1
|
Hou Z, Cui C, Yang Y, Huang Z, Zhuang Y, Zeng Y, Gong X, Zhang T. Strong Metal-Support Interactions in Heterogeneous Oxygen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407167. [PMID: 39460492 DOI: 10.1002/smll.202407167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Molecular oxygen redox electrocatalysis involves oxygen reduction and evolution as core reactions in various energy conversion and environmental technology fields. Strong metal-support interactions (SMSIs) based nanomaterials are regarded as desirable and state-of-the-art heterogeneous electrocatalysts due to their exceptional physicochemical properties. Over the past decades, considerable advancements in theory and experiment have been achieved in related studies, especially in modulating the electronic structure and geometrical configuration of SMSIs to enable activity, selectivity, and stability. In this focuses on the concept of SMSI, explore their various manifestations and mechanisms of action, and summarizes recent advances in SMSIs for efficient energy conversion in oxygen redox electrocatalysis applications. Additionally, the correlation between the physicochemical properties of different metals and supports is systematically elucidated, and the potential mechanisms of the structure-activity relationships between SMSIs and catalytic performance are outlined through theoretical models. Finally, the obstacles confronting this burgeoning field are comprehensively concluded, targeted recommendations and coping strategies are proposed, and future research perspectives are outlined.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Yanan Yang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Zhikun Huang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Yu Zhuang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Ye Zeng
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Xi Gong
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Crone M, Trinkies LL, Dittmeyer R, Türk M. Deposition of Pd, Pt, and PdPt Nanoparticles on TiO 2 Powder Using Supercritical Fluid Reactive Deposition: Application in the Direct Synthesis of H 2O 2. Molecules 2024; 29:2142. [PMID: 38731633 PMCID: PMC11085350 DOI: 10.3390/molecules29092142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, we investigated the catalytic properties of mono- and bimetallic palladium (Pd) and platinum (Pt) nanoparticles deposited via supercritical fluid reactive deposition (SFRD) on titanium dioxide (TiO2) powder. Transmission electron microscopy analyses verified that SFRD experiments performed at 353 K and 15.6 MPa enabled the deposition of uniform mono- and bimetallic nanoparticles smaller than 3 nm on TiO2. Electron-dispersive X-ray spectroscopy demonstrated the formation of alloy-type structures for the bimetallic PdPt nanoparticles. H2O2 is an excellent oxidizing reagent for the production of fine and bulk chemicals. However, until today, the design and preparation of catalysts with high H2O2 selectivity and productivity remain a great challenge. The focus of this study was on answering the questions of (a) whether the catalysts produced are suitable for the direct synthesis of hydrogen peroxide (H2O2) in the liquid phase and (b) how the metal type affects the catalytic properties. It was found that the metal type (Pd or Pt) influenced the catalytic performance strongly; the mean productivity of the mono- and bimetallic catalysts decreased in the following order: Pd > PdPt > Pt. Furthermore, all catalysts prepared by SFRD showed a significantly higher mean productivity compared to the catalyst prepared by incipient wetness impregnation.
Collapse
Affiliation(s)
- Marlene Crone
- Institute for Technical Thermodynamics and Refrigeration, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany
| | - Laura L. Trinkies
- Institute for Micro Process Engineering, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Roland Dittmeyer
- Institute for Micro Process Engineering, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Türk
- Institute for Technical Thermodynamics and Refrigeration, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Rostovshchikova TN, Shilina MI, Gurevich SA, Yavsin DA, Veselov GB, Stoyanovskii VO, Vedyagin AA. Studies on High-Temperature Evolution of Low-Loaded Pd Three-Way Catalysts Prepared by Laser Electrodispersion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093501. [PMID: 37176383 PMCID: PMC10179799 DOI: 10.3390/ma16093501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Pd/Al2O3 catalyst of the "crust" type with Pd loading of 0.03 wt.% was prepared by the deposition of 2 nm Pd particles on the outer surface of the alumina support using laser electrodispersion (LED). This technique differs from a standard laser ablation into a liquid in that the formation of monodisperse nanoparticles occurs in the laser torch plasma in a vacuum. As is found, the LED-prepared catalyst surpasses Pd-containing three-way catalysts, obtained by conventional chemical synthesis, in activity and stability in CO oxidation under prompt thermal aging conditions. Thus, the LED-prepared Pd/Al2O3 catalyst showed the best thermal stability up to 1000 °C. The present research is focused on the study of the high-temperature evolution of the Pd/Al2O3 catalyst in two reaction mixtures by a set of physicochemical methods (transmission electron microscopy, X-ray photoelectron spectroscopy, and diffuse reflectance UV-vis spectroscopy). In order to follow the dispersion of the Pd nanoparticles during the thermal aging procedure, the testing reaction of ethane hydrogenolysis was also applied. The possible reasons for the high stability of LED-prepared catalysts are suggested.
