1
|
Yu Y, Yu J, Li Y, You M, Huang R, Kong W, Chen M, Bai J, Li W, Li T. Cp*Co(III)-catalyzed ortho-alkylation/alkenylation of anilides. Org Biomol Chem 2025. [PMID: 39840943 DOI: 10.1039/d4ob01974a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
A highly practical and efficient Cp*Co(III)-catalyzed C-H alkylation/alkenylation reaction of anilides with maleimides and acrylates was developed, during which a weakly coordinating amide carbonyl group functioned as the directing group. This approach features high efficiency, good functional group tolerance, and broad substrate scope, and a variety of 3-substituted succinimides and ortho-alkenylated anilides were synthesized in moderate to excellent yields. Furthermore, the reaction is highly selective, affording mono-ortho-alkylated/alkenylated products only. In addition, synthetic transformations of the 3-substituted succinimide products demonstrate the practicability of the reaction.
Collapse
Affiliation(s)
- Yongqi Yu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.
| | - Jiajia Yu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.
| | - Yanqi Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.
| | - Mengdan You
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.
| | - Rantao Huang
- Nanyang Academy of Science, Nanyang, 473061, P. R. China
| | - Weiguang Kong
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.
| | - Ming Chen
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.
| | - Jinjin Bai
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.
| | - Wenguang Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.
| |
Collapse
|
2
|
Praveen Kumar V, Athira CS, Mohan B, Priya S, Sasidhar BS. A selective photoinduced radical O-alkenylation of phenols and naphthols with terminal alkynes. Chem Commun (Camb) 2024; 60:9813-9816. [PMID: 39163125 DOI: 10.1039/d4cc02555e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The visible light-promoted O-alkenylation of phenols and naphthols with terminal alkynes is achieved using 2,4,6-tris(4-fluorophenyl)pyrylium tetrafluoroborate (T(p-F)PPT) as a photocatalyst at room temperature without the need of any external ligand or additive. Apart from its excellent functional group tolerance, the protocol described herein represents an appealing alternative strategy to classical transition-metal catalysed hydroarylation reactions. Mechanistic investigations revealed that the reaction involves a radical pathway. The utility of the hydroarylated products for the synthesis of fused benzofurans via a one-pot annulation was also demonstrated. Herein, we report the first intermolecular radical hydroarylation of alkynes.
Collapse
Affiliation(s)
- V Praveen Kumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C S Athira
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - B Mohan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Priya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
| | - B S Sasidhar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Arribas A, Calvelo M, Rey A, Mascareñas JL, López F. Skeletal and Mechanistic Diversity in Ir-Catalyzed Cycloisomerizations of Allene-Tethered Pyrroles and Indoles. Angew Chem Int Ed Engl 2024; 63:e202408258. [PMID: 38837581 DOI: 10.1002/anie.202408258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Pyrroles and indoles bearing N-allenyl tethers participate in a variety of iridium-catalyzed cycloisomerization processes initiated by a C-H activation step, to deliver a diversity of synthetically relevant azaheterocyclic products. By appropriate selection of the ancillary ligand and the substitution pattern of the allene, the reactions can diverge from simple intramolecular hydrocarbonations to tandem processes involving intriguing mechanistic issues. Accordingly, a wide range of heterocyclic structures ranging from dihydro-indolizines and pyridoindoles to tetrahydroindolizines, as well as cyclopropane-fused tetrahydroindolizines can be obtained. Moreover, by using chiral ligands, these cascade processes can be carried out in an enantioselective manner. DFT studies provide insights into the underlying mechanisms and justify the observed chemo- regio- and stereoselectivities.
