1
|
Xu C, Liu Y, Guo H, Du C, Qin G, Li S. From FCC to BCC: Engineering Pd Nuclearity in the PdCu Catalyst to Enhance Ethylene Selectivity in Acetylene Hydrogenation. Inorg Chem 2025; 64:1893-1900. [PMID: 39838938 DOI: 10.1021/acs.inorgchem.4c04597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The ability to finely tune the nuclearity of active metal sites is critical for designing highly selective catalysts, especially for hydrogenation processes. In this work, we developed a novel PdCu catalyst with an ordered body-centered cubic (BCC) structure, enabling precise control over Pd nuclearity to optimize selectivity. Using a facile polyol synthesis method, we modulated the Pd coordination environment, reducing the Pd-Pd coordination number from 3 (disordered face-centered cubic, FCC) to 0 (ordered BCC), thereby achieving full isolation of Pd by the surrounding Cu atoms. This structural transformation enhances hydrogen spillover and weakens ethylene adsorption, resulting in superior activity for the selective hydrogenation of acetylene to ethylene. The ordered PdCu supported on Al2O3 (o-PdCu/Al2O3) achieved a 99% acetylene conversion with an 84.5% ethylene selectivity at near-room temperature. This work highlights the importance of controlling atomic-scale nuclearity in metal catalysts and provides a promising strategy for improving the catalytic efficiency and selectivity in industrially significant processes.
Collapse
Affiliation(s)
- Changjin Xu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China
| | - Yinglei Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Huiqing Guo
- College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China
| | - Chun Du
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gaowu Qin
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Institute for Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110010, China
| | - Song Li
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
2
|
Gong R, Dasgupta A, Shang SL, He H, Kirkham M, Zimmerer EK, Canning GA, Janik MJ, Rioux RM, Liu ZK. Determination of Site Occupancy in the M-Pd-Zn (M = Cu, Ag, and Au) γ-Brass Phase by CALculation of PHAse Diagrams Modeling and Rietveld Refinement. Inorg Chem 2025; 64:1690-1701. [PMID: 39818730 DOI: 10.1021/acs.inorgchem.4c03826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The Pd-Zn γ-brass phase provides exciting opportunities for synthesizing site-isolated catalysts with precisely controlled Pd active site ensembles. Introducing a third metallic element into the γ-brass lattice further perturbs the catalytic active site ensembles. Here, we introduce coinage metallic elements M (M = Cu, Ag, and Au) into the Pd-Zn γ-brass phase and investigate the site occupation factors of each element in the γ-brass lattice. The CALculation of PHAse Diagrams (CALPHAD) modeling approach supported by energetics predicted by the density functional theory and X-ray and neutron diffraction with Rietveld refinement were used to identify the SOF on each Wyckoff site for various M amounts alloyed into the Pd-Zn γ-brass phase. The present analysis unveils the strong preference for Pd occupying the outer tetrahedral (OT) site in the γ-brass lattice, while the coinage metallic elements tend to substitute for Zn on the octahedral (OH) site. The determination of site occupancy in the bulk M-Pd-Zn γ-brass phase provides opportunities to investigate and tailor potential catalytically active site ensembles in the γ-brass phase materials.
Collapse
Affiliation(s)
- Rushi Gong
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Anish Dasgupta
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shun-Li Shang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Haoran He
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Melanie Kirkham
- Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37931, United States
| | - Eric K Zimmerer
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Griffin A Canning
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michael J Janik
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Robert M Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zi-Kui Liu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Gong T, Qiu G, He MR, Safonova OV, Yang WC, Raciti D, Oses C, Hall AS. Atomic Ordering-Induced Ensemble Variation in Alloys Governs Electrocatalyst On/Off States. J Am Chem Soc 2025; 147:510-518. [PMID: 39714265 DOI: 10.1021/jacs.4c11753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The catalytic behavior of a material is influenced by ensembles─the geometric configuration of atoms on the surface. In conventional material systems, ensemble effects and the electronic structure are coupled because these strategies focus on varying the material composition, making it difficult to understand the role of ensembles in isolation. This study introduces a methodology that separates geometric effects from the electronic structure. To tune the Pd ensemble size on the catalyst surface, we compared the reactivity of structurally different but compositionally identical Pd3Bi intermetallic and solid solution alloys. Pd3Bi intermetallics display no reactivity for methanol oxidation (MOR), while their solid solution counterparts show significant reactivity (0.5 mA cmPd-2). Intermetallics form smaller ensembles (1, 3, 4, and 5 atoms across all low-energy facets), whereas solid solution Pd3Bi has several facets that support larger Pd ensembles, with an average size of 5.25 atoms and up to 6 atoms. A partially ordered Pd3Bi (a mixed phase of intermetallic and solid solution) alloy shows intermediate MOR activity (0.1 mA cmPd-2), confirming that methanol oxidation activity tracks with the average ensemble size. All Pd3Bi alloys maintained similar electronic structures, as confirmed by X-ray photoelectron spectroscopy (XPS) valence band spectroscopy and X-ray absorption near edge structure (XANES) measurements, indicating that reactivity differences arise from variations in the ensemble size induced by differences in the atomic ordering. Our findings offer an approach for designing materials with controllable active site configurations while maintaining the catalyst's electronic structure, thereby enabling more efficient catalyst design.
Collapse
Affiliation(s)
- Tianyao Gong
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Guotao Qiu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mo-Rigen He
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Olga V Safonova
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Wei-Chang Yang
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - David Raciti
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Corey Oses
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anthony Shoji Hall
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
Wang J, Dong X, Fan Y, Wang Y, Guo X. Stable RuIr Nanoalloy Catalyst for Levulinic Acid Hydrogenation Reaction. Molecules 2024; 30:93. [PMID: 39795151 PMCID: PMC11721684 DOI: 10.3390/molecules30010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Hydrogenation of levulinic acid (LA) represents a significant approach for producing the high-value biomass-based platform compound γ-valerolactone (GVL). In this study, an efficient RuIr alloy bimetallic catalyst supported on SiC was synthesized and applied for the aqueous hydrogenation of LA into GVL under mild conditions. The RuIr/SiC catalyst exhibited high LA conversion and GVL selectivity (both > 99%) in water at 0.2 MPa H2 pressure and 25 °C. The excellent performance is attributed to the synergistic interaction between Ru and Ir nanoparticles on the semiconducting SiC support. Furthermore, the catalytic activity of the RuIr/SiC alloy remained basically unchanged after five cycles, confirming the high stability of the bimetallic alloy catalyst.
Collapse
Affiliation(s)
- Jingru Wang
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (X.D.); (Y.F.)
| | - Xianshu Dong
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (X.D.); (Y.F.)
| | - Yuping Fan
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (X.D.); (Y.F.)
| | - Yingyong Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China;
| | - Xiangyun Guo
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China;
| |
Collapse
|
5
|
Song YJ, Guo S, Xia P, Sun F, Chen ZX, Yang SH, Zhang XY, Zhang T. Development of supported intermetallic compounds: advancing the Frontiers of heterogeneous catalysis. NANOSCALE HORIZONS 2024; 10:16-37. [PMID: 39377263 DOI: 10.1039/d4nh00337c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Intermetallic compound (IMC) catalysts have garnered significant attention due to their unique surface and electronic properties, which can lead to enhanced catalytic performance compared to traditional monometallic catalysts. However, developing IMC materials as high-performance catalysts has been hindered by the inherent complexity of synthesizing nanoparticles with well-defined bulk and surface compositions. Achieving precise control over the composition of supported bimetallic IMC catalysts, especially those with high surface area and stability, has proven challenging. This review provides a comprehensive overview of the recent progress in developing supported IMC catalysts. We first examine the various synthetic approaches that have been explored to prepare supported IMC nanoparticles with phase-pure bulk structures and tailored surface compositions. Key factors influencing the formation kinetics and compositional control of these materials are discussed in detail. Then the strategies for manipulating the surface composition of supported IMCs are delved into. Applications of high-performance supported IMCs in important reactions such as selective hydrogenation, reforming, dehydrogenation, and deoxygenation are comprehensively reviewed, showcasing the unique advantages offered by these materials. Finally, the prevailing research challenges associated with supported IMCs are identified, including the need for a better understanding of the composition-property relationships and the development of scalable synthesis methods. The prospects for the practical implementation of these versatile catalysts in industrial processes are also highlighted, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Yuan-Jun Song
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Sijie Guo
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Peng Xia
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Fei Sun
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Ze-Xian Chen
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Shi-Han Yang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Xiao-Yang Zhang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
| | - Tong Zhang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou 215123, China
- Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, and School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Zhang J, Lan J, Xie F, Luo M, Peng M, Palaniyandy N, Tan Y. Nanoporous copper titanium tin (np-Cu 2TiSn) Heusler alloy prepared by dealloying-induced phase transformation for electrocatalytic nitrate reduction to ammonia. J Colloid Interface Sci 2024; 676:323-330. [PMID: 39033673 DOI: 10.1016/j.jcis.2024.07.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Heusler alloys are a series of well-established intermetallic compounds with abundant structure and elemental substitutions, which are considered as potentially valuable catalysts for integrating multiple reactions owing to the features of ordered atomic arrangement and optimized electronic structure. Herein, a nanoporous copper titanium tin (np-Cu2TiSn) Heusler alloy is successfully prepared by the (electro)chemical dealloying transformation method, which exhibits high nitrate (NO3-) reduction performance with an NH3 Faradaic efficiency of 77.14 %, an NH3 yield rate of 11.90 mg h-1 mg-1cat, and a stability for 100 h under neutral condition. Significantly, we also convert NO3- to high-purity ammonium phosphomolybdate with NH4+ collection efficiency of 83.8 %, which suggests a practical approach to convert wastewater nitrate into value-added ammonia products. Experiments and theoretical calculations reveal that the electronic structure of Cu sites is modulated by the ligand effect of surrounding Ti and Sn atoms, which can simultaneously enhance the activation of NO3-, facilitate the desorption of NH3, and reduce the energy barriers, thereby boosting the electrochemical nitrate reduction reaction.