Collapse
Affiliation(s)
- Tatiana N Rostovshchikova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia
| | - Marina I Shilina
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia
| | - Sergey A Gurevich
- Ioffe Physico-Technical Institute, Russian Academy of Sciences, 26 Politechnicheskaya Str., 194021 Saint Petersburg, Russia
| | - Denis A Yavsin
- Ioffe Physico-Technical Institute, Russian Academy of Sciences, 26 Politechnicheskaya Str., 194021 Saint Petersburg, Russia
| | - Grigory B Veselov
- Boreskov Institute of Catalysis, 5 Lavrentyev Avenue, 630090 Novosibirsk, Russia
| | | | - Aleksey A Vedyagin
- Boreskov Institute of Catalysis, 5 Lavrentyev Avenue, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Hatoum I, Bouchoul N, Richard M, Dujardin C. Revealing Origin of Hydrogen-Carbonate Species in CO Oxidation Over Pt/Al2O3: A SSITKA-IR Study. Top Catal 2022. [DOI: 10.1007/s11244-022-01722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Operando QEXAFS Study of Pt–Fe Ammonia Slip Catalysts During Realistic Driving Cycles. Top Catal 2022. [DOI: 10.1007/s11244-022-01718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractBifunctional Fe–Pt ammonia slip catalysts were studied by operando quick-scanning extended X-ray absorption fine structure spectroscopy (QEXAFS) under conditions mimicking rapid temperature variations that occur in an automotive exhaust gas aftertreatment system during real driving. Two catalysts, Pt/Al2O3 and Fe-ZSM-5, were tested individually, as mixtures and in dual bed arrangements. Applying QEXAFS allowed to track changes of active metal state with high time resolution. It uncovered a strong dependence of the active metal state on reaction conditions and catalyst bed layout. For example, proximity to platinum stabilized iron species in their more active oxidized state and led to higher Fe-ZSM-5 activity. On the contrary, isolated iron species were more susceptible to overreduction by ammonia which led to deactivation and low selectivity. The use of transient conditions uncovered the influence of non-equilibrium phenomena on catalytic performance under industrially relevant conditions. Specifically, the effect of ammonia storage on the increase of activity was shown. This was also accompanied by elevated N2O production not observed during tests with gradual heating. Additionally, unusually high NOx selectivity was detected for Fe-ZSM-5 under these conditions. Lastly, tracking catalyst state under dynamic reaction conditions disclosed that Fe-ZSM-5 activity did not grow directly with temperature increase but rather depended on the oxidation state of Fe and surface concentration of ammonia.
Collapse
|
6
|
Hu Y, Liu X, Zou Y, Xie H, Zhu T. Nature of support plays vital roles in H2O promoted CO oxidation over Pt catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Camposeco R, Zanella R. Catalytic behavior of gold nanoparticles supported on a TiO 2-Al 2O 3 mixed oxide for CO oxidation at low temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76992-77006. [PMID: 35675006 DOI: 10.1007/s11356-022-21076-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The present work highlights the versatility of a TiO2-Al2O3 mixed oxide bearing highly dispersed gold nanoparticles that was applied in the CO oxidation reaction at room temperature. The TiO2, Al2O3, and TiO2-Al2O3 supports were synthesized by the sol-gel method, while gold nanoparticles were added by the deposition-precipitation with urea method using a theoretical Au loading of 2 wt.%. A promotional effect of the TiO2-Al2O3 support on the activity of gold catalysts with respect to TiO2 and Al2O3 was observed; Au/TiO2-Al2O3 showed outstanding CO oxidation, being active from 0 °C and stable throughout a 24-h test. As for the alumina content (5, 10, and 15 wt.%) in TiO2, it improved the textural properties by retarding the crystal growth and anatase-rutile phase transformation of TiO2, suppressing the deposition of carbon on the catalyst surface and stabilizing the Au nanoparticles even at high temperatures. Gold was highly dispersed with nanoparticle sizes ranging from 1 to 2 nm when H2 was used to treat thermally the Au/TiO2-Al2O3, Au/TiO2, and Au/Al2O3 materials. In addition, the XPS technique helped elicit that Au0 and Au1+ boosted their interaction with the TiO2, Al2O3, and TiO2-Al2O3 supports by means of charge transfer, which resulted in outstanding CO oxidation activity from 0 °C. Likewise, the key factors that control the peculiar catalytic performance in the CO oxidation reaction are discussed, which represents a step forward in the versatility behavior of gold catalysts supported on mixed oxide catalysts.
Collapse
Affiliation(s)
- Roberto Camposeco
- Instituto de Ciencias Aplicadas Y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., 04510, Mexico City, Mexico
| | - Rodolfo Zanella
- Instituto de Ciencias Aplicadas Y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., 04510, Mexico City, Mexico.
| |
Collapse
|
8
|
Aragão IB, Estrada FR, Barrett DH, Rodella CB. Dispersed single-atom Co and Pd nanoparticles forming a PdCo bimetallic catalyst for CO oxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Preparation of Pt/Al2O3 and PtPd/Al2O3 catalysts by supercritical deposition and their performance for oxidation of nitric oxide and propene. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Crone M, Türk M. Thermodynamics of adsorption of carbon dioxide on different metal oxides at temperatures from 313 to 353 K and pressures up to 25 MPa. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Maurer F, Beck A, Jelic J, Wang W, Mangold S, Stehle M, Wang D, Dolcet P, Gänzler AM, Kübel C, Studt F, Casapu M, Grunwaldt JD. Surface Noble Metal Concentration on Ceria as a Key Descriptor for Efficient Catalytic CO Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Florian Maurer
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Arik Beck
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Jelena Jelic
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wu Wang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Mangold
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Matthias Stehle
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Di Wang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Paolo Dolcet
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Andreas M. Gänzler
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Christian Kübel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix Studt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Casapu
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
12
|
Yousefzadeh H, Bozbag SE, Erkey C. Supercritical ion exchange: A new method to synthesize copper exchanged zeolites. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Lashina E, Slavinskaya E, Boronin A. Low-temperature activity of Pd/CeO2 catalysts: Mechanism of CO interaction and mathematical modelling of TPR-CO kinetic data. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Alizadehfanaloo S, Garrevoet J, Seyrich M, Murzin V, Becher J, Doronkin DE, Sheppard TL, Grunwaldt JD, Schroer CG, Schropp A. Tracking dynamic structural changes in catalysis by rapid 2D-XANES microscopy. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1518-1527. [PMID: 34475299 PMCID: PMC8415324 DOI: 10.1107/s1600577521007074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 05/22/2023]
Abstract
Many processes and materials in heterogeneous catalysis undergo dynamic structural changes depending on their chemical environment. Monitoring such dynamic changes can be challenging using conventional spectroscopic characterization tools, due to the high time resolution required. Here, a high-resolution 2D X-ray camera operating at 50 Hz full-frame rate was synchronized with a QEXAFS monochromator, enabling rapid spectro-microscopic imaging with chemical contrast over individual pixels. This was used to monitor chemical gradients within a model Pt/Al2O3 catalyst during catalytic partial oxidation of methane to synthesis gas. The transition from methane combustion (partly oxidized Pt) to combustion-reforming and partial oxidation (fully reduced Pt) was observed by a characteristic reduction front, which progressed from the end of the catalyst bed towards its beginning on the second time scale. The full-field QEXAFS imaging method applied here allows acquisition of entire XANES spectra `on the fly' in a rapid and spatially resolved manner. The combination of high spatial and temporal resolution with spectroscopic data offers new opportunities for observing dynamic processes in catalysts and other functional materials at work. The methodology is flexible and can be applied at beamlines equipped with a QEXAFS or other fast-scanning monochromators and a suitable sample environment for gas phase analytics to allow for catalytic studies at the same time.