Collapse
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alejandro Rey
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Misión Biológica de Galicia (MBG), Consejo Superior de Investigaciones Científicas (CSIC), 36680, Pontevedra, Spain
| |
Collapse
|
4
|
Thakur A, Chandra D, Sharma U. Rh(III)-catalyzed regioselective C(sp 2)-H alkenylation of isoquinolones with methoxyallene: A facile access to aldehyde-bearing isoquinolones. Org Biomol Chem 2024; 22:6612-6616. [PMID: 39101476 DOI: 10.1039/d4ob01084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
A simple and rapid access to isoquinolone aldehyde scaffolds has been established by a rhodium-catalyzed reaction between isoquinolone and methoxyallene that forges alkenylation in an explicit regioselective manner. Herein, methoxyallene serving as an acrolein equivalent results in execution of this unique functionalization. Furthermore, the compatibility with complex molecules underscores the significance of this developed protocol. The mechanistic proposal for this regioselective transformation was consistent with kinetic studies and several control reactions.
Collapse
Affiliation(s)
- Ankita Thakur
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Devesh Chandra
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh 176061, India.
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Ma J, Qi S, Yan G, Kirillov AM, Yang L, Fang R. DFT Study on the Mechanisms and Selectivities in Rh (III)-Catalyzed [5 + 1] Annulation of 2-Alkenylanilides and 2-Alkylphenols with Allenyl Acetates. J Org Chem 2024; 89:8562-8577. [PMID: 38847049 DOI: 10.1021/acs.joc.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The mechanisms and regio-, chemo-, and stereoselectivity were theoretically investigated in the Rh(III)-catalyzed [5 + 1] annulation of 2-alkenylanilides and 2-alkylphenols with allenyl acetates. Two different reactants, 2-alkenylanilides and 2-alkylphenols, were selected as model systems in the density functional theory calculations. The obtained theoretical results show that both these reactants exhibit similar steps, namely, (1) N-H/O-H deprotonation and C-H activation, (2) allenyl acetate migratory insertion, (3) β-oxygen elimination, (4) intramolecular nucleophilic addition of the nitrogen/oxygen-rhodium bond resulting in [5 + 1]-annulation, and (5) protonation with the formation of the desired product and regeneration of the Rh(III) catalyst. The theoretical evidence suggests that the selectivity is determined at the step of allenyl acetate's migratory insertion. Moreover, the regioselectivity is driven by electronic effects, while the interaction energies (C-H···π and C-H···O interactions) play a more imperative role in controlling the stereoselectivity. The obtained theoretical results not only well rationalize the experimental observations but also provide important mechanistic insights for related types of [5 + 1]-annulation reactions.
Collapse
Affiliation(s)
- Ji Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Simeng Qi
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Guowei Yan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Lizi Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ran Fang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
6
|
Sontakke GS, Chaturvedi AK, Jana D, Volla CMR. Pyrazolidinone-Aided Ru(II)-Catalyzed Regioselective C-H Annulation with Allenes. Org Lett 2024; 26:4480-4485. [PMID: 38767934 DOI: 10.1021/acs.orglett.4c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Regioselective annulation of allenes via C-H activation represents an elegant synthetic approach toward the construction of valuable scaffolds. Considering the importance of allenes, herein we developed an unprecedented Ru(II)-catalyzed highly regioselective redox-neutral C-H activation/(4 + 1)-annulation of 1-arylpyrazolidinones employing allenyl acetates to access pyrazolo[1,2-a]indazol-1-one derivatives. Additionally, allenyl cyclic carbonates, which were never tested in C-H activation, were utilized to construct a similar class of heterocycles having a pendent alcohol functionality. Notably, double C-H functionalization was achieved by a simple modification of reaction conditions. The synthetic significance of this methodology is underscored by late-stage modification of natural products, broad substrate scope, gram-scale synthesis, and postfunctionalizations.
Collapse
Affiliation(s)
- Geetanjali S Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Atul K Chaturvedi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Debasish Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
7
|
Staronova L, Yamazaki K, Xu X, Shi H, Bickelhaupt FM, Hamlin TA, Dixon DJ. Cobalt-Catalyzed Enantio- and Regioselective C(sp 3 )-H Alkenylation of Thioamides. Angew Chem Int Ed Engl 2024; 63:e202316021. [PMID: 38143241 DOI: 10.1002/anie.202316021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
An enantioselective cobalt-catalyzed C(sp3 )-H alkenylation of thioamides with but-2-ynoate ester coupling partners employing thioamide directing groups is presented. The method is operationally simple and requires only mild reaction conditions, while providing alkenylated products as single regioisomers in excellent yields (up to 85 %) and high enantiomeric excess [up to 91 : 9 enantiomeric ratio (er), or up to >99 : 1 er after a single recrystallization]. Diverse downstream derivatizations of the products are demonstrated, delivering a range of enantioenriched constructs. Extensive computational studies using density functional theory provide insight into the detailed reaction mechanism, origin of enantiocontrol, and the unusual regioselectivity of the alkenylation reaction.