Collapse
Affiliation(s)
- Junfeng Zhang
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, Hunan Province, China
| | - Jiao Lan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, Hunan Province, China
| | - Feng Xie
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, Hunan Province, China
| | - Min Luo
- Shanghai Technical Institute of Electronics & Information, Shanghai 201411, China.
| | - Ming Peng
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, Hunan Province, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, China.
| | - Nithyadharseni Palaniyandy
- Institute for Catalysis and Energy Solutions (ICES), College of Science, Engineering, and Technology (CSET), University of South Africa, Florida Science Campus, Roodepoort 1709, South Africa
| | - Yongwen Tan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, Hunan Province, China.
| |
Collapse
|
7
|
Prasanseang W, Maineawklang N, Liwatthananukul N, Somsri S, Wattanakit C. Synthesis, Characterization, and CO 2 Methanation Over Hierarchical ZSM-5-NiCoAl Layered Double Hydroxide Nanocomposites: Improvement of C-C Coupling to Ethane. Chemphyschem 2024:e202400926. [PMID: 39656467 DOI: 10.1002/cphc.202400926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/10/2024] [Indexed: 12/28/2024]
Abstract
To date, preparing materials with highly dispersed metal nanoparticles without metal agglomeration on a solid support is challenging. This work presents an alternative approach for synthesizing NiCo species on hierarchical ZSM-5 materials derived from a ZSM-5@NiCoAl-LDHs composite. The designed material was prepared by the growth of a NiCo-layered double hydroxides (LDHs) precursor on the surface of hierarchical ZSM-5 nanosheets. The effect of the weight ratio of NiCo-LDHs precursor to ZSM-5 on the composite properties has been studied. The results show that 45 wt.% LDHs (ZSM-5@NiCoAl-LDHs-45) is the most suitable condition for preparing NiCoAl-LDHs/ZSM-5 composite, which promotes a strong interaction between bimetallic NiCo and hierarchical ZSM-5. The ZSM-5@NiCoAl-LDHs-45 showed a BET surface of 386 m2 g-1, in which the surface area has been re-allocated between microspores and mesopores due to the presence of NiCoAl-LDHs composite. The catalyst was also tested for CO2 methanation at 380 °C under atmospheric hydrogen pressure. The results show that the catalyst could provide CO2 conversion of up to 40 % at WSHV of 2.91 h-1. Interestingly, it could not only promote methane but also provide a high selectivity of ethane, approximately 20.4 %. Moreover, the excellent catalytic stability of ethane production was illustrated over 24 hours of time-on-stream (TOS).
Collapse
Affiliation(s)
- Warot Prasanseang
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand
| | - Narasiri Maineawklang
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand
| | - Natthawoot Liwatthananukul
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand
| | - Supattra Somsri
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand
| | - Chularat Wattanakit
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand
| |
Collapse
|
8
|
Kumar S, Choudhary P, Sharma D, Sajwan D, Kumar V, Krishnan V. Tailored Engineering of Layered Double Hydroxide Catalysts for Biomass Valorization: A Way Towards Waste to Wealth. CHEMSUSCHEM 2024; 17:e202400737. [PMID: 38864756 DOI: 10.1002/cssc.202400737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
Abstract
Layered double hydroxides (LDH) have significant attention in recent times due to their unique characteristic properties, including layered structure, variable compositions, tunable acidity and basicity, memory effect, and their ability to transform into various kinds of catalysts, which make them desirable for various types of catalytic applications, such as electrocatalysis, photocatalysis, and thermocatalysis. In addition, the upcycling of lignocellulose biomass and its derived compounds has emerged as a promising strategy for the synthesis of valuable products and fine chemicals. The current review focuses on recent advancements in LDH-based catalysts for biomass conversion reactions. Specifically, this review highlights the structural features and advantages of LDH and LDH-derived catalysts for biomass conversion reactions, followed by a detailed summary of the different synthesis methods and different strategies used to tailor their properties. Subsequently, LDH-based catalysts for hydrogenation, oxidation, coupling, and isomerization reactions of biomass-derived molecules are critically summarized in a very detailed manner. The review concludes with a discussion on future research directions in this field which anticipates that further exploration of LDH-based catalysts and integration of cutting-edge technologies into biomass conversion reactions hold promise for addressing future energy challenges, potentially leading to a carbon-neutral or carbon-positive future.
Collapse
Affiliation(s)
- Sahil Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Devanshu Sajwan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Vinit Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
9
|
Li JL, Tien TY, Liao HC, Wu HL. Exploring size-dependent optical property alterations in fine-tuning intermetallic PdCd nanocube sizes. NANOSCALE 2024; 16:21902-21907. [PMID: 39503067 DOI: 10.1039/d4nr03640a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Tuning the size of intermetallic nanocrystals is challenging due to the conflicting effects of surface free energy and surface diffusion on the disorder-to-order phase transition during wet-chemistry growth. Herein, we synthesized intermetallic PdCd nanocubes with tunable sizes ranging from 8 to 15 nm by adjusting the Cd precursor concentrations using a wet-chemistry approach. This process shares a mechanism of size tuning similar to quantum dot synthesis, involving the regulation of monomer concentration determined by the precursor concentrations. The intermetallic PdCd nanocubes exhibit distinct size-dependent optical properties compared to platinum group metal nanocrystals of similar size ranges, with increased light-induced catalytic enhancement as size increases. The 15 nm-sized nanocubes exhibited the most significant light-induced catalytic enhancement, reaching 3.3 times, while the 8 nm-sized nanocubes showed only a 1.6-fold enhancement in 4-nitrophenol reduction. This study emphasizes the importance of tuning the size of intermetallic nanocrystals, providing valuable insights for future exploration of their size-dependent properties.
Collapse
Affiliation(s)
- Jia-Lin Li
- Department of Chemistry, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Ting-Yu Tien
- Department of Chemistry, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Hung-Chun Liao
- Department of Chemistry, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Hsin-Lun Wu
- Department of Chemistry, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
10
|
Lv H, Liu B. Multidimensionally ordered mesoporous intermetallics: Frontier nanoarchitectonics for advanced catalysis. Chem Soc Rev 2024; 53:11321-11333. [PMID: 39470228 DOI: 10.1039/d4cs00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Ordered intermetallics contribute to a unique class of catalyst materials due to their rich atomic features. Further engineering of ordered intermetallics at a mesoscopic scale is of great importance to expose more active sites and introduce new functions. Recently, multidimensionally ordered mesoporous intermetallic (MOMI) nanoarchitectonics, which subtly integrate atomically ordered intermetallics and mesoscopically ordered mesoporous structures, have held add-in synergies that not only enhance catalytic activity and stability but also optimize catalytic selectivity. In this tutorial review, we have summarized the latest progress in the rational design, targeted synthesis, and catalytic applications of MOMIs, with a special focus on the findings of our group. Three strategies, including concurrent template route, self-template route, and dealloying route, are discussed in detail. Furthermore, physicochemical properties and catalytic performances for several important reactions are also described to highlight the remarkable activity, high stability, and controllable selectivity of MOMI nanoarchitectonics. Finally, we conclude with a summary and explore future perspectives in the field to contribute to wider applications.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
11
|
Go S, Kwon W, Hong D, Lee T, Oh SH, Bae D, Kim JH, Lim S, Joo YC, Nam DH. Thermodynamic phase control of Cu-Sn alloy electrocatalysts for selective CO 2 reduction. NANOSCALE HORIZONS 2024; 9:2295-2305. [PMID: 39291704 DOI: 10.1039/d4nh00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In the electrochemical CO2 reduction reaction (CO2RR), Cu alloy electrocatalysts can control the CO2RR selectivity by modulating the intermediate binding energy. Here, we report the thermodynamic-based Cu-Sn bimetallic phase control in heterogeneous catalysts for selective CO2 conversion. Starting from the thermodynamic understanding about Cu-Sn bimetallic compounds, we established the specific processing window for Cu-Sn bimetallic phase control. To modulate the Cu-Sn bimetallic phases, we controlled the oxygen partial pressure (pO2) during the calcination of electrospun Cu and Sn ions-incorporated nanofibers (NFs). This resulted in the formation of CuO-SnO2 NFs (full oxidation), Cu-SnO2 NFs (selective reduction), Cu3Sn/CNFs, Cu41Sn11/CNFs, and Cu6Sn5/CNFs (full reduction). In the CO2RR, CuO-SnO2 NFs exhibited formate (HCOO-) production and Cu-SnO2 NFs showed carbon monoxide (CO) production with the faradaic efficiency (FE) of 65.3% at -0.99 V (vs. RHE) and 59.1% at -0.89 V (vs. RHE) respectively. Cu-rich Cu41Sn11/CNFs and Cu3Sn/CNFs enhanced the methane (CH4) production with the FE of 39.1% at -1.36 V (vs. RHE) and 34.7% at -1.50 V (vs. RHE). However, Sn-rich Cu6Sn5/CNFs produced HCOO- with the FE of 58.6% at -2.31 V (vs. RHE). This study suggests the methodology for bimetallic catalyst design and steering the CO2RR pathway by controlling the active sites of Cu-Sn alloys.
