-2833. [DOI: 10.1002/cbic.201900356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Martina L. Contente
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Francesca Paradisi
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
39
|
Kwon S, Park HH. Structural Consideration of the Working Mechanism of Fold Type I Transaminases From Eubacteria: Overt and Covert Movement. Comput Struct Biotechnol J 2019; 17:1031-1039. [PMID: 31452855 PMCID: PMC6698932 DOI: 10.1016/j.csbj.2019.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022] Open
Abstract
Transaminases (TAs) reversibly catalyze the transfer reaction of an amino group between an amino group donor and an amino group acceptor, using pyridoxal 5′-phosphate (PLP) as a cofactor. TAs are categorized according to the amino group position of the donor substrate and respective TAs recognize their own specific substrates. Over the past decade, a number of TA structures have been determined by X-ray crystallography. On the basis of the structural information, the detailed mechanism of substrate recognition by TAs has also been elucidated. In this review, fold type I TAs are addressed intensively. Comparative studies on structural differences between the apo and holo forms of fold type I TAs have demonstrated that regions containing the active site exhibit structural plasticity in the apo form, facilitating PLP insertion into the active site. In addition, given that TAs recognize two different kinds of substrates, they possess dual substrate specificity. It is known that spatial rearrangements of active site residues occur upon binding of the substrates. Intriguingly, positively charged residues are predominantly distributed at the active site cavity. The electric field generated by such charge distributions may attract negatively charged molecules, such as PLP and amino group acceptors, into the active site. Indeed, TAs show remarkable dynamics in diverse aspects. In this review, we describe the comprehensive working mechanism of fold type I TAs, with a focus on conformational changes.
Collapse
Affiliation(s)
| | - Hyun Ho Park
- Corresponding author at: College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
40
|
Kelefiotis-Stratidakis P, Tyrikos-Ergas T, Pavlidis IV. The challenge of using isopropylamine as an amine donor in transaminase catalysed reactions. Org Biomol Chem 2019; 17:1634-1642. [PMID: 30394478 DOI: 10.1039/c8ob02342e] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Amine transaminases (ATAs) propose an appealing alternative to transition metal catalysts as they can provide chiral amines of high purity from pro-chiral compounds by asymmetric synthesis. Industrial interest on ATAs arises from the fact that chiral amines are present in a wide spectrum of pharmaceutical and other high value-added chiral compounds and building blocks. Despite their potential as useful synthetic tools, several drawbacks such as challenges associated with the thermodynamic equilibrium can still impede their utilization. Several methods have been developed to displace the equilibrium, such as the use of alanine as an amine donor and the subsequent removal of pyruvate with a two-enzyme system, or the use of o-xylylene diamine. To date, the preferred amine donor remains isopropylamine (IPA), as the produced acetone can be removed easily under low pressure or slight heating, without complicating the process with other enzymes. Despite its small size, IPA is not widely accepted from wild-type ATAs, and this fact compromises its wide applicability. Herein, we index the reported biocatalytic aminations with IPA, comparing the sequences, while we discuss significant parameters of the process, such as the effect of temperature and pH, as well as the protein engineering and process development advances in the field. This information is expected to provide an insight for potential designs of tailor-made ATAs and IPA processes.
Collapse
|
41
|
Shin YC, Yun H, Park HH. Structural dynamics of the transaminase active site revealed by the crystal structure of a co-factor free omega-transaminase from Vibrio fluvialis JS17. Sci Rep 2018; 8:11454. [PMID: 30061559 PMCID: PMC6065307 DOI: 10.1038/s41598-018-29846-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/19/2018] [Indexed: 02/01/2023] Open
Abstract
Omega (ω)-transaminase catalyzes the transfer of an amino group from a non-α position amino acid, or an amine compound with no carboxylic group, to an amino acceptor, and has been studied intensively because of its high potential utility in industry and pharmatheutics. The ω-transaminase from Vibrio fluvialis JS17 (Vfat) is an amine:pyruvate transaminase capable of the stereo-selective transamination of arylic chiral amines. This enzyme exhibits extraordinary enantio-selectivity, and has a rapid reaction rate for chiral amine substrates. In this study, we report the crystal structure of the apo form of Vfat. The overall structure of Vfat was typical of other class III aminotransferase exhibiting an N-terminal helical domain, a small domain, and a large domain. Interestingly, the two subunits of apo Vfat in the asymmetric unit had different structures. A comparison of the overall structure to other transaminases, revealed that the structures of the N-terminal helical domain and the large domain can be affected by cofactor occupancy, but the structural rearrangement in these regions can occur independently.