Collapse
Affiliation(s)
- Saba Alizadehfanaloo
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, DE-22607 Hamburg, Germany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, DE-22607 Hamburg, Germany
| | - Martin Seyrich
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, DE-22607 Hamburg, Germany
| | - Vadim Murzin
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, DE-22607 Hamburg, Germany
| | - Johannes Becher
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, DE-76131 Karlsruhe, Germany
| | - Dmitry E Doronkin
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, DE-76131 Karlsruhe, Germany
| | - Thomas L Sheppard
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, DE-76131 Karlsruhe, Germany
| | - Jan Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, DE-76131 Karlsruhe, Germany
| | - Christian G Schroer
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, DE-22607 Hamburg, Germany
| | - Andreas Schropp
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, DE-22607 Hamburg, Germany
| |
Collapse
|
15
|
Catalytic CO Oxidation and H2O2 Direct Synthesis over Pd and Pt-Impregnated Titania Nanotubes. Catalysts 2021. [DOI: 10.3390/catal11080949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Titania nanotubes (TNTs) impregnated with Pd and Pt nanoparticles are evaluated as heterogeneous catalysts in different conditions in two reactions: catalytic CO oxidation (gas phase, up to 500 °C) and H2O2 direct synthesis (liquid phase, 30 °C). The TNTs are obtained via oxidation of titanium metal and the intermediate layer-type sodium titanate Na2Ti3O7. Thereafter, the titanate layers are exfoliated and show self-rolling to TNTs, which, finally, are impregnated with Pd or Pt nanoparticles at room temperature by using Pd(ac)2 and Pt(ac)2. The resulting crystalline Pd/TNTs and Pt/TNTs are realized with different lengths (long TNTs: 2.0–2.5 µm, short TNTs: 0.23–0.27 µm) and a specific surface area up to 390 m2/g. The deposited Pd and Pt particles are 2–5 nm in diameter. The TNT-derived catalysts show good thermal (up to 500 °C) and chemical stability (in liquid-phase and gas-phase reactions). The catalytic evaluation results in a low CO oxidation light-out temperature of 150 °C for Pt/TNTs (1 wt-%) and promising H2O2 generation with a productivity of 3240 molH2O2 kgPd−1 h−1 (Pd/TNTs, 5 wt-%, 30 °C). Despite their smaller surface area, long TNTs outperform short TNTs with regard to both CO oxidation and H2O2 formation.
Collapse
|
16
|
Insights into the Structural Dynamics of Pt/CeO2 Single-Site Catalysts during CO Oxidation. Catalysts 2021. [DOI: 10.3390/catal11050617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Despite their high atomic dispersion, single site catalysts with Pt supported on CeO2 were found to have a low activity during oxidation reactions. In this study, we report the behavior of Pt/CeO2 single site catalyst under more complex gas mixtures, including CO, C3H6 and CO/C3H6 oxidation in the absence or presence of water. Our systematic operando high-energy resolution-fluorescence-detected X-ray absorption near-edge structure (HERFD-XANES) spectroscopic study combined with multivariate curve resolution with alternating least squares (MCR-ALS) analysis identified five distinct states in the Pt single site structure during CO oxidation light-off. After desorption of oxygen and autoreduction of Pt4+ to Pt2+ due to the increase of temperature, CO adsorbs and reduces Pt2+ to Ptδ+ and assists its migration with final formation of PtxΔ+ clusters. The derived structure–activity relationships indicate that partial reduction of Pt single sites is not sufficient to initiate the conversion of CO. The reaction proceeds only after the regrouping of several noble metal atoms in small clusters, as these entities are probably able to influence the mobility of the oxygen at the interface with ceria.