Collapse
Affiliation(s)
- Lucia Staronova
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Xing Xu
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Heyao Shi
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Trevor A Hamlin
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
8
|
Zuo Y, Liu M, Du J, Zhang T, Wang X, Wang C. Ir(iii)/Ag(i)-catalyzed directly C-H amidation of arenes with OH-free hydroxyamides as amidating agents. RSC Adv 2024; 14:5975-5980. [PMID: 38362076 PMCID: PMC10867557 DOI: 10.1039/d4ra00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
A versatile Ir(iii)-catalyzed C-H amidation of arenes by employing readily available and stable OH-free hydroxyamides as a novel amidation source. The reaction occurred with high efficiency and tolerance of a range of functional groups. A wide scope of aryl OH-free hydroxyzamides, including conjugated and challenging non-conjugated OH-free hydroxyzamides, were capable of this transformation and no addition of an external oxidant is required. This protocol provided a simple, straightforward and economic method to a variety N-(2-(1H-pyrazol-1-yl)alkyl)amide derivates with good to excellent yield. Mechanistic study demonstrated that reversible C-H bond functionalisation might be involved in this reaction.
Collapse
Affiliation(s)
- Youpeng Zuo
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Meijun Liu
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Tianren Zhang
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Xiaoqing Wang
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Cong Wang
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| |
Collapse
|
9
|
de Carvalho RL, Diogo EBT, Homölle SL, Dana S, da Silva Júnior EN, Ackermann L. The crucial role of silver(I)-salts as additives in C-H activation reactions: overall analysis of their versatility and applicability. Chem Soc Rev 2023; 52:6359-6378. [PMID: 37655711 PMCID: PMC10714919 DOI: 10.1039/d3cs00328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 09/02/2023]
Abstract
Transition-metal catalyzed C-H activation reactions have been proven to be useful methodologies for the assembly of synthetically meaningful molecules. This approach bears intrinsic peculiarities that are important to be studied and comprehended in order to achieve its best performance. One example is the use of additives for the in situ generation of catalytically active species. This strategy varies according to the type of additive and the nature of the pre-catalyst that is being used. Thus, silver(I)-salts have proven to play an important role, due to the resulting high reactivity derived from the pre-catalysts of the main transition metals used so far. While being powerful and versatile, the use of silver-based additives can raise concerns, since superstoichiometric amounts of silver(I)-salts are typically required. Therefore, it is crucial to first understand the role of silver(I) salts as additives, in order to wisely overcome this barrier and shift towards silver-free systems.