Collapse
Affiliation(s)
- Soohyun Go
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Woosuck Kwon
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Deokgi Hong
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Taemin Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Sang-Ho Oh
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Daewon Bae
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jeong-Heon Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seolha Lim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Young-Chang Joo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyun Nam
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Qin Z, Li J, Wu Q, Sathishkumar N, Liu X, Lai J, Mao J, Xie L, Li S, Lu G, Cao R, Yan P, Huang Y, Li Q. Topologically Close-Packed Frank-Kasper C15 Phase Intermetallic Ir Alloy Electrocatalysts Enables High-Performance Proton Exchange Membrane Water Electrolyzer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412541. [PMID: 39350447 DOI: 10.1002/adma.202412541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Indexed: 11/26/2024]
Abstract
Chemical synthesis of unconventional topologically close-packed intermetallic nanocrystals (NCs) remains a considerable challenge due to the limitation of large volume asymmetry between the components. Here, a series of unconventional intermetallic Frank-Kasper C15 phase Ir2M (M = rare earth metals La, Ce, Gd, Tb, Tm) NCs is successfully prepared via a molten-salt assisted reduction method as efficient electrocatalysts for hydrogen evolution reaction (HER). Compared to the disordered counterpart (A1-Ir2Ce), C15-Ir2Ce features higher Ir-Ce coordination number that leads to an electron-rich environment for Ir sites. The C15-Ir2Ce catalyst exhibits excellent and pH-universal HER activity and requires only 9, 16, and 27 mV overpotentials to attain 10 mA cm-2 in acidic, alkaline, and neutral electrolytes, respectively, representing one of the best HER electrocatalysts ever reported. In a proton exchange membrane water electrolyzer, the C15-Ir2Ce cathode achieves an industrial-scale current density of 1 A cm-2 with a remarkably low cell voltage of 1.7 V at 80 °C and can operate stably for 1000 h with a sluggish voltage decay rate of 50 µV h-1. Theoretical investigations reveal that the electron-rich Ir sites intensify the polarization of *H2O intermediate on C15-Ir2Ce, thus lowering the energy barrier of the water dissociation and facilitating the HER kinetics.
Collapse
Affiliation(s)
- Zhuhuang Qin
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinhui Li
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Qiyan Wu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Nadaraj Sathishkumar
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, 91330, USA
| | - Xuan Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiaoyang Lai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jialun Mao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Linfeng Xie
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shenzhou Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, 91330, USA
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Pengfei Yan
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
13
|
Schreiner SHF, Göhler F, Almquist CC, Rüffer T, Piers WE, Seyller T, Kretschmer R. Accessing Homo- and Heterobimetallic Complexes with a Dianionic Pentadentate Ligand. Inorg Chem 2024; 63:19665-19675. [PMID: 39377374 DOI: 10.1021/acs.inorgchem.4c02833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The tetrapyrazolylpyridyl diborate (B2Pz4Py) ligand provides a suitable platform for the isolation of heterobimetallic main-group element compounds as well as homotetrametallic copper complexes. The heterobimetallic tin(II)-lithium(I) (1) and tin(II)-thallium(I) (2) complexes have been synthesized, isolated, and fully characterized including single-crystal X-ray diffraction analysis. When reacted with copper(I) sources, complex 2 grants access to a homotetrametallic copper(I) complex (4). Upon subsequent oxidation, 4 gives rise to the bimetallic copper(II) complex 5, in which the two copper(II) centers are connected via a bridging bromido ligand (CuII-μ-Br-CuII).
Collapse
Affiliation(s)
- Simon H F Schreiner
- Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, Chemnitz 09111, Germany
| | - Fabian Göhler
- Institut für Physik, Technische Universität Chemnitz, Chemnitz 09126, Germany
- Centre for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz 09126, Germany
| | - C Christopher Almquist
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary T2N 1N4, AB, Canada
| | - Tobias Rüffer
- Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, Chemnitz 09111, Germany
| | - Warren E Piers
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary T2N 1N4, AB, Canada
| | - Thomas Seyller
- Institut für Physik, Technische Universität Chemnitz, Chemnitz 09126, Germany
- Centre for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz 09126, Germany
| | - Robert Kretschmer
- Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, Chemnitz 09111, Germany
- Jena Center of Soft Matter, Friedrich-Schiller-Universität Jena, Philosophenweg 7, Jena 07443, Germany
| |
Collapse
|
14
|
Comes J, Islamovic E, Lizandara-Pueyo C, Seto J. Improvements in the utilization of calcium carbonate in promoting sustainability and environmental health. Front Chem 2024; 12:1472284. [PMID: 39421606 PMCID: PMC11484102 DOI: 10.3389/fchem.2024.1472284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Calcium carbonate (CaCO3) is an incredibly abundant mineral on Earth, with over 90% of it being found in the lithosphere. To address the CO2 crisis and combat ocean acidification, it is essential to produce more CaCO3 using various synthetic methods. Additionally, this approach can serve as a substitute for energy-intensive processes like cement production. By doing so, we have the potential to not only reverse the damage caused by climate change but also protect biological ecosystems and the overall environment. The key lies in maximizing the utilization of CaCO3 in various human activities, paving the way for a more sustainable future for our planet.
Collapse
Affiliation(s)
- Jackson Comes
- School for the Engineering of Matter, Transport, and Energy, Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | | | | | - Jong Seto
- School for the Engineering of Matter, Transport, and Energy, Center for Biological Physics, Arizona State University, Tempe, AZ, United States
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
15
|
Boulangeot N, Brix F, Sur F, Gaudry É. Hydrogen, Oxygen, and Lead Adsorbates on Al 13Co 4(100): Accurate Potential Energy Surfaces at Low Computational Cost by Machine Learning and DFT-Based Data. J Chem Theory Comput 2024. [PMID: 39158468 DOI: 10.1021/acs.jctc.4c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Intermetallic compounds are promising materials in numerous fields, especially those involving surface interactions, such as catalysis. A key factor to investigate their surface properties lies in adsorption energy maps, typically built using first-principles approaches. However, exploring the adsorption energy landscapes of intermetallic compounds can be cumbersome, usually requiring huge computational resources. In this work, we propose an efficient method to predict adsorption energies, based on a Machine Learning (ML) scheme fed by a few Density Functional Theory (DFT) estimates performed on n sites selected through the Farthest Point Sampling (FPS) process. We detail its application on the Al13Co4(100) quasicrystalline approximant surface for several atomic adsorbates (H, O, and Pb). On this specific example, our approach is shown to outperform both simple interpolation strategies and the recent ML force field MACE [arXiv.2206.07697], especially when the number n is small, i.e., below 36 sites. The ground-truth DFT adsorption energies are much more correlated with the predicted FPS-ML estimates (Pearson R-factor of 0.71, 0.73, and 0.90 for H, O and Pb, respectively, when n = 36) than with interpolation-based or MACE-ML ones (Pearson R-factors of 0.43, 0.39, and 0.56 for H, O, and Pb, in the former case and 0.22, 0.35, and 0.63 in the latter case). The unbiased root-mean-square error (ubRMSE) is lower for FPS-ML than for interpolation-based and MACE-ML predictions (0.15, 0.17, and 0.17 eV, respectively, for hydrogen and 0.17, 0.25, and 0.22 eV for lead), except for oxygen (0.55, 0.47, and 0.46 eV) due to large surface relaxations in this case. We believe that these findings and the corresponding methodology can be extended to a wide range of systems, which will motivate the discovery of novel functional materials.
Collapse
Affiliation(s)
- Nathan Boulangeot
- Univ. de Lorraine, CNRS UMR7198, Institut Jean Lamour, Campus Artem, 2 allée André Guinier, 54000 Nancy, France
- Univ. de Lorraine, INRIA, CNRS UMR7503, Laboratoire Lorrain de Recherche en Informatique et Ses Applications, Campus Scientifique, 615 Rue du Jardin-Botanique, 54506 Vandœuvre-lès-Nancy, France
| | - Florian Brix
- Univ. de Lorraine, CNRS UMR7198, Institut Jean Lamour, Campus Artem, 2 allée André Guinier, 54000 Nancy, France
- Center for Interstellar Catalysis, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Frédéric Sur
- Univ. de Lorraine, INRIA, CNRS UMR7503, Laboratoire Lorrain de Recherche en Informatique et Ses Applications, Campus Scientifique, 615 Rue du Jardin-Botanique, 54506 Vandœuvre-lès-Nancy, France
| | - Émilie Gaudry
- Univ. de Lorraine, CNRS UMR7198, Institut Jean Lamour, Campus Artem, 2 allée André Guinier, 54000 Nancy, France
| |
Collapse
|
16
|
Nakaya Y, Furukawa S. High-entropy intermetallics: emerging inorganic materials for designing high-performance catalysts. Chem Sci 2024; 15:12644-12666. [PMID: 39148764 PMCID: PMC11323319 DOI: 10.1039/d3sc03897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
Alloy materials have been used as promising platforms to upgrade catalytic performance that cannot be achieved with conventional monometallic materials. As a result of numerous efforts, the recent progress in the field of alloy catalysis has been remarkable, and a wide range of new advanced alloys have been considered as potential electro/thermal catalysts. Among advanced alloy materials, high-entropy intermetallics are novel materials, and their excellent catalytic performance has recently been reported. High-entropy intermetallics have several advantages over disordered solid-solution high-entropy alloys, that is, greater structural/thermal stability, more facile site isolation, more precise control of electronic structures, tunability, and multifunctionality. A multidimensional compositional space is indeed limitless, but such a compositional space also provides a well-designed surface configuration because of its ordered nature. In this review, we will provide fundamental insights into high-entropy intermetallics, including thermodynamic properties, synthesis requirements, characterization techniques, roles in catalysis, and reaction examples. The comprehensive information provided in this review will highlight the great application potential of high-entropy intermetallics for catalysis, and will accelerate the development of this newly developed field.