Collapse
|
17
|
Weber IC, Wang CT, Güntner AT. Room-Temperature Catalyst Enables Selective Acetone Sensing. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1839. [PMID: 33917648 PMCID: PMC8067997 DOI: 10.3390/ma14081839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
Catalytic packed bed filters ahead of gas sensors can drastically improve their selectivity, a key challenge in medical, food and environmental applications. Yet, such filters require high operation temperatures (usually some hundreds °C) impeding their integration into low-power (e.g., battery-driven) devices. Here, we reveal room-temperature catalytic filters that facilitate highly selective acetone sensing, a breath marker for body fat burn monitoring. Varying the Pt content between 0-10 mol% during flame spray pyrolysis resulted in Al2O3 nanoparticles decorated with Pt/PtOx clusters with predominantly 5-6 nm size, as revealed by X-ray diffraction and electron microscopy. Most importantly, Pt contents above 3 mol% removed up to 100 ppm methanol, isoprene and ethanol completely already at 40 °C and high relative humidity, while acetone was mostly preserved, as confirmed by mass spectrometry. When combined with an inexpensive, chemo-resistive sensor of flame-made Si/WO3, acetone was detected with high selectivity (≥225) over these interferants next to H2, CO, form-/acetaldehyde and 2-propanol. Such catalytic filters do not require additional heating anymore, and thus are attractive for integration into mobile health care devices to monitor, for instance, lifestyle changes in gyms, hospitals or at home.
Collapse
Affiliation(s)
- Ines C. Weber
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland; (I.C.W.); (C.-t.W.)
| | - Chang-ting Wang
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland; (I.C.W.); (C.-t.W.)
| | - Andreas T. Güntner
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland; (I.C.W.); (C.-t.W.)
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland
| |
Collapse
|
18
|
Maurer F, Gänzler A, Lott P, Betz B, Votsmeier M, Loridant S, Vernoux P, Murzin V, Bornmann B, Frahm R, Deutschmann O, Casapu M, Grunwaldt JD. Spatiotemporal Investigation of the Temperature and Structure of a Pt/CeO 2 Oxidation Catalyst for CO and Hydrocarbon Oxidation during Pulse Activation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Florian Maurer
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, Karlsruhe, 76131, Germany
| | - Andreas Gänzler
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, Karlsruhe, 76131, Germany
| | - Patrick Lott
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, Karlsruhe, 76131, Germany
| | - Benjamin Betz
- Umicore AG & Co. KG, Rodenbacher Chaussee 4, Hanau, 63457, Germany
| | - Martin Votsmeier
- Umicore AG & Co. KG, Rodenbacher Chaussee 4, Hanau, 63457, Germany
| | - Stéphane Loridant
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne, F-69626, France
| | - Philippe Vernoux
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne, F-69626, France
| | - Vadim Murzin
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg, 22607, Germany
- Faculty 4-Physics, Bergische Universität Wuppertal, Wuppertal, 42097, Germany
| | - Benjamin Bornmann
- Faculty 4-Physics, Bergische Universität Wuppertal, Wuppertal, 42097, Germany
| | - Ronald Frahm
- Faculty 4-Physics, Bergische Universität Wuppertal, Wuppertal, 42097, Germany
| | - Olaf Deutschmann
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, Karlsruhe, 76131, Germany
| | - Maria Casapu
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, Karlsruhe, 76131, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, Karlsruhe, 76131, Germany
| |
Collapse
|
19
|
Effects of Hydrothermal Aging on CO and NO Oxidation Activity over Monometallic and Bimetallic Pt-Pd Catalysts. Catalysts 2021. [DOI: 10.3390/catal11030300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
By combining scanning transmission electron microscopy, CO chemisorption, and energy dispersive X-ray spectroscopy with CO and NO oxidation light-off measurements we investigated deactivation phenomena of Pt/Al2O3, Pd/Al2O3, and Pt-Pd/Al2O3 model diesel oxidation catalysts during stepwise hydrothermal aging. Aging induces significant particle sintering that results in a decline of the catalytic activity for all catalyst formulations. While the initial aging step caused the most pronounced deactivation and sintering due to Ostwald ripening, the deactivation rates decline during further aging and the catalyst stabilizes at a low level of activity. Most importantly, we observed pronounced morphological changes for the bimetallic catalyst sample: hydrothermal aging at 750 °C causes a stepwise transformation of the Pt-Pd alloy via core-shell structures into inhomogeneous agglomerates of palladium and platinum. Our study shines a light on the aging behavior of noble metal catalysts under industrially relevant conditions and particularly underscores the highly complex transformation of bimetallic Pt-Pd diesel oxidation catalysts during hydrothermal treatment.
Collapse
|
20
|
Liebertseder M, Wang D, Cavusoglu G, Casapu M, Wang S, Behrens S, Kübel C, Grunwaldt JD, Feldmann C. NaCl-template-based synthesis of TiO 2-Pd/Pt hollow nanospheres for H 2O 2 direct synthesis and CO oxidation. NANOSCALE 2021; 13:2005-2011. [PMID: 33444428 DOI: 10.1039/d0nr08871d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
TiO2 hollow nanosphere (HNS) are prepared via NaCl templates in a one-pot approach. The NaCl templates are realized by solvent/anti-solvent strategies and coated with TiO2via controlled hydrolysis of Ti-alkoxides. The NaCl template can be easily removed by washing with water, and the TiO2 HNS are finally impregnated with Pd/Pt. Electron microscopy shows TiO2 HNS with an outer diameter of 140-180 nm, an inner cavity of 80-100 nm, and a wall thickness of 30-40 nm. The TiO2 HNS exhibit high surface area (up to 370 m2 g-1) and pore volume (up to 0.28 cm3 g-1) with well-distributed small Pd/Pt nanoparticles (Pt: 3-4 nm, Pd: 3-7 nm). H2O2 direct synthesis (room temperature, liquid phase) and CO oxidation (up to 300 °C, gas phase) are used to probe the catalytic properties and result in a good stability of the HNS structure as well as a promising performance with a H2O2 selectivity of 63% and a productivity of 3390 mol kgPd-1 h-1 (TiO2-Pd HNS, 5 wt%) as well as CO oxidation light-out temperatures of 150 °C (TiO2-Pt HNS, 0.7 wt%).
