1
|
Li J, Wang G, Sui W, Parvez AM, Xu T, Si C, Hu J. Carbon-based single-atom catalysts derived from biomass: Fabrication and application. Adv Colloid Interface Sci 2024; 329:103176. [PMID: 38761603 DOI: 10.1016/j.cis.2024.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Single-atom catalysts (SACs) with active metals dispersed atomically have shown great potential in heterogeneous catalysis due to the high atomic utilization and superior selectivity/stability. Synthesis of SACs using carbon-neutral biomass and its components as the feedstocks provides a promising strategy to realize the sustainable and cost-effective SACs preparation as well as the valorization of underused biomass resources. Herein, we begin by describing the general background and status quo of carbon-based SACs derived from biomass. A detailed enumeration of the common biomass feedstocks (e.g., lignin, cellulose, chitosan, etc.) for the SACs preparation is then offered. The interactions between metal atoms and biomass-derived carbon carriers are summarized to give general rules on how to stabilize the atomic metal centers and rationalize porous carbon structures. Furthermore, the widespread adoption of catalysts in diverse domains (e.g., chemocatalysis, electrocatalysis and photocatalysis, etc.) is comprehensively introduced. The structure-property relationships and the underlying catalytic mechanisms are also addressed, including the influences of metal sites on the activity and stability, and the impact of the unique structure of single-atom centers modulated by metal/biomass feedstocks interactions on catalytic activity and selectivity. Finally, we end this review with a look into the remaining challenges and future perspectives of biomass-based SACs. We expect to shed some light on the forthcoming research of carbon-based SACs derived from biomass, manifestly stimulating the development in this emerging research area.
Collapse
Affiliation(s)
- Junkai Li
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guanhua Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ashak Mahmud Parvez
- Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF), Chemnitzer Str. 40 | 09599 Freiberg, Germany
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
2
|
Shi C, Gomez-Mendoza M, Gómez de Oliveira E, García-Tecedor M, Barawi M, Esteban-Betegón F, Liras M, Gutiérrez-Puebla E, Monge A, de la Peña O'Shea VA, Gándara F. An anthraquinone-based bismuth-iron metal-organic framework as an efficient photoanode in photoelectrochemical cells. Chem Sci 2024; 15:6860-6866. [PMID: 38725492 PMCID: PMC11077510 DOI: 10.1039/d4sc00980k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
Metal-organic frameworks (MOFs) are appealing candidate materials to design new photoelectrodes for use in solar energy conversion because of their modular nature and chemical versatility. However, to date there are few examples of MOFs that can be directly used as photoelectrodes, for which they must be able to afford charge separation upon light absorption, and promote the catalytic dissociation of water molecules, while maintaining structural integrity. Here, we have explored the use of the organic linker anthraquinone-2, 6-disulfonate (2, 6-AQDS) for the preparation of MOFs to be used as photoanodes. Thus, the reaction of 2, 6-AQDS with Bi(iii) or a combination of Bi(iii) and Fe(iii) resulted in two new MOFs, BiPF-10 and BiFePF-15, respectively. They display similar structural features, where the metal elements are disposed in inorganic-layer building units, which are pillared by the organic linkers by coordination bonds through the sulfonic acid groups. We show that the introduction of iron in the structure plays a crucial role for the practical use of the MOFs as a robust photoelectrode in a photoelectrochemical cell, producing as much as 1.23 mmol H2 cm-2 with the use of BiFePF-15 as photoanode. By means of time-resolved and electrochemical impedance spectroscopic studies we have been able to unravel the charge transfer mechanism, which involves the formation of a radical intermediate species, exhibiting a longer-lived lifetime by the presence of the iron-oxo clusters in BiFePF-15 to reduce the charge transfer resistance.
Collapse
Affiliation(s)
- Cai Shi
- Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA Energy Institute Móstoles Technology Park, Avenida Ramón de la Sagra 3, Móstoles 28935 Madrid Spain
| | - Eloy Gómez de Oliveira
- Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain
| | - Miguel García-Tecedor
- Photoactivated Processes Unit, IMDEA Energy Institute Móstoles Technology Park, Avenida Ramón de la Sagra 3, Móstoles 28935 Madrid Spain
| | - Mariam Barawi
- Photoactivated Processes Unit, IMDEA Energy Institute Móstoles Technology Park, Avenida Ramón de la Sagra 3, Móstoles 28935 Madrid Spain
| | - Fátima Esteban-Betegón
- Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain
| | - Marta Liras
- Photoactivated Processes Unit, IMDEA Energy Institute Móstoles Technology Park, Avenida Ramón de la Sagra 3, Móstoles 28935 Madrid Spain
| | - Enrique Gutiérrez-Puebla
- Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain
| | - Angeles Monge
- Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain
| | - Víctor A de la Peña O'Shea
- Photoactivated Processes Unit, IMDEA Energy Institute Móstoles Technology Park, Avenida Ramón de la Sagra 3, Móstoles 28935 Madrid Spain
| | - Felipe Gándara
- Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain
| |
Collapse
|
3
|
Li H, Li R, Liu G, Zhai M, Yu J. Noble-Metal-Free Single- and Dual-Atom Catalysts for Artificial Photosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301307. [PMID: 37178457 DOI: 10.1002/adma.202301307] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Artificial photosynthesis enables direct solar-to-chemical energy conversion aimed at mitigating environmental pollution and producing solar fuels and chemicals in a green and sustainable approach, and efficient, robust, and low-cost photocatalysts are the heart of artificial photosynthesis systems. As an emerging new class of cocatalytic materials, single-atom catalysts (SACs) and dual-atom catalysts (DACs) have received a great deal of current attention due to their maximal atom utilization and unique photocatalytic properties, whereas noble-metal-free ones impart abundance, availability, and cost-effectiveness allowing for scalable implementation. This review outlines the fundamental principles and synthetic methods of SACs and DACs and summarizes the most recent advances in SACs (Co, Fe, Cu, Ni, Bi, Al, Sn, Er, La, Ba, etc.) and DACs (CuNi, FeCo, InCu, KNa, CoCo, CuCu, etc.) based on non-noble metals, confined on an arsenal of organic or inorganic substrates (polymeric carbon nitride, metal oxides, metal sulfides, metal-organic frameworks, carbon, etc.) acting as versatile scaffolds in solar-light-driven photocatalytic reactions, including hydrogen evolution, carbon dioxide reduction, methane conversion, organic synthesis, nitrogen fixation, hydrogen peroxide production, and environmental remediation. The review concludes with the challenges, opportunities, and future prospects of noble-metal-free SACs and DACs for artificial photosynthesis.