Collapse
Affiliation(s)
- Yuki Nakaya
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
| | - Shinya Furukawa
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
| |
Collapse
|
17
|
Tang N, Wang H, Zhang T. Synthesis of Pt-Rare Earth Metal Alloys and Their Applications. Chemistry 2024:e202402750. [PMID: 39140434 DOI: 10.1002/chem.202402750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The alloying of platinum (Pt) with rare earth (RE) metals has emerged as a highly promising strategy for enhancing both the activity and stability of catalysts. Consequently, the development of methods for the controlled synthesis of Pt-RE alloys has received growing attention. This review comprehensively explores diverse synthesis methodologies for Pt-RE alloys, including physical metallurgy method, chemical reduction method, electrodeposition method, and dealloying method. Additionally, this review summaries the applications of Pt-RE alloys in various fields. By providing a critical analysis of existing literature and highlighting key challenges and future directions, this review aims to offer valuable insights and serve as a springboard for further advancements in the controlled synthesis and diverse applications of Pt-RE alloys.
Collapse
Affiliation(s)
- Ningjing Tang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, Henan, 450003, China
| | - Tao Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, Henan, 450003, China
| |
Collapse
|
18
|
Liu H, Zhang Y, Zhang L, Mu X, Zhang L, Zhu S, Wang K, Yu B, Jiang Y, Zhou J, Yang F. Unveiling Atomic-Scaled Local Chemical Order of High-Entropy Intermetallic Catalyst for Alkyl-Substitution-Dependent Alkyne Semihydrogenation. J Am Chem Soc 2024; 146:20193-20204. [PMID: 39004825 DOI: 10.1021/jacs.4c05295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
High-entropy intermetallic (HEI) nanocrystals, composed of multiple elements with an ordered structure, are of immense interest in heterogeneous catalysis due to their unique geometric and electronic structures and the cocktail effect. Despite tremendous efforts dedicated to regulating the metal composition and structures with advanced synthetic methodologies to improve the performance, the surface structure, and local chemical order of HEI and their correlation with activity at the atomic level remain obscure yet challenging. Herein, by determining the three-dimensional (3D) atomic structure of quinary PdFeCoNiCu (PdM) HEI using atomic-resolution electron tomography, we reveal that the local chemical order of HEI regulates the surface electronic structures, which further mediates the alkyl-substitution-dependent alkyne semihydrogenation. The 3D structures of HEI PdM nanocrystals feature an ordered (intermetallic) core enclosed by a disordered (solid-solution) shell rather than an ordered surface. The lattice mismatch between the core and shell results in apparent near-surface distortion. The chemical order of the intermetallic core increases with annealing temperature, driving the electron redistribution between Pd and M at the surface, but the surface geometrical (chemically disordered) configurations and compositions are essentially unchanged. We investigate the catalytic performance of HEI PdM with different local chemical orders toward semihydrogenation across a broad range of alkynes, finding that the electron density of surface Pd and the hindrance effect of alkyl substitutions on alkynes are two key factors regulating selective semihydrogenation. We anticipate that these findings on surface atomic structure will clarify the controversy regarding the geometric and/or electronic effects of HEI catalysts and inspire future studies on tuning local chemical order and surface engineering toward enhanced catalysts.
Collapse
Affiliation(s)
- Haojie Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yao Zhang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luyao Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xilong Mu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lei Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sheng Zhu
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Kun Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Boyuan Yu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yulong Jiang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
19
|
Hübner JM, Shiell TB, Guńka PA, Tao S, Zhu L, Hansen MF, Bullock ES, Chariton S, Prakapenka VB, Fei Y, Blatov VA, Proserpio DM, Strobel TA. A Sodium Germanosilicide with Unusual Network Topology. J Am Chem Soc 2024. [PMID: 39016546 DOI: 10.1021/jacs.4c03960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The germanosilicide Na4-xGeySi16-y (0.4 ≤ x ≤ 1.1, 4.7 ≤ y ≤ 9.3) was synthesized under high-pressure, high-temperature conditions. The novel guest-host compound comprises a unique tetrel framework with dual channels housing sodium and smaller, empty (Si,Ge)9 units. The arrangement represents a new structure type with an overall structural topology that is closely related to a hypothetical carbon allotrope. Topological analysis of the structure revealed that the guest environment space cannot be tiled with singular polyhedra as in cage compounds (e.g., clathrates). The analysis of natural tilings provides a convenient method to unambiguously compare related tetrel-rich structures and can help elucidate new possible structural arrangements of intermetallic compounds.
Collapse
Affiliation(s)
- Julia-Maria Hübner
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, District of Columbia 20015, United States
| | - Thomas B Shiell
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, District of Columbia 20015, United States
| | - Piotr A Guńka
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Shuo Tao
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| | - Li Zhu
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| | - Mads Fonager Hansen
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, District of Columbia 20015, United States
| | - Emma S Bullock
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, District of Columbia 20015, United States
| | - Stella Chariton
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yingwei Fei
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, District of Columbia 20015, United States
| | - Vladislav A Blatov
- Samara Center for Theoretical Materials Science (SCTMS), Samara State Technical University, Samara 443100, Russia
| | - Davide M Proserpio
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Timothy A Strobel
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, District of Columbia 20015, United States
| |
Collapse
|
20
|
Gao L, Tian Y, Hussain A, Guan Y, Xu G. Recent developments and challenges in resistance-based hydrogen gas sensors based on metal oxide semiconductors. Anal Bioanal Chem 2024; 416:3697-3715. [PMID: 38443743 DOI: 10.1007/s00216-024-05213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
In recent years, the energy crisis has made the world realize the importance and need for green energy. Hydrogen safety has always been a primary issue that needs to be addressed for the application and large-scale commercialization of hydrogen energy, and precise and rapid hydrogen gas sensing technology and equipment are important prerequisites for ensuring hydrogen safety. Based on metal oxide semiconductors (MOS), resistive hydrogen gas sensors (HGS) offer advantages, such as low cost, low power consumption, and high sensitivity. They are also easy to test, integrate, and suitable for detecting low concentrations of hydrogen gas in ambient air. Therefore, they are considered one of the most promising HGS. This article provides a comprehensive review of the surface reaction mechanisms and recent research progress in optimizing the gas sensing performance of MOS-based resistive hydrogen gas sensors (MOS-R-HGS). Particularly, the advancements in metal-assisted or doped MOS, mixed metal oxide (MO)-MOS composites, MOS-carbon composites, and metal-organic framework-derived (MOF)-MOS composites are extensively summarized. Finally, the future research directions and possibilities in this field are discussed.
Collapse
Affiliation(s)
- Lili Gao
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang, 110168, China.
| | - Ye Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, People's Republic of China.
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Yiran Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, People's Republic of China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, People's Republic of China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
21
|
Balos S, Pecanac M, Trivkovic M, Bojic S, Hanus P. Load-Independent Hardness and Indentation Size Effect in Iron Aluminides. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2107. [PMID: 38730914 PMCID: PMC11084584 DOI: 10.3390/ma17092107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
In this paper, an iron-aluminide intermetallic compound with cerium addition was subjected to Vickers microhardness testing. A full range of Vickers microhardness loadings was applied: 10, 25, 50, 100, 200, 300, 500, and 1000 g. Tests were conducted in two areas: 0.5 mm under the surface of the rolled specimen and in the center. The aim was to find the optimal loading range that gives the true material microhardness, also deemed load-independent hardness, HLIH. The results suggest that in the surface area, the reverse indentation size effect (RISE) occurred, similar to ceramics and brittle materials, while in the center, indentation size effect (ISE) behavior was obtained, more similar to metals. This clearly indicated an optimal microhardness of over 500 g in the surface region and over 100 g in the central region of the specimen. Load dependencies were quantitatively described by Meyer's law, proportional specimen resistance (PSR), and the modified PSR model. The modified PSR model proved to be the most adequate.
Collapse
Affiliation(s)
- Sebastian Balos
- Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia; (S.B.); (M.T.); (S.B.)
| | - Milan Pecanac
- Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia; (S.B.); (M.T.); (S.B.)
| | - Mirjana Trivkovic
- Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia; (S.B.); (M.T.); (S.B.)
| | - Savo Bojic
- Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia; (S.B.); (M.T.); (S.B.)
| | - Pavel Hanus
- Department of Material Science, Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic;
| |
Collapse
|
22
|
Yin P, Shi J, Zuo M, Zhang W, Peng B, Jiang B, Fu XZ, Liang HW. Phase-Transition-Induced Surface Reconstruction of Rh 1 Site in Intermetallic Alloy for Propane Dehydrogenation. J Phys Chem Lett 2024; 15:4501-4507. [PMID: 38634716 DOI: 10.1021/acs.jpclett.4c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The fine-tuning of the geometric and electronic structures of active sites plays a crucial role in catalysis. However, the intricate entanglement between the two aspects results in a lack of interpretable design for active sites, posing a challenge in developing high-performance catalysts. Here, we find that surface reconstruction induced by phase transition in intermetallic alloys enables synergistic geometric and electronic structure modulation, creating a desired active site microenvironment for propane dehydrogenation. The resulting electron-rich four-coordinate Rh1 site in the RhGe0.5Ga0.5 intermetallic alloy can accelerate the desorption of propylene and suppress the side reaction and thus exhibits a propylene selectivity of ∼98% with a low deactivation constant of 0.002 h-1 under propane dehydrogenation at 550 °C. Furthermore, we design a computational workflow to validate the rationality of the microenvironment modulation induced by the phase transition in an intermetallic alloy.