Collapse
Affiliation(s)
- Mareike Liebertseder
- Institute of Inorganic Chemistry (IAC), Karlsruhe Institute of Technology (KIT), Engesserstraße 15, D-76131 Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Carbon monoxide (CO) oxidation is considered an important reaction in heterogeneous industrial catalysis and has been extensively studied. Pd supported on SiO2 aerogel catalysts exhibit good catalytic activity toward this reaction owing to their CO bond activation capability and thermal stability. Pd/SiO2 catalysts were investigated using carbon monoxide (CO) oxidation as a model reaction. The catalyst becomes active, and the conversion increases after the temperature reaches the ignition temperature (Tig). A normal hysteresis in carbon monoxide (CO) oxidation has been observed, where the catalysts continue to exhibit high catalytic activity (CO conversion remains at 100%) during the extinction even at temperatures lower than Tig. The catalyst was characterized using BET, TEM, XPS, TGA-DSC, and FTIR. In this work, the influence of pretreatment conditions and stability of the active sites on the catalytic activity and hysteresis is presented. The CO oxidation on the Pd/SiO2 catalyst has been attributed to the dissociative adsorption of molecular oxygen and the activation of the C-O bond, followed by diffusion of adsorbates at Tig to form CO2. Whereas, the hysteresis has been explained by the enhanced stability of the active site caused by thermal effects, pretreatment conditions, Pd-SiO2 support interaction, and PdO formation and decomposition.
Collapse
|
22
|
Borges LR, Silva AGM, Braga AH, Rossi LM, Suller Garcia MA, Vidinha P. Towards the Effect of Pt
0
/Pt
δ+
and Ce
3+
Species at the Surface of CeO
2
Crystals: Understanding the Nature of the Interactions under CO Oxidation Conditions. ChemCatChem 2021. [DOI: 10.1002/cctc.202001621] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Laís Reis Borges
- Departamento de Química Fundamental Instituto de Química Universidade de São Paulo Av. Prof. Lineu Prestes 748 São Paulo 05508-000, SP Brasil
| | - Anderson Gabriel Marques Silva
- Departamento de Engenharia Química e de Materiais Pontifícia Universidade Católica R. Marquês de São Vicente 225 22451-900 Rio de Janeiro Brasil
| | - Adriano Henrique Braga
- Departamento de Química Fundamental Instituto de Química Universidade de São Paulo Av. Prof. Lineu Prestes 748 São Paulo 05508-000, SP Brasil
| | - Liane Marcia Rossi
- Departamento de Química Fundamental Instituto de Química Universidade de São Paulo Av. Prof. Lineu Prestes 748 São Paulo 05508-000, SP Brasil
| | - Marco Aurélio Suller Garcia
- Departamento de Química Fundamental Instituto de Química Universidade de São Paulo Av. Prof. Lineu Prestes 748 São Paulo 05508-000, SP Brasil
- Departamento de Química Universidade Federal do Maranhão Avenida dos Portugueses 1966 65080-805, MA Sao Luis Brasil
| | - Pedro Vidinha
- Departamento de Química Fundamental Instituto de Química Universidade de São Paulo Av. Prof. Lineu Prestes 748 São Paulo 05508-000, SP Brasil
| |
Collapse
|
23
|
Progress in fabrication of one-dimensional catalytic materials by electrospinning technology. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Jiang H, Yao C, Wang Y, Zhang M. Synthesis and catalytic performance of highly dispersed platinum nanoparticles supported on alumina via supercritical fluid deposition. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.105014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Siril PF, Türk M. Synthesis of Metal Nanostructures Using Supercritical Carbon Dioxide: A Green and Upscalable Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001972. [PMID: 33164289 DOI: 10.1002/smll.202001972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Metallic nanostructures have numerous applications as industrial catalysts and sensing platforms. Supercritical carbon dioxide (scCO2 ) is a green medium for the scalable preparation of nanomaterials. Supercritical fluid reactive deposition (SFRD) and other allied techniques can be employed for the mass production of metal nanostructures for various applications. The present article reviews the recent reports on the scCO2 -assisted preparation of zero-valent metal nanomaterials and their applications. A brief description of the science of pure supercritical fluids, especially CO2 , and the basics of binary mixtures composed of scCO2 and a low volatile substance, e.g., an organometallic precursor are presented. The benefits of using scCO2 for preparing metal nanomaterials, especially as a green solvent, are also being highlighted. The experimental conditions that are useful for the tuning of particle properties are reviewed thoroughly. The range of modifications to the classical SFRD methods and the variety of metallic nanomaterials that can be synthesized are reviewed and presented. Finally, the broad ranges of applications that are reported for the metallic nanomaterials that are synthesized using scCO2 are reviewed. A brief summary along with perspectives about future research directions is also presented.
Collapse
Affiliation(s)
- Prem Felix Siril
- School of Basic Sciences, Indian Institute of Technology Mandi (IIT Mandi), Mandi, Himachal Pradesh, 175005, India
| | - Michael Türk
- Institut für Technische Thermodynamik and Kältetechnik, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 21, 76131, Karlsruhe, Germany
| |
Collapse
|
26
|
May YA, Wei S, Yu WZ, Wang WW, Jia CJ. Highly Efficient CuO/α-MnO 2 Catalyst for Low-Temperature CO Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11196-11206. [PMID: 32787057 DOI: 10.1021/acs.langmuir.0c00692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Copper manganese composite (hopcalite) catalyst has been widely explored for low-temperature CO oxidation reactions. However, the previous reports on the stabilization of such composite catalysts have shown that they deactivated severely under moist conditions. Herein, we developed an α-MnO2 nanorod-supported copper oxide catalyst that is very active and stable for the conditions with or without moisture by the deposition precipitation (DP) method. Incredibly, the CuO/MnO2 DP catalyst (with 5 wt % copper loading) achieves superior activity with a reaction rate of 9.472 μmol-1·gcat-1·s-1 even at ambient temperatures, which is at least double times of that for the reported copper-based catalyst. Additionally, the CuO/MnO2 DP catalyst is significantly more stable than the copper manganese composite catalysts reported in the literature under the presence of 3% water vapor as well as without moisture. A correlation between the catalytic CO oxidation activity and textural characteristics was derived via multitechnique analyses. The results imply that the superior activity of the CuO/MnO2 DP catalyst is associated with the proper adsorption of CO on partially reduced copper oxide as Cu(I)-CO and more surface oxygen species at the interfacial site of the catalyst.