Collapse
Affiliation(s)
- Huaxing Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rongjie Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
4
|
Cai T, Teng Z, Wen Y, Zhang H, Wang S, Fu X, Song L, Li M, Lv J, Zeng Q. Single-atom site catalysts for environmental remediation: Recent advances. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129772. [PMID: 35988491 DOI: 10.1016/j.jhazmat.2022.129772] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Single-atom site catalysts (SACs) can maximize the utilization of active metal species and provide an attractive way to regulate the activity and selectivity of catalytic reactions. The adjustable coordination configuration and atomic structure of SACs enable them to be an ideal candidate for revealing reaction mechanisms in various catalytic processes. The minimum use of metals and relatively tight anchoring of the metal atoms significantly reduce leaching and environmental risks. Additionally, the unique physicochemical properties of single atom sites endow SACs with superior activity in various catalytic processes for environmental remediation (ER). Generally, SACs are burgeoning and promising materials in the application of ER. However, a systematic and critical review on the mechanism and broad application of SACs-based ER is lacking. Herein, we review emerging studies applying SACs for different ERs, such as eliminating organic pollutants in water, removing volatile organic compounds, purifying automobile exhaust, and others (hydrodefluorination and disinfection). We have summarized the synthesis, characterization, reaction mechanism and structural-function relationship of SACs in ER. In addition, the perspectives and challenges of SACs for ER are also analyzed. We expect that this review can provide constructive inspiration for discoveries and applications of SACs in environmental catalysis in the future.
Collapse
Affiliation(s)
- Tao Cai
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Zhenzhen Teng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanjun Wen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xijun Fu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Lu Song
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Mi Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Junwen Lv
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
5
|
Zhang L, Xue L, Lin B, Zhao Q, Wan S, Wang Y, Jia H, Xiong H. Noble Metal Single-Atom Catalysts for the Catalytic Oxidation of Volatile Organic Compounds. CHEMSUSCHEM 2022; 15:e202102494. [PMID: 35049142 DOI: 10.1002/cssc.202102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Volatile organic compounds (VOCs) are detrimental to the environment and human health and must be eliminated before discharging. Oxidation by heterogeneous catalysts is one of the most promising approaches for the VOCs abatement. Precious metal catalysts are highly active for the catalytic oxidation of VOCs, but they are rare and their high price limits large-scale application. Supported metal single-atom catalysts (SACs) have a high atom efficiency and provide the possibility to circumvent such limitations. This Review summarizes recent advances in the use of metal SACs for the complete oxidation of VOCs, such as benzene, toluene, formaldehyde, and methanol, as well as aliphatic and Cl- and S-containing hydrocarbons. The structures of the metal SACs used and the reaction mechanisms of the VOC oxidation are discussed. The most widely used SACs are noble metals supported on oxides, especially on reducible oxides, such as Mn2 O3 and TiO2 . The reactivity of most SACs is related to the activity of surface lattice oxygen of the oxides. Furthermore, several metal SACs show better reactivity and improved S and Cl resistance than the corresponding nanocatalysts, indicating that SACs have potential for application in the oxidation of VOCs. The deactivation and regeneration mechanisms of the metal SACs are also summarized. It is concluded that the application of metal SACs in catalytic oxidation of VOCs is still in its infancy. This Review aims to elucidate structure-performance relationships and to guide the design of highly efficient metal SACs for the catalytic oxidation of VOCs.
Collapse
Affiliation(s)
- Lina Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Linli Xue
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Bingyong Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qingao Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shaolong Wan
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yong Wang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Hongpeng Jia
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Haifeng Xiong
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
6
|
Reñones P, Collado L, Iglesias-Juez A, Oropeza FE, Fresno F, de la Peña O’Shea VA. Silver–Gold Bimetal-Loaded TiO2 Photocatalysts for CO2 Reduction. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patricia Reñones
- Photoactivated Processes Unit, IMDEA Energy Institute, Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Laura Collado
- Photoactivated Processes Unit, IMDEA Energy Institute, Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Ana Iglesias-Juez
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| | - Freddy E. Oropeza
- Photoactivated Processes Unit, IMDEA Energy Institute, Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| | - Fernando Fresno
- Photoactivated Processes Unit, IMDEA Energy Institute, Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| | - Víctor A. de la Peña O’Shea
- Photoactivated Processes Unit, IMDEA Energy Institute, Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| |
Collapse
|
7
|
Gao C, Low J, Long R, Kong T, Zhu J, Xiong Y. Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. Chem Rev 2020; 120:12175-12216. [DOI: 10.1021/acs.chemrev.9b00840] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chao Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingxiang Low
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ran Long
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tingting Kong
- College of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an, Shaanxi 710065, China
| | - Junfa Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|