1
|
Oliveira L, Pereira M, Pacheli Heitman A, Filho J, Oliveira C, Ziolek M. Niobium: The Focus on Catalytic Application in the Conversion of Biomass and Biomass Derivatives. Molecules 2023; 28:1527. [PMID: 36838514 PMCID: PMC9960283 DOI: 10.3390/molecules28041527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
The world scenario regarding consumption and demand for products based on fossil fuels has demonstrated the imperative need to develop new technologies capable of using renewable resources. In this context, the use of biomass to obtain chemical intermediates and fuels has emerged as an important area of research in recent years, since it is a renewable source of carbon in great abundance. It has the benefit of not contributing to the additional emission of greenhouse gases since the CO2 released during the energy conversion process is consumed by it through photosynthesis. In the presented review, the authors provide an update of the literature in the field of biomass transformation with the use of niobium-containing catalysts, emphasizing the versatility of niobium compounds for the conversion of different types of biomass.
Collapse
Affiliation(s)
- Luiz Oliveira
- Departamento de Química, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Márcio Pereira
- Instituto de Ciência, Engenharia e Tecnologia, Campus Mucuri, Universidade Federal dos Vales Jequitinhonha e Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Ana Pacheli Heitman
- Departamento de Química, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - José Filho
- Departamento de Química, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Cinthia Oliveira
- Departamento de Química, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Maria Ziolek
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
2
|
|
3
|
Tirsoaga A, Kuncser V, Parvulescu VI, Coman SM. Niobia-based magnetic nanocomposites: Design and application in direct glucose dehydration to HMF. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.09.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Ji N, Diao X, Li X, Jia Z, Zhao Y, Lu X, Song C, Liu Q, Li C. Toward Alkylphenols Production: Lignin Depolymerization Coupling with Methoxy Removal over Supported MoS2 Catalyst. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01255] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, 300350 Tianjin, China
| | - Xinyong Diao
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, 300350 Tianjin, China
| | - Xinxin Li
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, 300350 Tianjin, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Zhichao Jia
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, 300350 Tianjin, China
| | - Yujun Zhao
- School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, 300350 Tianjin, China
| | - Chunfeng Song
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, 300350 Tianjin, China
| | - Qingling Liu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, 300350 Tianjin, China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
5
|
Gopalan Sibi M, Verma D, Kim J. Magnetic core–shell nanocatalysts: promising versatile catalysts for organic and photocatalytic reactions. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2019.1659555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Malayil Gopalan Sibi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
| | - Deepak Verma
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
| | - Jaehoon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
| |
Collapse
|
6
|
Stepacheva AA, Lugovoy YV, Manaenkov OV, Sidorov AI, Matveeva VG, Sulman MG, Sulman EM. Magnetically separable Ru-containing catalysts in supercritical deoxygenation of fatty acids. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-1012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
In the current paper, the possibility of the use of magnetically separable catalysts containing ruthenium oxide species in the supercritical deoxygenation of stearic acid for producing of the second generation of biodiesel is reported. Three different supports (silica, ceria, and hypercrosslinked polystyrene) were used for the stabilization of magnetic nanoparticles (MNPs) and Ru-containing particles. The effect of support on the magnetic properties as well as the catalytic activity of the obtained systems was studied. All synthesized catalysts were shown to provide high stearic acid conversion (up to 95 %). The highest yield of C17+ hydrocarbons (up to 86 %) was observed while using the Ru–Fe3O4-HPS system. Ru–Fe3O4-HPS was characterized by the high values of the specific surface area (364 m2/g) and saturation magnetization (4.5 emu/g). The chosen catalytic system was found to maintain its catalytic activity for a minimum of 10 consecutive cycles.