Collapse
Affiliation(s)
- Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Emilay B T Diogo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Simon L Homölle
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Suman Dana
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| |
Collapse
|
10
|
Singh A, Shukla RK, Volla CMR. Ru(II)-Catalyzed Regioselective Annulation of 2-Hydroxystyrenes with Allenyl Acetates via Vinylic C–H Activation. Org Lett 2022; 24:8936-8941. [DOI: 10.1021/acs.orglett.2c03192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Anurag Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rahul K. Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Pagès L, Abed Ali Abdine R, Monnier F, Taillefer M. Transition Metal‐Catalyzed Intermolecular Hydroarylation of Allenes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lucas Pagès
- Institut Charles Gerhardt Montpellier (ICGM) Univ. Montpellier CNRS ENSCM 34293 Montpellier Cedex 5 France
| | - Racha Abed Ali Abdine
- Institut Charles Gerhardt Montpellier (ICGM) Univ. Montpellier CNRS ENSCM 34293 Montpellier Cedex 5 France
| | - Florian Monnier
- Institut Charles Gerhardt Montpellier (ICGM) Univ. Montpellier CNRS ENSCM 34293 Montpellier Cedex 5 France
- Institut Universitaire de France IUF 1 rue Descartes 75231 Paris Cedex 5 France
| | - Marc Taillefer
- Institut Charles Gerhardt Montpellier (ICGM) Univ. Montpellier CNRS ENSCM 34293 Montpellier Cedex 5 France
| |
Collapse
|
12
|
Chowdhury D, Koner M, Ghosh S, Baidya M. Regioselective Annulation of Allenylphosphine Oxides with Aromatic Amides under Ruthenium(II) Catalysis. Org Lett 2022; 24:3604-3608. [PMID: 35576459 DOI: 10.1021/acs.orglett.2c01125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Engaging allenes in transition-metal-catalyzed C-H bond activation strategy is immensely promising to access high-value scaffolds. However, such a reaction manifold remains largely elusive using cheap and sustainable ruthenium catalysis. We disclose an unprecedented ruthenium-catalyzed (4 + 2) annulation between aromatic amides and allenylphosphine oxides, furnishing NH-free isoquinolinones in high yields. This operationally simple methodology leverages weak coordination assistance, displays high selectivity, and is amenable to the late-stage functionalization of several biologically relevant motifs.
Collapse
Affiliation(s)
- Deepan Chowdhury
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Mainak Koner
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Suman Ghosh
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| |
Collapse
|
13
|
Singh A, Shukla RK, Volla CMR. Rh(iii)-Catalyzed [5 + 1] annulation of 2-alkenylanilides and 2-alkenylphenols with allenyl acetates. Chem Sci 2022; 13:2043-2049. [PMID: 35308860 PMCID: PMC8848808 DOI: 10.1039/d1sc06097j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Herein, we report a mild and highly regioselective Rh(iii)-catalyzed non-oxidative [5 + 1] vinylic C-H annulation of 2-alkenylanilides with allenyl acetates, which has been elusive so far. The reaction proceeds via vinylic C-H activation, regioselective 2,3-migratory insertion, β-oxy elimination followed by nucleophilic cyclization to get direct access to 1,2-dihydroquinoline derivatives. The strategy was also successfully extended to C-H activation of 2-alkenylphenols for constructing chromene derivatives. In the overall [5 + 1] annulation, the allene serves as a one carbon unit. The acetate group on the allene is found to be crucial both for controlling the regio- and chemoselectivity of the reaction and also for facilitating β-oxy elimination. The methodology was scalable and also further extended towards late stage functionalization of various natural products.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai-400076 India
| | - Rahul K Shukla
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai-400076 India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai-400076 India
| |
Collapse
|
14
|
Gu H, Jin X, Li J, Li H, Liu J. Recent Progress in Transition Metal-Catalyzed C—H Bond Activation of N-Aryl Phthalazinones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
15
|
Chandra D, Manisha, Sharma U. Recent Advances in the High-Valent Cobalt-Catalyzed C-H Functionalization of N-Heterocycles. CHEM REC 2021; 22:e202100271. [PMID: 34932274 DOI: 10.1002/tcr.202100271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/21/2021] [Indexed: 12/18/2022]
Abstract
Direct functionalization of heterocycles using C-H activation widely relies on the precious metal complexes. In past decade, the use of earth abundant and inexpensive transition metal to functionalize heterocycles has become an attractive alternate strategy. This concept is also interesting due to the unique reactivity pattern of these inexpensive metals. In this context we and other research groups have utilized the high-valent cobalt complexes as an inexpensive and readily available catalyst for the functionalization of heterocycles. In this review, we intend to brief recent progress made in the area of high-valent cobalt complexes catalyzed C-H functionalization of N-containing heterocycles.