Collapse
Affiliation(s)
- Yu Aung May
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shuai Wei
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wen-Zhu Yu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
27
|
|
28
|
Passos AR, Rochet A, Manente LM, Suzana AF, Harder R, Cha W, Meneau F. Three-dimensional strain dynamics govern the hysteresis in heterogeneous catalysis. Nat Commun 2020; 11:4733. [PMID: 32948780 PMCID: PMC7501851 DOI: 10.1038/s41467-020-18622-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/28/2020] [Indexed: 11/21/2022] Open
Abstract
Understanding catalysts strain dynamic behaviours is crucial for the development of cost-effective, efficient, stable and long-lasting catalysts. Here, we reveal in situ three-dimensional strain evolution of single gold nanocrystals during a catalytic CO oxidation reaction under operando conditions with coherent X-ray diffractive imaging. We report direct observation of anisotropic strain dynamics at the nanoscale, where identically crystallographically-oriented facets are qualitatively differently affected by strain leading to preferential active sites formation. Interestingly, the single nanoparticle elastic energy landscape, which we map with attojoule precision, depends on heating versus cooling cycles. The hysteresis observed at the single particle level is following the normal/inverse hysteresis loops of the catalytic performances. This approach opens a powerful avenue for studying, at the single particle level, catalytic nanomaterials and deactivation processes under operando conditions that will enable profound insights into nanoscale catalytic mechanisms.
Collapse
Affiliation(s)
- Aline R Passos
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil.
| | - Amélie Rochet
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil.
| | - Luiza M Manente
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
| | - Ana F Suzana
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
- Instituto de Química, UNESP, Rua Professor Francisco Degni, 14800-900, Araraquara, SP, Brazil
| | - Ross Harder
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Wonsuk Cha
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Florian Meneau
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
| |
Collapse
|
29
|
Fedorova EA, Stadnichenko AI, Slavinskaya EM, Kibis LS, Stonkus OA, Svintsitskiy DA, Lapin IN, Romanenko AV, Svetlichnyi VA, Boronin AI. A Study of Pt/Al2O3 Nanocomposites Obtained by Pulsed Laser Ablation to Be Used as Catalysts of Oxidation Reactions. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620020171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Morphology and size of Pt on Al2O3: The role of specific metal-support interactions between Pt and Al2O3. J Catal 2020. [DOI: 10.1016/j.jcat.2020.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Inverse temperature hysteresis and self-sustained oscillations in CO oxidation over Pd at elevated pressures of reaction mixture: Experiment and mathematical modeling. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Yang X, Cheng X, Ma J, Zou Y, Luo W, Deng Y. Large-Pore Mesoporous CeO 2 -ZrO 2 Solid Solutions with In-Pore Confined Pt Nanoparticles for Enhanced CO Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903058. [PMID: 31389182 DOI: 10.1002/smll.201903058] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Active and stable catalysts are highly desired for converting harmful substances (e.g., CO, NOx ) in exhaust gases of vehicles into safe gases at low exhaust temperatures. Here, a solvent evaporation-induced co-assembly process is employed to design ordered mesoporous Cex Zr1- x O2 (0 ≤ x ≤ 1) solid solutions by using high-molecular-weight poly(ethylene oxide)-block-polystyrene as the template. The obtained mesoporous Cex Zr1- x O2 possesses high surface area (60-100 m2 g-1 ) and large pore size (12-15 nm), enabling its great capacity in stably immobilizing Pt nanoparticles (4.0 nm) without blocking pore channels. The obtained mesoporous Pt/Ce0.8 Zr0.2 O2 catalyst exhibits superior CO oxidation activity with a very low T100 value of 130 °C (temperature of 100% CO conversion) and excellent stability due to the rich lattice oxygen vacancies in the Ce0.8 Zr0.2 O2 framework. The simulated catalytic evaluations of CO oxidation combined with various characterizations reveal that the intrinsic high surface oxygen mobility and well-interconnected pore structure of the mesoporous Pt/Ce0.8 Zr0.2 O2 catalyst are responsible for the remarkable catalytic efficiency. Additionally, compared with mesoporous Pt/Cex Zr1- x O2 -s with small pore size (3.8 nm), ordered mesoporous Pt/Cex Zr1- x O2 not only facilitates the mass diffusion of reactants and products, but also provides abundant anchoring sites for Pt nanoparticles and numerous exposed catalytically active interfaces for efficient heterogeneous catalysis.