Collapse
Affiliation(s)
| | - Yury V. Lugovoy
- Tver State Technical University , A. Nikitin str., 22 , 170026 Tver , Russia
| | - Oleg V. Manaenkov
- Tver State Technical University , A. Nikitin str., 22 , 170026 Tver , Russia
| | | | - Valentina G. Matveeva
- Tver State Technical University , A. Nikitin str., 22 , 170026 Tver , Russia
- Tver State University , Zhelyabova str., 33 , 170100 Tver , Russia
| | - Mikhail G. Sulman
- Tver State Technical University , A. Nikitin str., 22 , 170026 Tver , Russia
| | - Esther M. Sulman
- Tver State Technical University , A. Nikitin str., 22 , 170026 Tver , Russia , Tel.: +74822789348, Fax: +74822789317
| |
Collapse
|
7
|
Catalytic Fast Pyrolysis of Lignin Isolated by Hybrid Organosolv—Steam Explosion Pretreatment of Hardwood and Softwood Biomass for the Production of Phenolics and Aromatics. Catalysts 2019. [DOI: 10.3390/catal9110935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lignin, one of the three main structural biopolymers of lignocellulosic biomass, is the most abundant natural source of aromatics with a great valorization potential towards the production of fuels, chemicals, and polymers. Although kraft lignin and lignosulphonates, as byproducts of the pulp/paper industry, are available in vast amounts, other types of lignins, such as the organosolv or the hydrolysis lignin, are becoming increasingly important, as they are side-streams of new biorefinery processes aiming at the (bio)catalytic valorization of biomass sugars. Within this context, in this work, we studied the thermal (non-catalytic) and catalytic fast pyrolysis of softwood (spruce) and hardwood (birch) lignins, isolated by a hybrid organosolv–steam explosion biomass pretreatment method in order to investigate the effect of lignin origin/composition on product yields and lignin bio-oil composition. The catalysts studied were conventional microporous ZSM-5 (Zeolite Socony Mobil–5) zeolites and hierarchical ZSM-5 zeolites with intracrystal mesopores (i.e., 9 and 45 nm) or nano-sized ZSM-5 with a high external surface. All ZSM-5 zeolites were active in converting the initially produced via thermal pyrolysis alkoxy-phenols (i.e., of guaiacyl and syringyl/guaiacyl type for spruce and birch lignin, respectively) towards BTX (benzene, toluene, xylene) aromatics, alkyl-phenols and polycyclic aromatic hydrocarbons (PAHs, mainly naphthalenes), with the mesoporous ZSM-5 exhibiting higher dealkoxylation reactivity and being significantly more selective towards mono-aromatics compared to the conventional ZSM-5, for both spruce and birch lignin.
Collapse
|
8
|
Cao Y, Chen SS, Zhang S, Ok YS, Matsagar BM, Wu KCW, Tsang DCW. Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. BIORESOURCE TECHNOLOGY 2019; 291:121878. [PMID: 31377047 DOI: 10.1016/j.biortech.2019.121878] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 05/13/2023]
Abstract
Lignin is one of the most promising renewable sources for aromatic hydrocarbons, while effective depolymerization towards its constituent monomers is a particular challenge because of the structural complexity and stability. Intensive research efforts have been directed towards exploiting effective valorization of lignin for the production of bio-based platform chemicals and fuels. The present contribution aims to provide a critical review of key advances in the identification of exact lignin structure subjected to various fractionation technologies and demonstrate the key roles of lignin structures in depolymerization for unique functionalized products. Various technologies (e.g., thermocatalytic approaches, photocatalytic conversion, and mechanochemical depolymerization) are reviewed and evaluated in terms of feasibility and potential for further upgrading. Overall, advances in pristine lignin structure analysis and conversion technologies can facilitate recovery and subsequent utilization of lignin towards tailored commodity chemicals and fungible fuels.
Collapse
Affiliation(s)
- Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Season S Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
9
|
Leal GF, Lima S, Graça I, Carrer H, Barrett DH, Teixeira-Neto E, Curvelo AAS, Rodella CB, Rinaldi R. Design of Nickel Supported on Water-Tolerant Nb 2O 5 Catalysts for the Hydrotreating of Lignin Streams Obtained from Lignin-First Biorefining. iScience 2019; 15:467-488. [PMID: 31125909 PMCID: PMC6532020 DOI: 10.1016/j.isci.2019.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 11/06/2022] Open
Abstract
In biomass conversion, Nb2O5 has attracted increasing attention as a catalyst support presenting water-tolerant Lewis acid sites. Herein, we address the design of Ni/Nb2O5 catalysts for hydrotreating of lignin to hydrocarbons. To optimize the balance between acidic and hydrogenating properties, the catalysts were first evaluated in the hydrotreating of diphenyl ether. The best catalyst candidate was further explored in the conversion of lignin oil obtained by catalytic upstream biorefining of poplar. As primary products, cycloalkanes were obtained, demonstrating the potential of Ni/Nb2O5 catalysts for the lignin-to-fuels route. However, the Lewis acidity of Nb2O5 also catalyzes coke formation via lignin species condensation. Thereby, an acidity threshold should be found so that dehydration reactions essential to the hydrotreatment are not affected, but the condensation of lignin species prevented. This article provides a critical "beginning-to-end" analysis of aspects crucial to the catalyst design to produce lignin biofuels.