Collapse
Affiliation(s)
- Peng Yin
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jialong Shi
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ming Zuo
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wanqun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bo Peng
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Bin Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Wei Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
23
|
Liu B, Nakagawa Y, Yabushita M, Tomishige K. Highly Efficient Iridium-Iron-Molybdenum Catalysts Condensed on Boron Nitride for Biomass-Derived Diols' Hydrogenolysis to Secondary Monoalcohols. J Am Chem Soc 2024; 146:9984-10000. [PMID: 38557072 DOI: 10.1021/jacs.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A trade-off of activity-selectivity exists in primary C-O hydrogenolysis of biomass-derived diols to secondary alcohols over bimetallic catalysts, especially the combination of noble metal and early transition metal in the metallic state and metal oxide state, respectively. Herein, the combination of high surface concentration of boron nitride (BN)-supported metals and the addition of Mo as third metal broke the trade-off. High yields (>50%) of secondary alcohols were obtained with robust productivity up to 25-fold based on Ir over Ir-Fe0.13-Mo0.08/BN (Ir = 20 wt %, Fe/Ir = 0.13, Mo/Ir = 0.08) than previously reported Ir-Fe catalysts. In contrast, simply increasing the loading amount of Ir-Fe catalysts or the addition of Mo species only enhanced the productivity by <2-4-fold. Various characterizations showed that large Ir loading enables the formation of condensed nanostructures (∼2 nm) on the BN support, which further alloy with Mo and Fe to form an face centred cubic (fcc)-type trimetallic alloy with surface enrichment of Fe. On the other hand, in Ir-Fe0.25-Mo0.08/BN with lower Ir (5 wt %) and lower Ir-based activity, the Mo species were rather bound on the support surface possibly as the MoBx state. These structures were formed by simple impregnation and reduction with H2 at the reaction temperature (453 K). The high activity of Ir-Fe0.13-Mo0.08/BN (20 wt % Ir) is derived from two aspects: (1) the formation of condensed nanostructures (∼2 nm) exposing more active sites and (2) alloying with Mo to modify the electronic state of Ir to enhance the H2 activation ability, as shown by the decreased Ea (82-84 → 67 kJ mol-1).
Collapse
Affiliation(s)
- Ben Liu
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
24
|
Alam N, Noor T, Iqbal N. Catalyzing Sustainable Water Splitting with Single Atom Catalysts: Recent Advances. CHEM REC 2024; 24:e202300330. [PMID: 38372409 DOI: 10.1002/tcr.202300330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Electrochemical water splitting for sustainable hydrogen and oxygen production have shown enormous potentials. However, this method needs low-cost and highly active catalysts. Traditional nano catalysts, while effective, have limits since their active sites are mostly restricted to the surface and edges, leaving interior surfaces unexposed in redox reactions. Single atom catalysts (SACs), which take advantage of high atom utilization and quantum size effects, have recently become appealing electrocatalysts. Strong interaction between active sites and support in SACs have considerably improved the catalytic efficiency and long-term stability, outperforming their nano-counterparts. This review's first section examines the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER). In the next section, SACs are categorized as noble metal, non-noble metal, and bimetallic synergistic SACs. In addition, this review emphasizes developing methodologies for effective SAC design, such as mass loading optimization, electrical structure modulation, and the critical role of support materials. Finally, Carbon-based materials and metal oxides are being explored as possible supports for SACs. Importantly, for the first time, this review opens a discussion on waste-derived supports for single atom catalysts used in electrochemical reactions, providing a cost-effective dimension to this vibrant research field. The well-known design techniques discussed here may help in development of electrocatalysts for effective water splitting.
Collapse
Affiliation(s)
- Nasar Alam
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| |
Collapse
|
25
|
Singh SP, Beppu K, Amano F. Pd 3Bi intermetallic particles prepared by the photodeposition method for photocatalytic ethane production from methane. Chem Commun (Camb) 2024; 60:2673-2676. [PMID: 38352978 DOI: 10.1039/d3cc06121c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
A Pd3Bi intermetallic compound (IMC) was photocatalytically deposited onto the gallium oxide (Ga2O3) surface at room temperature. Conventional impregnation and reduction methods were difficult for the formation of the Pd3Bi IMC on Ga2O3, highlighting the importance of the photodeposition approach. The Pd3Bi-loaded Ga2O3 photocatalyst exhibited 84% selectivity in methane-to-ethane conversion with hydrogen production in the presence of water vapour.
Collapse
Affiliation(s)
- Surya Pratap Singh
- Department of Applied Chemistry for Environment, Faculty and Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | - Kosuke Beppu
- Department of Applied Chemistry for Environment, Faculty and Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | - Fumiaki Amano
- Department of Applied Chemistry for Environment, Faculty and Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
26
|
Lan X, Wang Y, Liu B, Kang Z, Wang T. Thermally induced intermetallic Rh 1Zn 1 nanoparticles with high phase-purity for highly selective hydrogenation of acetylene. Chem Sci 2024; 15:1758-1768. [PMID: 38303947 PMCID: PMC10829007 DOI: 10.1039/d3sc05460h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Ordered M1Zn1 intermetallic phases with structurally isolated atom sites offer unique electronic and geometric structures for catalytic applications, but lack reliable industrial synthesis methods that avoid forming a disordered alloy with ill-defined composition. We developed a facile strategy for preparing well-defined M1Zn1 intermetallic nanoparticle (i-NP) catalysts from physical mixtures of monometallic M/SiO2 (M = Rh, Pd, Pt) and ZnO. The Rh1Zn1 i-NPs with structurally isolated Rh atom sites had a high intrinsic selectivity to ethylene (91%) with extremely low C4 and oligomer formation, outperforming the reported intermetallic and alloy catalysts in acetylene semihydrogenation. Further studies revealed that the M1Zn1 phases were formed in situ in a reducing atmosphere at 400 °C by a Zn atom emitting-trapping-ordering (Zn-ETO) mechanism, which ensures the high phase-purity of i-NPs. This study provides a scalable and practical solution for further exploration of Zn-based intermetallic phases and a new strategy for designing Zn-containing catalysts.
Collapse
Affiliation(s)
- Xiaocheng Lan
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yu Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Boyang Liu
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Zhenyu Kang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Tiefeng Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
27
|
Liu W, Liu H, Cui R, Cao Z, Dong Z, Luo L. Deciphering the Metal-Support Interaction of Au/ZnO Catalyst Induced by H 2 and O 2 Pretreatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305122. [PMID: 37718443 DOI: 10.1002/smll.202305122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Indexed: 09/19/2023]
Abstract
Metal-support interaction (MSI) provides great possibilities to tune the activity, selectivity, and stability of heterogeneous catalysts. Herein, the Au/ZnO catalyst is prepared by commercial ZnO and chloroauric acid, and the structure evolution of the catalyst pretreated by H2 and O2 gas at varied temperature is investigated to provide mechanistic insights of MSI. It is found that the H2 treatment at 300 °C and above can induce the formation of both the ZnOx overlayer and bulk Au-Zn alloy. In contrast, the O2 treatment can form the ZnOx overlayer at 500 °C and above without the formation of Au-Zn alloy. It is also revealed that the ZnOx overlayer is dynamically stable (permeable), which can provide access for reactant molecules during the reaction process. And, the Au-Zn alloy can recover to Au and ZnO under the CO oxidation reaction condition, which can be deemed as a re-activation process that endows H2 -treated samples with the superior activity and stability.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Hongpeng Liu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ronghua Cui
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhongliang Cao
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zejian Dong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Langli Luo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
28
|
Bhaskar G, Behera RK, Gvozdetskyi V, Carnahan SL, Ribeiro RA, Oftedahl P, Ward C, Canfield PC, Rossini AJ, Huang W, Zaikina JV. Breaking New Ground: MBene Route toward Selective Vinyl Double Bond Hydrogenation in Nitroarenes. J Am Chem Soc 2023; 145:27459-27470. [PMID: 38059480 DOI: 10.1021/jacs.3c08642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Doping, or incremental substitution of one element for another, is an effective way to tailor a compound's structure as well as its physical and chemical properties. Herein, we replaced up to 30% of Ni with Co in members of the family of layered LiNiB compounds, stabilizing the high-temperature polymorph of LiNiB while the room-temperature polymorph does not form. By studying this layered boride with in situ high-temperature powder diffraction, we obtained a distorted variant of LiNi0.7Co0.3B featuring a perfect interlayer placement of [Ni0.7Co0.3B] layers on top of each other─a structural motif not seen before in other borides. Because of the Co doping, LiNi0.7Co0.3B can undergo a nearly complete topochemical Li deintercalation under ambient conditions, resulting in a metastable boride with the formula Li0.04Ni0.7Co0.3B. Heating of Li0.04Ni0.7Co0.3B in anaerobic conditions led to yet another metastable boride, Li0.01Ni0.7Co0.3B, with a CoB-type crystal structure that cannot be obtained by simple annealing of Ni, Co, and B. No significant alterations of magnetic properties were detected upon Co-doping in the temperature-independent paramagnet LiNi0.7Co0.3B or its Li-deintercalated counterparts. Finally, Li0.01Ni0.7Co0.3B stands out as an exceptional catalyst for the selective hydrogenation of the vinyl C═C bond in 3-nitrostyrene, even in the presence of other competing functional groups. This research showcases an innovative approach to heterogeneous catalyst design by meticulously synthesizing metastable compounds.