Collapse
Affiliation(s)
- Xuanyu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Xiaowei Cheng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Junhao Ma
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Yidong Zou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| |
Collapse
|
33
|
Reichenberger S, Marzun G, Muhler M, Barcikowski S. Perspective of Surfactant‐Free Colloidal Nanoparticles in Heterogeneous Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201900666] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sven Reichenberger
- University of Duisburg-EssenTechnical Chemistry I Universitätsstrasse 7 Essen 45141 Germany
| | - Galina Marzun
- University of Duisburg-EssenTechnical Chemistry I Universitätsstrasse 7 Essen 45141 Germany
| | - Martin Muhler
- Ruhr-University BochumDepartment for Technical Chemistry Universitätsstraße 150 Bochum 44801 Germany
| | - Stephan Barcikowski
- University of Duisburg-EssenTechnical Chemistry I Universitätsstrasse 7 Essen 45141 Germany
| |
Collapse
|
34
|
Liu A, Liu X, Liu L, Pu Y, Guo K, Tan W, Gao S, Luo Y, Yu S, Si R, Shan B, Gao F, Dong L. Getting Insights into the Temperature-Specific Active Sites on Platinum Nanoparticles for CO Oxidation: A Combined in Situ Spectroscopic and ab Initio Density Functional Theory Study. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02552] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Annai Liu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, People’s Republic of China
| | - Xiao Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China
| | - Lichen Liu
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Yu Pu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, People’s Republic of China
| | - Kai Guo
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, People’s Republic of China
| | - Wei Tan
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, People’s Republic of China
| | - Song Gao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, People’s Republic of China
| | - Yidan Luo
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, People’s Republic of China
| | - Shuohan Yu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, People’s Republic of China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China
| | - Bin Shan
- State Key Laboratory of Materials Processing and Die and Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China
| | - Fei Gao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, Jiangsu, People’s Republic of China
| | - Lin Dong
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Center of Modern Analysis, Nanjing University, Nanjing 210093, Jiangsu, People’s Republic of China
| |
Collapse
|
35
|
Mattes DS, Jung N, Weber LK, Bräse S, Breitling F. Miniaturized and Automated Synthesis of Biomolecules-Overview and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806656. [PMID: 31033052 DOI: 10.1002/adma.201806656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Chemical synthesis is performed by reacting different chemical building blocks with defined stoichiometry, while meeting additional conditions, such as temperature and reaction time. Such a procedure is especially suited for automation and miniaturization. Life sciences lead the way to synthesizing millions of different oligonucleotides in extremely miniaturized reaction sites, e.g., pinpointing active genes in whole genomes, while chemistry advances different types of automation. Recent progress in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging could match miniaturized chemical synthesis with a powerful analytical tool to validate the outcome of many different synthesis pathways beyond applications in the life sciences. Thereby, due to the radical miniaturization of chemical synthesis, thousands of molecules can be synthesized. This in turn should allow ambitious research, e.g., finding novel synthesis routes or directly screening for photocatalysts. Herein, different technologies are discussed that might be involved in this endeavor. A special emphasis is given to the obstacles that need to be tackled when depositing tiny amounts of materials to many different extremely miniaturized reaction sites.
Collapse
Affiliation(s)
- Daniela S Mattes
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nicole Jung
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Laura K Weber
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Frank Breitling
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
36
|
Dessal C, Len T, Morfin F, Rousset JL, Aouine M, Afanasiev P, Piccolo L. Dynamics of Single Pt Atoms on Alumina during CO Oxidation Monitored by Operando X-ray and Infrared Spectroscopies. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00903] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caroline Dessal
- Univ Lyon, Université Claude Bernard—Lyon 1, CNRS, IRCELYON—UMR 5256, 2 Avenue Albert Einstein, F-69626 Villeurbanne CEDEX, France
| | - Thomas Len
- Univ Lyon, Université Claude Bernard—Lyon 1, CNRS, IRCELYON—UMR 5256, 2 Avenue Albert Einstein, F-69626 Villeurbanne CEDEX, France
| | - Franck Morfin
- Univ Lyon, Université Claude Bernard—Lyon 1, CNRS, IRCELYON—UMR 5256, 2 Avenue Albert Einstein, F-69626 Villeurbanne CEDEX, France
| | - Jean-Luc Rousset
- Univ Lyon, Université Claude Bernard—Lyon 1, CNRS, IRCELYON—UMR 5256, 2 Avenue Albert Einstein, F-69626 Villeurbanne CEDEX, France
| | - Mimoun Aouine
- Univ Lyon, Université Claude Bernard—Lyon 1, CNRS, IRCELYON—UMR 5256, 2 Avenue Albert Einstein, F-69626 Villeurbanne CEDEX, France
| | - Pavel Afanasiev
- Univ Lyon, Université Claude Bernard—Lyon 1, CNRS, IRCELYON—UMR 5256, 2 Avenue Albert Einstein, F-69626 Villeurbanne CEDEX, France
| | - Laurent Piccolo
- Univ Lyon, Université Claude Bernard—Lyon 1, CNRS, IRCELYON—UMR 5256, 2 Avenue Albert Einstein, F-69626 Villeurbanne CEDEX, France
| |
Collapse
|
37
|
Reiser S, Türk M. Influence of temperature and high-pressure on the adsorption behavior of scCO2 on MCM-41 and SBA-15. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Critical Review of Low-Temperature CO Oxidation and Hysteresis Phenomenon on Heterogeneous Catalysts. Catalysts 2018. [DOI: 10.3390/catal8120660] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There is a growing demand for new heterogeneous catalysts for cost-effective catalysis. Currently, the hysteresis phenomenon during low-temperature CO oxidation is an important topic in heterogeneous catalysis. Hysteresis provides important information about fluctuating reaction conditions that affect the regeneration of active sites and indicate the restoration of catalyst activity. Understanding its dynamic behavior, such as hysteresis and self-sustained kinetic oscillations, during CO oxidation, is crucial for the development of cost-effective, stable and long-lasting catalysts. Hysteresis during CO oxidation has a direct influence on many industrial processes and its understanding can be beneficial to a broad range of applications, including long-life CO2 lasers, gas masks, catalytic converters, sensors, indoor air quality, etc. This review considers the most recent reported advancements in the field of hysteresis behavior during CO oxidation which shed light on the origin of this phenomenon and the parameters that influence the type, shape, and width of the conversion of the hysteresis curves.