Collapse
Affiliation(s)
- Glauco F Leal
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; Department of Physical Chemistry, Institute of Chemistry of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, São Paulo 13566-590, Brazil; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-970, Brazil
| | - Sérgio Lima
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Inês Graça
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Heloise Carrer
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-970, Brazil
| | - Dean H Barrett
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-970, Brazil; School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Erico Teixeira-Neto
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-970, Brazil
| | - Antonio Aprigio S Curvelo
- Department of Physical Chemistry, Institute of Chemistry of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, São Paulo 13566-590, Brazil
| | - Cristiane B Rodella
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-970, Brazil
| | - Roberto Rinaldi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
10
|
Reactivity of Re2O7 in aromatic solvents – Cleavage of a β-O-4 lignin model substrate by Lewis-acidic rhenium oxide nanoparticles. J Catal 2019. [DOI: 10.1016/j.jcat.2019.03.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Lazaridis PA, Fotopoulos AP, Karakoulia SA, Triantafyllidis KS. Catalytic Fast Pyrolysis of Kraft Lignin With Conventional, Mesoporous and Nanosized ZSM-5 Zeolite for the Production of Alkyl-Phenols and Aromatics. Front Chem 2018; 6:295. [PMID: 30073162 PMCID: PMC6058026 DOI: 10.3389/fchem.2018.00295] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/26/2018] [Indexed: 12/04/2022] Open
Abstract
The valorization of lignin that derives as by product in various biomass conversion processes has become a major research and technological objective. The potential of the production of valuable mono-aromatics (BTX and others) and (alkyl)phenols by catalytic fast pyrolysis of lignin is investigated in this work by the use of ZSM-5 zeolites with different acidic and porosity characteristics. More specifically, conventional microporous ZSM-5 (Si/Al = 11.5, 25, 40), nano-sized (≤20 nm, by direct synthesis) and mesoporous (9 nm, by mild alkaline treatment) ZSM-5 zeolites were tested in the fast pyrolysis of a softwood kraft lignin at 400-600°C on a Py/GC-MS system and a fixed-bed reactor unit. The composition of lignin (FT-IR, 2D HSQC NMR) was correlated with the composition of the thermal (non-catalytic) pyrolysis oil, while the effect of pyrolysis temperature and catalyst-to-lignin (C/L) ratio, as well as of the Si/Al ratio, acidity, micro/mesoporosity and nano-size of ZSM-5, on bio-oil composition was thoroughly investigated. It was shown that the conventional microporous ZSM-5 zeolites are more selective toward mono-aromatics while the nano-sized and mesoporous ZSM-5 exhibited also high selectivity for (alkyl)phenols. However, the nano-sized ZSM-5 zeolite exhibited the lowest yield of organic bio-oil and highest production of water, coke and non-condensable gases compared to the conventional microporous and mesoporous ZSM-5 zeolites.