Collapse
Affiliation(s)
- Young-Cheul Shin
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Hyungdon Yun
- Department of Bioscience & Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
42
|
Dawood AWH, Weiß MS, Schulz C, Pavlidis IV, Iding H, de Souza ROMA, Bornscheuer UT. Isopropylamine as Amine Donor in Transaminase-Catalyzed Reactions: Better Acceptance through Reaction and Enzyme Engineering. ChemCatChem 2018. [DOI: 10.1002/cctc.201800936 and 21=21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ayad W. H. Dawood
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Martin S. Weiß
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Christian Schulz
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Ioannis V. Pavlidis
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
- Department of Chemistry; University of Crete; Voutes University Campus Heraklion 70013 Greece
| | - Hans Iding
- Process Chemistry and Catalysis, Biocatalysis; F. Hoffmann-La Roche Ltd.; Grenzacher Strasse 124 Basel 4070 Switzerland
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group, Institute of Chemistry; Federal University of Rio de Janeiro; Brazil
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| |
Collapse
|
43
|
Dawood AWH, Weiß MS, Schulz C, Pavlidis IV, Iding H, de Souza ROMA, Bornscheuer UT. Isopropylamine as Amine Donor in Transaminase-Catalyzed Reactions: Better Acceptance through Reaction and Enzyme Engineering. ChemCatChem 2018. [DOI: 10.1002/cctc.201800936 and 67=89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ayad W. H. Dawood
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Martin S. Weiß
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Christian Schulz
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Ioannis V. Pavlidis
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
- Department of Chemistry; University of Crete; Voutes University Campus Heraklion 70013 Greece
| | - Hans Iding
- Process Chemistry and Catalysis, Biocatalysis; F. Hoffmann-La Roche Ltd.; Grenzacher Strasse 124 Basel 4070 Switzerland
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group, Institute of Chemistry; Federal University of Rio de Janeiro; Brazil
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| |
Collapse
|
44
|
Dawood AWH, Weiß MS, Schulz C, Pavlidis IV, Iding H, de Souza ROMA, Bornscheuer UT. Isopropylamine as Amine Donor in Transaminase-Catalyzed Reactions: Better Acceptance through Reaction and Enzyme Engineering. ChemCatChem 2018. [DOI: 10.1002/cctc.201800936] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ayad W. H. Dawood
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Martin S. Weiß
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Christian Schulz
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Ioannis V. Pavlidis
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
- Department of Chemistry; University of Crete; Voutes University Campus Heraklion 70013 Greece
| | - Hans Iding
- Process Chemistry and Catalysis, Biocatalysis; F. Hoffmann-La Roche Ltd.; Grenzacher Strasse 124 Basel 4070 Switzerland
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group, Institute of Chemistry; Federal University of Rio de Janeiro; Brazil
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| |
Collapse
|
45
|
Recent Advances in ω-Transaminase-Mediated Biocatalysis for the Enantioselective Synthesis of Chiral Amines. Catalysts 2018. [DOI: 10.3390/catal8070254] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
46
|
Chen S, Campillo-Brocal JC, Berglund P, Humble MS. Characterization of the stability of Vibrio fluvialis JS17 amine transaminase. J Biotechnol 2018; 282:10-17. [PMID: 29906477 DOI: 10.1016/j.jbiotec.2018.06.309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
The amine transaminase from Vibrio fluvialis (Vf-ATA) is an attractive enzyme with applications within Biocatalysis for the preparation of chiral amines. Various catalytic properties of Vf-ATA have been investigated, but a biophysical characterization of its stability has been lacking. Today, the industrial application of Vf-ATA is limited by its low operational stability. In order to enhance the knowledge regarding the structural stability of ATAs, general characterizations of different ATAs are required. In this work, the stability of Vf-ATA was explored. First, the affinity between enzyme and pyridoxal-5'-phosphate (PLP) (KD value of 7.9 μM) was determined. Addition of PLP to enzyme preparations significantly improved the enzyme thermal stability by preventing enzyme unfolding. With the aim to understand if