Collapse
Affiliation(s)
- Gourab Bhaskar
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Ranjan K Behera
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | | - Scott L Carnahan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory, US DOE, Iowa State University, Ames, Iowa 50011, United States
- Department of Chemistry, Saint Mary's University of Minnesota, Winona, Minnesota 55987, United States
| | - Raquel A Ribeiro
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Paul Oftedahl
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Charles Ward
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Paul C Canfield
- Ames Laboratory, US DOE, Iowa State University, Ames, Iowa 50011, United States
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory, US DOE, Iowa State University, Ames, Iowa 50011, United States
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory, US DOE, Iowa State University, Ames, Iowa 50011, United States
| | - Julia V Zaikina
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
29
|
Yang C, Gao Y, Ma T, Bai M, He C, Ren X, Luo X, Wu C, Li S, Cheng C. Metal Alloys-Structured Electrocatalysts: Metal-Metal Interactions, Coordination Microenvironments, and Structural Property-Reactivity Relationships. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301836. [PMID: 37089082 DOI: 10.1002/adma.202301836] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Metal alloys-structured electrocatalysts (MAECs) have made essential contributions to accelerating the practical applications of electrocatalytic devices in renewable energy systems. However, due to the complex atomic structures, varied electronic states, and abundant supports, precisely decoding the metal-metal interactions and structure-activity relationships of MAECs still confronts great challenges, which is critical to direct the future engineering and optimization of MAECs. Here, this timely review comprehensively summarizes the latest advances in creating the MAECs, including the metal-metal interactions, coordination microenvironments, and structure-activity relationships. First, the fundamental classification, design, characterization, and structural reconstruction of MAECs are outlined. Then, the electrocatalytic merits and modulation strategies of recent breakthroughs for noble and non-noble metal-structured MAECs are thoroughly discussed, such as solid solution alloys, intermetallic alloys, and single-atom alloys. Particularly, unique insights into the bond interactions, theoretical understanding, and operando techniques for mechanism disclosure are given. Thereafter, the current states of diverse MAECs with a unique focus on structural property-reactivity relationships, reaction pathways, and performance comparisons are discussed. Finally, the future challenges and perspectives for MAECs are systematically discussed. It is believed that this comprehensive review can offer a substantial impact on stimulating the widespread utilization of metal alloys-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingru Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technical University of Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
30
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Tiwari G, Sharma G, Verma R, Gakhad P, Singh AK, Polshettiwar V, Jagirdar BR. Acetylene Semi-Hydrogenation at Room Temperature over Pd-Zn Nanocatalyst. Chemistry 2023; 29:e202301932. [PMID: 37632841 DOI: 10.1002/chem.202301932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 08/28/2023]
Abstract
A reaction of fundamental and commercial importance is acetylene semi-hydrogenation. Acetylene impurity in the ethylene feedstock used in the polyethylene industry poisons the Ziegler-Natta catalyst which adversely affects the polymer quality. Pd based catalysts are most often employed for converting acetylene into the main reactant, ethylene, however, it often involves a tradeoff between the conversion and the selectivity and generally requires high temperatures. In this work, bimetallic Pd-Zn nanoparticles capped by hexadecylamine (HDA) have been synthesized by co-digestive ripening of Pd and Zn nanoparticles and studied for semi-hydrogenation of acetylene. The catalyst showed a high selectivity of ~85 % towards ethylene with a high ethylene productivity to the tune of ~4341 μmol g-1 min-1 , at room temperature and atmospheric pressure. It also exhibited excellent stability with ethylene selectivity remaining greater than 85 % even after 70 h on stream. To the best of the authors' knowledge, this is the first report of room temperature acetylene semi-hydrogenation, with the catalyst effecting high amount of acetylene conversion to ethylene retaining excellent selectivity and stability among all the reported catalysts thus far. DFT calculations show that the disordered Pd-Zn nanocatalyst prepared by a low temperature route exhibits a change in the d-band center of Pd and Zn which in turn enhances the selectivity towards ethylene. TPD, XPS and a range of catalysis experiments provided in-depth insights into the reaction mechanism, indicating the key role of particle size, surface area, Pd-Zn interactions, and the capping agent.
Collapse
Affiliation(s)
- Garima Tiwari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Gunjan Sharma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India
| | - Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India
| | - Pooja Gakhad
- Materials Research Centre, Indian Institute of Science, Bangalore, 560 012, India
| | - Abhishek Kumar Singh
- Materials Research Centre, Indian Institute of Science, Bangalore, 560 012, India
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India
| | - Balaji R Jagirdar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
32
|
Lv H, Wang Y, Sun L, Yamauchi Y, Liu B. A general protocol for precise syntheses of ordered mesoporous intermetallic nanoparticles. Nat Protoc 2023; 18:3126-3154. [PMID: 37710021 DOI: 10.1038/s41596-023-00872-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/12/2023] [Indexed: 09/16/2023]
Abstract
Intermetallic nanomaterials consist of two or more metals in a highly ordered atomic arrangement. There are many possible combinations and morphologies, and exploring their properties is an important research area. Their strict stoichiometry requirement and well-defined atom binding environment make intermetallic compounds an ideal research platform to rationally optimize catalytic performance. Making mesoporous intermetallic materials is a further advance; crystalline mesoporosity can expose more active sites, facilitate the mass and electron transfer, and provide the distinguished mesoporous nanoconfinement environment. In this Protocol, we describe how to prepare ordered mesoporous intermetallic nanomaterials with controlled compositions, morphologies/structures and phases by a general concurrent template strategy. In this approach, the concurrent template used is a hybrid of mesoporous platinum or palladium and Korea Advanced Institute of Science and Technology-6 (KIT-6) (meso-Pt/KIT-6 or meso-Pd/KIT-6) that can be transformed by the second precursors under reducing conditions. The second precursor can either be a second metal or a metalloid/non-metal, e.g., boron/phosphorus. KIT-6 is a silica scaffold that is removed using NaOH or HF to form the mesoporous product. Procedures for example catalytic applications include the 3-nitrophenylacetylene semi-hydrogenation reaction, p-nitrophenol reduction reaction and electrochemical hydrogen evolution reaction. The synthetic strategy for preparation of ordered mesoporous intermetallic nanoparticles would take almost 5 d; the physical characterization by electron microscope, X-ray diffraction and inductively coupled plasma-mass spectrometry takes ~2 days and the function characterization depends on the research question, but for catalysis it takes 1-5 h.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Yanzhi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Wang L, Meng S, Tang C, Zhan C, Geng S, Jiang K, Huang X, Bu L. PtNi/PtIn-Skin Fishbone-Like Nanowires Boost Alkaline Hydrogen Oxidation Catalysis. ACS NANO 2023; 17:17779-17789. [PMID: 37708057 DOI: 10.1021/acsnano.3c02832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The development of high-performance platinum (Pt)-based electrocatalysts for the hydrogen oxidation reaction (HOR) is highly desirable for hydrogen fuel cells, but it is limited by the sluggish kinetics and severe carbon monoxide (CO) poisoning in alkaline medium. Herein, we explore a class of facet-selected Pt-nickel-indium fishbone-like nanowires (PtNiIn FNWs) featuring high-index facets (HIFs) of Pt3In skin as efficient alkaline HOR catalysts. Impressively, the optimized Pt66Ni6In28 FNWs show the highest mass and specific activities of 4.02 A mgPt-1 and 6.56 mA cm-2, 2.0/2.1 and 13.9/15.6 times larger than those of commercial PtRu/C and commercial Pt/C, respectively, along with a competitive CO-tolerance ability. Specifically, they exhibit only 6.0% current density decay after 10000 s of operation and 25.7% activity loss after 2000 s in the presence of 1000 ppm of CO. Moreover, an isotope experiment and density functional theory (DFT) calculations further prove that the unique structure and synergy among Pt, Ni, and In endow these Pt66Ni6In28 FNWs with an optimized hydrogen binding energy (HBE) and an advantageous hydroxide binding energy (OHBE), giving them excellent alkaline HOR properties. The combined construction of surface-skin and HIFs in PtNiIn FNWs will offer an available method to realize the potential applications of advanced non-PtRu-based catalysts in fuel cells and beyond.
Collapse
Affiliation(s)
- Liyuan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University. Xiamen 361005, People's Republic of China
| | - Shuang Meng
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Chongyang Tang
- School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University. Xiamen 361005, People's Republic of China
| | - Shize Geng
- College of Energy, Xiamen University. Xiamen 361102, People's Republic of China
| | - Kezhu Jiang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University. Xiamen 361005, People's Republic of China
| | - Lingzheng Bu
- College of Energy, Xiamen University. Xiamen 361102, People's Republic of China
| |
Collapse
|
34
|
Gidi L, Amalraj J, Tenreiro C, Ramírez G. Recent progress, trends, and new challenges in the electrochemical production of green hydrogen coupled to selective electrooxidation of 5-hydroxymethylfurfural (HMF). RSC Adv 2023; 13:28307-28336. [PMID: 37753399 PMCID: PMC10519153 DOI: 10.1039/d3ra05623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
The production of clean electrical energy and the correct use of waste materials are two topics that currently concern humanity. In order to face both problems, extensive work has been done on the electrolytic production of green H2 coupled with the electrooxidative upgrading of biomass platform molecules. 5-Hydroxymethylfurfural (HMF) is obtained from forest waste biomass and can be selectively oxidized to 2,5-furandicarboxylic acid (FDCA) by electrochemical pathways. FDCA is an attractive precursor to polyethylene furanoate (PEF), with the potential to replace petroleum-based polyethylene terephthalate (PET). An integrated electrochemical system can simultaneously produce H2 and FDCA at a lower energy cost than that required for electrolytic water splitting. Here, the benefits of the electrochemical production of H2 and FDCA over other production methods are presented, as well as the innovative applications of each reaction product and the advantages of carrying out both reactions in a coupled system. The recently reported progress is disclosed, through an exploration of electrocatalyst materials used in simultaneous production, including the use of nickel foams (NF) as modification substrates, noble and non-noble metals, metal non-oxides, metal oxides, spinel oxides and the introduction of oxygen vacancies. Based on the latest trends, the next challenges associated with its large-scale production are proposed for its implementation in the industrial world. This work can offer a guideline for the detailed understanding of the electrooxidation of HMF towards FDCA with the production of H2, as well as the design of advanced electrocatalysts for the sustainable use of renewable resources.