Collapse
Affiliation(s)
| | | | - Stamatia A. Karakoulia
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Konstantinos S. Triantafyllidis
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| |
Collapse
|
12
|
Ion S, Opris C, Cojocaru B, Tudorache M, Zgura I, Galca AC, Bodescu AM, Enache M, Maria GM, Parvulescu VI. One-Pot Enzymatic Production of Lignin-Composites. Front Chem 2018; 6:124. [PMID: 29732368 PMCID: PMC5920407 DOI: 10.3389/fchem.2018.00124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Abstract
A novel and efficient one-pot system for green production of artificial lignin bio-composites has been developed. Monolignols such as sinapyl (SA) and coniferyl (CA) alcohols were linked together with caffeic acid (CafAc) affording a polymeric network similar with natural lignin. The interaction of the dissolved SA/CA with CafAc already bound on a solid support (SC2/SC6-CafAc) allowed the attachment of the polymeric product direct on the support surface (SC2/SC6-CafAc-L1 and SC2/SC6-CafAc-L2, from CA and SA, respectively). Accordingly, this procedure offers the advantage of a simultaneous polymer production and deposition. Chemically, oxi-copolymerization of phenolic derivatives (SA/CA and CAfAc) was performed with H2O2 as oxidation reagent using peroxidase enzyme (2-1B mutant of versatile peroxidase from Pleurotus eryngii) as catalyst. The system performance reached a maximum of conversion for SA and CA of 71.1 and 49.8%, respectively. The conversion is affected by the system polarity as resulted from the addition of a co-solvent (e.g., MeOH, EtOH, or THF). The chemical structure, morphology, and properties of the bio-composites surface were investigated using different techniques, e.g., FTIR, TPD-NH3, TGA, contact angle, and SEM. Thus, it was demonstrated that the SA monolignol favored bio-composites with a dense polymeric surface, high acidity, and low hydrophobicity, while CA allowed the production of thinner polymeric layers with high hydrophobicity.
Collapse
Affiliation(s)
- Sabina Ion
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Cristina Opris
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Bogdan Cojocaru
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Madalina Tudorache
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Irina Zgura
- Laboratory of Optical Processes in Nanostructured Materials, National Institute of Materials Physics, Magurele, Romania
| | - Aurelian C Galca
- Laboratory of Multifunctional Materials and Structures, National Institute of Materials Physics, Magurele, Romania
| | - Adina M Bodescu
- Faculty of Food Engineering, Tourism and Environmental Protection, Research Center in Technical and Natural Sciences, "Aurel Vlaicu" University, Arad, Romania
| | - Madalin Enache
- Institute of Biology Bucharest of the Romanian Academy, Bucharest, Romania
| | | | - Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| |
Collapse
|
13
|
Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem Soc Rev 2018; 47:8349-8402. [DOI: 10.1039/c8cs00410b] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functionalised heterogeneous catalysts show great potentials for efficient valorisation of renewable biomass to value-added chemicals and high-energy density fuels.
Collapse
Affiliation(s)
- Putla Sudarsanam
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Ruyi Zhong
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
- Dalian Institute of Chemical Physics
| | - Sander Van den Bosch
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Simona M. Coman
- University of Bucharest
- Department of Organic Chemistry
- Biochemistry and Catalysis
- Bucharest 030016
- Romania
| | - Vasile I. Parvulescu
- University of Bucharest
- Department of Organic Chemistry
- Biochemistry and Catalysis
- Bucharest 030016
- Romania
| | - Bert F. Sels
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| |
Collapse
|
14
|
Continuous separation and recovery of caesium by electromagnetic coupling regeneration process with an electroactive magnetic Fe3O4@cupric hexacyanoferrate. J APPL ELECTROCHEM 2017. [DOI: 10.1007/s10800-017-1128-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Xiao LP, Wang S, Li H, Li Z, Shi ZJ, Xiao L, Sun RC, Fang Y, Song G. Catalytic Hydrogenolysis of Lignins into Phenolic Compounds over Carbon Nanotube Supported Molybdenum Oxide. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02563] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ling-Ping Xiao
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Shuizhong Wang
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Helong Li
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Zhaowei Li
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Zheng-Jun Shi
- University Key Laboratory of Biomass Chemical Refinery & Synthesis, Southwest Forestry University, Kunming 650224, People’s Republic of China
| | - Liang Xiao
- Hunan
Engineering Laboratory for Ecological Applications of Miscanthus Resource, Hunan Agricultural University, Changsha 410128, People’s Republic of China
| | - Run-Cang Sun
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Yunming Fang
- National Energy R&D Center of Biorefinery, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Guoyong Song
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
- College
of Chemical Engineering, Northeast Electric Power University, Jilin 132000, People’s Republic of China
| |
Collapse
|