this was due to the PLP phosphate group coordination into the phosphate group binding cup, the effect of phosphate buffer on the enzyme stability was compared to HEPES buffer. Low concentrations of phosphate buffer showed a positive effect on the enzyme initial activity, while higher phosphate buffer concentrations prevented cofactor dissociation. Additionally, the effects of various amine or ketone substrates on the enzyme stability were explored. All tested amines caused a concentration dependent enzyme inactivation, while the corresponding ketones showed no or stabilizing effects. The enzyme inactivation due to the presence of amine can be connected to the formation of PMP, which forms in the presence of amines in the absence of ketone. Since PMP is not covalently bound to the enzyme, it could readily leave the enzyme upon formation. Exploring the different stability effects of cofactor, substrates, additives and buffer system on ATAs seems to be important in order to understand and improve the general performance of ATAs.
Collapse
Affiliation(s)
- Shan Chen
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Industrial Biotechnology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
| | - Jonatan C Campillo-Brocal
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Industrial Biotechnology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
| | - Per Berglund
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Industrial Biotechnology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
| | - Maria Svedendahl Humble
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Industrial Biotechnology, AlbaNova University Center, SE-106 91, Stockholm, Sweden; Pharem Biotech AB, Biovation Park, Forskargatan 20 J, SE-151 36, Södertälje, Sweden.
| |
Collapse
|
47
|
Self-sustaining closed-loop multienzyme-mediated conversion of amines into alcohols in continuous reactions. Nat Catal 2018. [DOI: 10.1038/s41929-018-0082-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Development of microreactors with surface-immobilized biocatalysts for continuous transamination. N Biotechnol 2018; 47:18-24. [PMID: 29758351 DOI: 10.1016/j.nbt.2018.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
The industrial importance of optically pure compounds has thrown a spotlight on ω-transaminases that have shown a high potential for the synthesis of bioactive compounds with a chiral amine moiety. The implementation of biocatalysts in industrial processes relies strongly on fast and cost effective process development, including selection of a biocatalyst form and the strategy for its immobilization. Here, microscale reactors with selected surface-immobilized amine-transaminase (ATA) in various forms are described as platforms for high-throughput process development. Wild type ATA (ATA-wt) from a crude cell extract, as well as Escherichia coli cells intracellularly overexpressing the enzyme, were immobilized on the surfaces of meander microchannels of disposable plastics by means of reactor surface silanization and glutaraldehyde bonding. In addition, a silicon/glass microchannel reactor was used for immobilization of an ATA-wt, genetically engineered to contain a silica-binding module (SBM) at the N-terminus (N-SBM-ATA-wt), leading to immobilization on the non-modified inner microchannel surface. Microreactors with surface-immobilized biocatalysts were coupled with a quenching system and at-line HPLC analytics and evaluated based on continuous biotransformation, yielding acetophenone and l-alanine. E. coli cells and N-SBM-ATA-wt were efficiently immobilized and yielded a volumetric productivity of up to 14.42 g L-1 h-1, while ATA-wt small load resulted in two orders of magnitude lower productivity. The miniaturized reactors further enabled in-operando characterization of biocatalyst stability, crucial for successful transfer to a production scale.
Collapse
|
49
|
Malla S, Gummadi SN. Thermal stability of xylose reductase from Debaryomyces nepalensis NCYC 3413: deactivation kinetics and structural studies. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Slabu I, Galman JL, Lloyd RC, Turner NJ. Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02686] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Iustina Slabu
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - James L. Galman
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - Richard C. Lloyd
- Dr.
Reddy’s Laboratories, Chirotech Technology Centre, CB4 0PE Cambridge, United Kingdom
| | - Nicholas J. Turner
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| |
Collapse
|