Collapse
Affiliation(s)
- Leyla Gidi
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - John Amalraj
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - Claudio Tenreiro
- Industrial Technologies Department, Faculty of Engineering, Universidad de Talca Curicó 3340000 Chile
| | - Galo Ramírez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Santiago 7820436 Chile
- Millenium Institute on Green Ammonia as Energy Vector (MIGA) Av. Vicuña Mackenna 4860, Macul Santiago 7820436 Chile
| |
Collapse
|
35
|
Kumar VB. Design and development of molten metal nanomaterials using sonochemistry for multiple applications. Adv Colloid Interface Sci 2023; 318:102934. [PMID: 37301065 DOI: 10.1016/j.cis.2023.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Molten metals have prospective applications as soft fluids with unique physical and chemical properties, yet materials based on them are still in their infancy and have great potential. Ultrasonic irradiation of molten metals in liquid media induces acoustic cavitation and dispersion of the liquid metal into micrometric and nanometric spheres. This review focuses on the synthesis of mmetallic materials via sonochemistry from molten metals with low melting point (< 420 ᴼC): Ga, Hg, In, Sn, Bi, Pb, and Zn, which can be melted in organic or inorganic media or water and of aqueous solutions of metallic ions to form two immiscible liquid phases. Organic molecule entrapment, polymer solubilization, chiral imprinting, and catalyst incorporation within metals or metallic particles were recently developed to provide novel hybrid nanomaterials for several applications including catalysis, fuel cells, and biomass-to-biofuel conversion. In all cases where molten metal was sonicated in an organic solvent, in addition to a solid precipitant, an interesting supernatant was obtained that contained metal-doped carbon dots (M@C-dots). Some of these M@C-dots were found to exhibit highly effective antimicrobial activity, promote neuronal tissue growth, or have utility in lithium-ion rechargeable batteries. The economic feasibility and commercial scalability of molten metal sonochemistry attract fundamental interest in the reaction mechanisms, as the versatility and controllability of the structure and material properties invite exploration of various applications.
Collapse
Affiliation(s)
- Vijay Bhooshan Kumar
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
36
|
Kim Y, Jun SE, Lee G, Nam S, Jang HW, Park SH, Kwon KC. Recent Advances in Water-Splitting Electrocatalysts Based on Electrodeposition. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3044. [PMID: 37109879 PMCID: PMC10147088 DOI: 10.3390/ma16083044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Green hydrogen is being considered as a next-generation sustainable energy source. It is created electrochemically by water splitting with renewable electricity such as wind, geothermal, solar, and hydropower. The development of electrocatalysts is crucial for the practical production of green hydrogen in order to achieve highly efficient water-splitting systems. Due to its advantages of being environmentally friendly, economically advantageous, and scalable for practical application, electrodeposition is widely used to prepare electrocatalysts. There are still some restrictions on the ability to create highly effective electrocatalysts using electrodeposition owing to the extremely complicated variables required to deposit uniform and large numbers of catalytic active sites. In this review article, we focus on recent advancements in the field of electrodeposition for water splitting, as well as a number of strategies to address current issues. The highly catalytic electrodeposited catalyst systems, including nanostructured layered double hydroxides (LDHs), single-atom catalysts (SACs), high-entropy alloys (HEAs), and core-shell structures, are intensively discussed. Lastly, we offer solutions to current problems and the potential of electrodeposition in upcoming water-splitting electrocatalysts.
Collapse
Affiliation(s)
- Yujin Kim
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
- Department of Materials Science and Engineering, Andong National University, Andong 36729, Republic of Korea
| | - Sang Eon Jun
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Goeun Lee
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - Seunghoon Nam
- Department of Materials Science and Engineering, Andong National University, Andong 36729, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Hwa Park
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - Ki Chang Kwon
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| |
Collapse
|
37
|
Zeng WJ, Wang C, Yin P, Tong L, Yan QQ, Chen MX, Xu SL, Liang HW. Alloying Matters for Ordering: Synthesis of Highly Ordered PtCo Intermetallic Catalysts for Fuel Cells. Inorg Chem 2023; 62:5262-5269. [PMID: 36947415 DOI: 10.1021/acs.inorgchem.3c00331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Porous carbon-supported atomically ordered intermetallic compounds (IMCs) are promising electrocatalysts in boosting oxygen reduction reaction (ORR) for fuel cell applications. However, the formation mechanism of IMC structures under high temperatures is poorly understood, which hampers the synthesis of highly ordered IMC catalysts with promoted ORR performance. Here, we employ high-temperature X-ray diffraction and energy-dispersive spectroscopic elemental mapping techniques to study the formation process of IMCs, by taking PtCo for example, in an industry-relevant impregnation synthesis. We find that high-temperature annealing is crucial in promoting the formation of alloy particles with a stoichiometric Co/Pt ratio, which in turn is the precondition for transforming the disordered alloys to ordered intermetallic structures at a relatively low temperature. Based on the findings, we accordingly synthesize highly ordered L10-type PtCo catalysts with a remarkable ORR performance in fuel cells.
Collapse
Affiliation(s)
- Wei-Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Peng Yin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lei Tong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qiang-Qiang Yan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ming-Xi Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Long Xu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Wei Liang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
38
|
Rößner L, Patiño Soriano DT, Tiryaki O, Burkhardt U, Armbrüster M. Synthesis of Isostructural Intermetallic Sn-Pb-Bi-Pt Platform Materials for Catalytic Investigations. Inorg Chem 2023; 62:4688-4695. [PMID: 36892553 DOI: 10.1021/acs.inorgchem.3c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The isostructural region (Sn,Pb,Bi)Pt has been established over a wide range of the quasi-ternary section of the quaternary phase diagram. A synthesis protocol was developed, and single-phase compounds were thoroughly characterized, revealing linear relationships between the volume of the unit cell and the substitution degree for the NiAs type of crystal structure. Together with the already established (Pb,Bi)Pt series, the isostructural cut at 50 atom % Pt forms an ideal platform to independently investigate the influence of electronic and structural properties for physical and chemical applications, such as electrocatalysis. The three binary endmembers SnPt, PbPt, and BiPt are active materials in a variety of electrocatalytic oxidation and reduction reactions such as methanol oxidation and oxygen reduction, respectively. By gradual substitution, a fully independent tuning of interatomic distances and electronic densities can be achieved without altering the crystal structure. This unique adaptability is gated behind the requirement of extended homogeneity ranges of at least quaternary intermetallic compounds. Here, we present this new platform for systematic investigations in (electro) catalysis.
Collapse
Affiliation(s)
- Leonard Rößner
- Faculty of Natural Sciences, Materials for Innovative Energy Concepts, Institute of Chemistry, Chemnitz University of Technology, Chemnitz, Saxony 09107, Germany
| | - Dennis Tatiana Patiño Soriano
- Faculty of Natural Sciences, Materials for Innovative Energy Concepts, Institute of Chemistry, Chemnitz University of Technology, Chemnitz, Saxony 09107, Germany
| | - Oytun Tiryaki
- Faculty of Natural Sciences, Materials for Innovative Energy Concepts, Institute of Chemistry, Chemnitz University of Technology, Chemnitz, Saxony 09107, Germany
| | - Ulrich Burkhardt
- Chemische Metallkunde, Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Sachsen 01187, Germany
| | - Marc Armbrüster
- Faculty of Natural Sciences, Materials for Innovative Energy Concepts, Institute of Chemistry, Chemnitz University of Technology, Chemnitz, Saxony 09107, Germany
| |
Collapse
|
39
|
Gan Z, Lu Z, Bunian M, Lagria LB, Marshall CL, Banish RM, Lee S, Lei Y. Synthesis of Pt 3Zn 1 and Pt 1Zn 1 intermetallic nanocatalysts for dehydrogenation of ethane. Phys Chem Chem Phys 2023; 25:7144-7153. [PMID: 36786715 DOI: 10.1039/d2cp04173a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pt3Zn1 and Pt1Zn1 intermetallic nanoparticles supported on SiO2 were synthesized by combining atomic layer deposition (ALD) of ZnO, incipient wetness impregnation (IWI) of Pt, and appropriate hydrogen reduction. The formation of Pt1Zn1 and Pt3Zn1 intermetallic nanoparticles was observed by both X-ray diffraction (XRD) and synchrotron X-ray absorption spectroscopy (XAS). STEM images showed that the 2-3 nm Pt-based intermetallic nanoparticles were uniformly dispersed on a SiO2 support. The relationships between Pt-Zn intermetallic phases and synthesis conditions were established. In situ XAS measurements at Pt L3 and Zn K edges during hydrogen reduction provided a detailed image of surface species evolution. Owing to a combined electronic and geometric effect, Pt1Zn1 exhibited much higher reactivity and stability than Pt3Zn1 and Pt in both the direct dehydrogenation and oxidative dehydrogenation of ethane to ethylene reactions.
Collapse
Affiliation(s)
- Zhuoran Gan
- Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| | - Zheng Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Muntaseer Bunian
- Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| | - Larissa B Lagria
- Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| | - Christopher L Marshall
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - R Michael Banish
- Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| | - Sungsik Lee
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Yu Lei
- Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
40
|
KARS DURUKAN İ, ÇİFTCİ Y. DFT Analysis of Mechanical and Dynamic Properties of CuBe. GAZI UNIVERSITY JOURNAL OF SCIENCE 2023. [DOI: 10.35378/gujs.915127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Mauri S, D'Olimpio G, Ghica C, Braglia L, Kuo CN, Istrate MC, Lue CS, Ottaviano L, Klimczuk T, Boukhvalov DW, Politano A, Torelli P. Hydrogen Production Mechanism in Low-Temperature Methanol Decomposition Catalyzed by Ni 3Sn 4 Intermetallic Compound: A Combined Operando and Density Functional Theory Investigation. J Phys Chem Lett 2023; 14:1334-1342. [PMID: 36727689 DOI: 10.1021/acs.jpclett.2c03471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogen production from methanol decomposition to syngas (H2 + CO) is a promising alternative route for clean energy transition. One major challenge is related to the quest for stable, cost-effective, and selective catalysts operating below 400 °C. We illustrate an investigation of the surface reactivity of a Ni3Sn4 catalyst working at 250 °C, by combining density functional theory, operando X-ray absorption spectroscopy, and high-resolution transmission electron microscopy. We discovered that the catalytic reaction is driven by surface tin-oxide phases, which protects the underlying Ni atoms from irreversible chemical modifications, increasing the catalyst durability. Moreover, we found that Sn content plays a key role in enhancing the H2 selectivity, with respect to secondary products such as CO2. These findings open new perspectives for the engineering of scalable and low-cost catalysts for hydrogen production.