Collapse
|
39
|
Cimino S, Lisi L, Totarella G, Barison S, Musiani M, Verlato E. Highly stable core–shell Pt-CeO2 nanoparticles electrochemically deposited onto Fecralloy foam reactors for the catalytic oxidation of CO. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Wang Y, Zhan S, Di S, Zhao X. Novel Flexible Self-Standing Pt/Al 2O 3 Nanofibrous Membranes: Synthesis and Multifunctionality for Environmental Remediation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26396-26404. [PMID: 30001100 DOI: 10.1021/acsami.8b07637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In spite of intensive research investigating the prevalent Pt/Al2O3 catalysts, achieving macroscopic morphology beyond the powder form limitations remains highly challenging. Meanwhile, current impregnation-based preparation approaches show the drawbacks of tedious procedures and inefficient use of noble metals. Therefore, it is important to search for new methods for the fabrication of Pt/Al2O3 catalysts with a novel morphology. In this study, a novel Pt/Al2O3 nanofibrous membrane catalyst is fabricated via a facile one-pot electrospinning process. The embedding of Pt nanoparticles is performed simultaneously with the formation of Al2O3 nanofibers. The Pt/Al2O3 membranes show remarkable mechanical properties with tensile stresses as high as 44.14 MPa. Notably, the Pt/Al2O3 membranes exhibit multifunctionality with excellent performance characteristics. The catalytic experiments indicate that 100% of bisphenol A is removed within 60 min, and 100% of CO is completely converted to CO2 at 242 °C when Pt/Al2O3 membranes are used as catalysts. The membranes also exhibit excellent filtration performance, clearly decreasing the turbidity of water, and meet the high efficiency of particulate air filter standards. The excellent flexibility, satisfying mechanical property, and multifunctionality extend the range of potential application of the Pt/Al2O3 membranes. Moreover, the facile synthesis suggests new possibilities for the fabrication of many membrane-form Al2O3-supported catalysts.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Sihui Zhan
- College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Song Di
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
| |
Collapse
|
41
|
Gänzler AM, Casapu M, Maurer F, Störmer H, Gerthsen D, Ferré G, Vernoux P, Bornmann B, Frahm R, Murzin V, Nachtegaal M, Votsmeier M, Grunwaldt JD. Tuning the Pt/CeO2 Interface by in Situ Variation of the Pt Particle Size. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00330] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Andreas M. Gänzler
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Maria Casapu
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Florian Maurer
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Heike Störmer
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology (KIT), Engesserstraße 7, 76131 Karlsruhe, Germany
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology (KIT), Engesserstraße 7, 76131 Karlsruhe, Germany
| | - Géraldine Ferré
- Université de Lyon, Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON), UMR 5256, CNRS, Université Claude Bernard Lyon 1, 2 avenue A. Einstein, 69626 Villeurbanne, France
| | - Philippe Vernoux
- Université de Lyon, Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON), UMR 5256, CNRS, Université Claude Bernard Lyon 1, 2 avenue A. Einstein, 69626 Villeurbanne, France
| | - Benjamin Bornmann
- Department of Physics, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Ronald Frahm
- Department of Physics, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Vadim Murzin
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Maarten Nachtegaal
- Paul Scherrer Institute (PSI), PSI Aarebrücke, 5232 Villigen, Switzerland
| | - Martin Votsmeier
- Umicore AG & Co. KG, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| |
Collapse
|
42
|
Synthesis of supported nanoparticles in supercritical fluids by supercritical fluid reactive deposition: Current state, further perspectives and needs. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.12.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Müller SA, Degler D, Feldmann C, Türk M, Moos R, Fink K, Studt F, Gerthsen D, Bârsan N, Grunwaldt JD. Exploiting Synergies in Catalysis and Gas Sensing using Noble Metal-Loaded Oxide Composites. ChemCatChem 2018. [DOI: 10.1002/cctc.201701545] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sabrina A. Müller
- Institute for Chemical Technology and Polymer Chemistry (ITCP); Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
| | - David Degler
- Institute of Physical and Theoretical Chemistry; University of Tübingen (EKUT); 72076 Tübingen Germany
| | - Claus Feldmann
- Institute of Inorganic Chemistry (AOC); Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
| | - Michael Türk
- Institute for Technical Thermodynamics and Refrigeration (ITTK); Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
| | - Ralf Moos
- Department of Functional Materials; University of Bayreuth; 95447 Bayreuth Germany
| | - Karin Fink
- Institute of Nanotechnology (INT); Karlsruhe Institute of Technology (KIT); 76344 Eggenstein-Leopoldshafen Germany
| | - Felix Studt
- Institute for Chemical Technology and Polymer Chemistry (ITCP); Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology (IKFT); Karlsruhe Institute of Technology (KIT); 76344 Eggenstein-Leopoldshafen Germany
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy (LEM); Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
| | - Nicolae Bârsan
- Institute of Physical and Theoretical Chemistry; University of Tübingen (EKUT); 72076 Tübingen Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP); Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology (IKFT); Karlsruhe Institute of Technology (KIT); 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
44
|
Sarac Oztuna FE, Barim SB, Bozbag SE, Yu H, Aindow M, Unal U, Erkey C. Graphene Aerogel Supported Pt Electrocatalysts for Oxygen Reduction Reaction by Supercritical Deposition. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|