Collapse
Affiliation(s)
- Silvia Mauri
- CNR─Istituto Officina dei Materiali, TASC, I-34149Trieste, Italy
- Department of Physics, University of Trieste, Via Valerio 2, 34127Trieste, Italy
| | - Gianluca D'Olimpio
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100L'Aquila, Italy
| | - Corneliu Ghica
- National Institute of Materials Physics, Atomistilor 405A, 077125Magurele, Romania
| | - Luca Braglia
- CNR─Istituto Officina dei Materiali, TASC, I-34149Trieste, Italy
| | - Chia-Nung Kuo
- Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan70101, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, Ministry of Science and Technology, Taipei10601, Taiwan
| | | | - Chin Shan Lue
- Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan70101, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, Ministry of Science and Technology, Taipei10601, Taiwan
| | - Luca Ottaviano
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100L'Aquila, Italy
| | - Tomasz Klimczuk
- Department of Solid-State Physics, Gdansk University of Technology, 80-233Gdansk, Poland
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing210037, People's Republic of China
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100L'Aquila, Italy
| | - Piero Torelli
- CNR─Istituto Officina dei Materiali, TASC, I-34149Trieste, Italy
| |
Collapse
|
42
|
Zuo LJ, Xue KZ, Yin P, Xu SL, Liang HW. Synthesis of rhodium intermetallic catalysts by enlarging the inter-particle distance on high-surface-area carbon black supports. Chem Commun (Camb) 2023; 59:1829-1832. [PMID: 36722910 DOI: 10.1039/d2cc06270d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Here, we report a "critical distance" method for the synthesis of 9 kinds of sub-5 nm rhodium (Rh)-based intermetallic catalysts. Enlarging the distance between intermetallic particles on high-surface-area carbon black supports could significantly suppress the metal sintering in high-temperature annealing. The prepared Rh2Sn intermetallic catalysts exhibited enhanced activity in catalyzing the hydrogenation of nitrobenzene.
Collapse
Affiliation(s)
- Lu-Jie Zuo
- Department of Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Kun-Ze Xue
- Department of Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Peng Yin
- Department of Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Shi-Long Xu
- Department of Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Hai-Wei Liang
- Department of Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
43
|
Liu X, Liang J, Li Q. Design principle and synthetic approach of intermetallic Pt-M alloy oxygen reduction catalysts for fuel cells. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Barrios Jiménez AM, Sichevych O, Spanos I, Altendorf SG, Ormeci A, Antonyshyn I. Al-Pt compounds catalyzing the oxygen evolution reaction. Dalton Trans 2023; 52:1433-1440. [PMID: 36645002 DOI: 10.1039/d2dt03234a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Al-Pt compounds have been systematically studied as electrocatalysts for the oxygen evolution reaction (OER). Considering the harsh oxidative conditions of the OER, all Al-Pt compounds undergo modifications during electrochemical experiments. However, the degree of changes strongly depends on the composition and crystal structure of a compound. In contrast to Al-rich compounds (Al4Pt and Al21Pt8), which reveal strong leaching of aluminum, changes in other compounds (Al2Pt, Al3Pt2, rt-AlPt, Al3Pt5, and rt-AlPt3) take place only on the surface or in the near-surface region. Furthermore, surface modification leads to a change in the electronic structure of Pt, giving rise to the in situ formation of catalytically more active surfaces, which are composed of intermetallic compounds, Pt-rich AlxPt1-x phases and Pt oxides. Forming a compromise between sufficient OER activity and stability, Al2Pt and Al3Pt2 can be considered as precursors for OER electrocatalysts.
Collapse
Affiliation(s)
| | - Olga Sichevych
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany.
| | - Ioannis Spanos
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Simone G Altendorf
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany.
| | - Alim Ormeci
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany.
| | - Iryna Antonyshyn
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany. .,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
45
|
Xing F, Furukawa S. Metallic Catalysts for Oxidative Dehydrogenation of Propane Using CO 2. Chemistry 2023; 29:e202202173. [PMID: 36184570 DOI: 10.1002/chem.202202173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/23/2022]
Abstract
The oxidative dehydrogenation of propane using CO2 (CO2 -ODP) is a promising technique for realizing high-yield propylene production and CO2 usage. Developing a highly efficient catalyst for CO2 -ODP is essential and beneficial to the chemical industry and for realizing net-zero emissions. Many studies have investigated metal oxide-based catalysts, revealing that rapid deactivation and low selectivity remain limiting factors for their industrial applications. In recent years, metallic nanoparticle catalysts have become increasingly attractive due to their unique properties. Therefore, we summarize the performance of metal-based catalysts in CO2 -ODP reactions by considering catalyst design concepts, different mechanisms in the reaction process, and the role of CO2 .
Collapse
Affiliation(s)
- Feilong Xing
- Institute for Catalysis, Hokkaido University N-21, W-10, Sapporo, 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University N-21, W-10, Sapporo, 001-0021, Japan.,Department of Research Promotion, Japan Science and Technology Agency Chiyoda, Tokyo, 102-0076, Japan
| |
Collapse
|
46
|
Song TW, Zuo LJ, Zuo M, Liang HW. Breaking trade-off between particle size and ordering degree of intermetallic catalysts for fuel cells. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
47
|
Zeng WJ, Wang C, Yan QQ, Yin P, Tong L, Liang HW. Phase diagrams guide synthesis of highly ordered intermetallic electrocatalysts: separating alloying and ordering stages. Nat Commun 2022; 13:7654. [PMID: 36496497 PMCID: PMC9741640 DOI: 10.1038/s41467-022-35457-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Supported platinum intermetallic compound catalysts have attracted considerable attention owing to their remarkable activities and durability for the oxygen reduction reaction in proton-exchange membrane fuel cells. However, the synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. In this study, we perform in-situ high-temperature X-ray diffraction studies to investigate the structural evolution in the impregnation synthesis of carbon-supported intermetallic catalysts. We identify the phase-transition-temperature (TPT)-dependent evolution process that involve concurrent (for alloys with high TPT) or separate (for alloys with low TPT) alloying/ordering stages. Accordingly, we realize the synthesis of highly ordered intermetallic catalysts by adopting a separate annealing protocol with a high-temperature alloying stage and a low-temperature ordering stage, which display a high mass activity of 0.96 A mgPt-1 at 0.9 V in H2-O2 fuel cells and a remarkable durability.
Collapse
Affiliation(s)
- Wei-Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chang Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qiang-Qiang Yan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Peng Yin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Tong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hai-Wei Liang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
48
|
Effect of Bulk and Surface Composition of Ni+Ga Intermetallic Compound Catalysts in Propane Steam/Wet Reforming: Origins of Nearly Ideal Experimental Product Selectivity. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Ji Y, Liu S, Zhu H, Xu W, Jiang R, Zhang Y, Yu J, Chen W, Jia L, Jiang J, Zhu T, Zhong Z, Wang D, Xu G, Su F. Isolating Contiguous Ir Atoms and Forming Ir-W Intermetallics with Negatively Charged Ir for Efficient NO Reduction by CO. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205703. [PMID: 36153834 DOI: 10.1002/adma.202205703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The lack of efficient catalysts with a wide working temperature window and vital O2 and SO2 resistance for selective catalytic reduction of NO by CO (CO-SCR) largely hinders its implementation. Here, a novel Ir-based catalyst with only 1 wt% Ir loading is reported for efficient CO-SCR. In this catalyst, contiguous Ir atoms are isolated into single atoms, and Ir-W intermetallic nanoparticles are formed, which are supported on ordered mesoporous SiO2 (KIT-6). Notably, this catalyst enables complete NO conversion to N2 at 250 °C in the presence of 1% O2 and has a wide temperature window (250-400 °C), outperforming the comparison samples with Ir isolated-single-atomic-sites and Ir nanoparticles, respectively. Also, it possesses a high SO2 tolerance. Both experimental results and theoretical calculations reveal that single Ir atoms are negatively charged, dramatically enhancing the NO dissociation, while the Ir-W intermetallic nanoparticles accelerate the reduction of the N2 O and NO2 intermediates by CO.
Collapse
Affiliation(s)
- Yongjun Ji
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Shaomian Liu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongdan Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenqing Xu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruihuan Jiang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- College of Chemistry and Chemical Engineering, Qiqihaer University, Heilongjiang Province, Qiqihaer, 161006, China
| | - Yu Zhang
- Institute of Education & Talent, CNPC Managers Training Institute, Beijing, 100096, China
| | - Jian Yu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lihua Jia
- College of Chemistry and Chemical Engineering, Qiqihaer University, Heilongjiang Province, Qiqihaer, 161006, China
| | - Jingang Jiang
- Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Tingyu Zhu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
- Technion-Israel Institute of Technology (IIT), Haifa, 32000, Israel
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Guangwen Xu
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Fabing Su
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang, 110142, China
| |
Collapse
|
50
|
Feng S, Geng Y, Liu H, Li H. Targeted Intermetallic Nanocatalysts for Sustainable Biomass and CO 2 Valorization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shumei Feng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| | - Yanyan Geng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| | - Hongyan Liu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| |
Collapse
|