Collapse
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manisha
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
16
|
Ghazvini HJ, Khosravi H, Mirzaei S, Balalaie S, Breit B. Rhodium-Catalyzed Regio- and Diastereoselective Hydroarylation of Allenes: An Unprecedented Ene Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Helya J. Ghazvini
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 1541849611, Iran
| | - Hormoz Khosravi
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 1541849611, Iran
| | - Saber Mirzaei
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 1541849611, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 67149-67346, Iran
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
17
|
Lukasevics L, Cizikovs A, Grigorjeva L. C-H bond functionalization by high-valent cobalt catalysis: current progress, challenges and future perspectives. Chem Commun (Camb) 2021; 57:10827-10841. [PMID: 34570134 DOI: 10.1039/d1cc04382j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the last decade, high-valent cobalt catalysis has earned a place in the spotlight as a valuable tool for C-H activation and functionalization. Since the discovery of its unique reactivity, more and more attention has been directed towards the utilization of cobalt as an alternative to noble metal catalysts. In particular, Cp*Co(III) complexes, as well as simple Co(II) and Co(III) salts in combination with bidentate chelation assistance, have been extensively used for the development of novel transformations. In this review, we have demonstrated the existing trends in the C-H functionalization methodology using high-valent cobalt catalysis and highlighted the main challenges to overcome, as well as perspective directions, which need to be further developed in the future.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| |
Collapse
|
18
|
Zorba L, Egaña E, Gómez-Bengoa E, Vougioukalakis GC. Zinc Iodide Catalyzed Synthesis of Trisubstituted Allenes from Terminal Alkynes and Ketones. ACS OMEGA 2021; 6:23329-23346. [PMID: 34549133 PMCID: PMC8444324 DOI: 10.1021/acsomega.1c03092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/13/2021] [Indexed: 05/03/2023]
Abstract
A straightforward, user-friendly, efficient protocol for the one pot, ZnI2-catalyzed allenylation of terminal alkynes with pyrrolidine and ketones, toward trisubstituted allenes, is described. Trisubstituted allenes can be obtained under either conventional heating or microwave irradiation conditions, which significantly reduces the reaction time. A sustainable, widely available, and low-cost metal salt catalyst is employed, and the reactions are carried out under solvent-free conditions. Among others, synthetically valuable allenes bearing functionalities such as amide, hydroxyl, or phthalimide can be efficiently prepared. Mechanistic experiments, including kinetic isotope effect measurements and density functional theory (DFT) calculations, suggest a rate-determining [1,5]-hydride transfer during the transformation of the intermediate propargylamine to the final allene.
Collapse
Affiliation(s)
- Leandros
P. Zorba
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Eunate Egaña
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Enrique Gómez-Bengoa
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Georgios C. Vougioukalakis
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| |
Collapse
|
19
|
Natho P, Yang Z, Allen LAT, Rey J, White AJP, Parsons PJ. An entry to 2-(cyclobut-1-en-1-yl)-1 H-indoles through a cyclobutenylation/deprotection cascade. Org Biomol Chem 2021; 19:4048-4053. [PMID: 33885127 DOI: 10.1039/d1ob00430a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A transition-metal-free strategy for the synthesis of 2-(cyclobut-1-en-1-yl)-1H-indoles under mild conditions is described herein. A series of substituted 2-(cyclobut-1-en-1-yl)-1H-indoles are accessed by a one-pot cyclobutenylation/deprotection cascade from N-Boc protected indoles. Preliminary experimental and density functional theory calculations suggest that a Boc-group transfer is involved in the underlying mechanism.
Collapse
Affiliation(s)
- Philipp Natho
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ London, UK.
| | - Zeyu Yang
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ London, UK.
| | - Lewis A T Allen
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ London, UK.
| | - Juliette Rey
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ London, UK.
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ London, UK.
| | - Philip J Parsons
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ London, UK.
| |
Collapse
|
20
|
Volla CMR, Shukla RK, Nair AM. Allenes: Versatile Building Blocks in Cobalt-Catalyzed C–H Activation. Synlett 2021. [DOI: 10.1055/a-1471-7307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractThe unique reactivity of allenes has led to their emergence as valuable coupling partners in transition-metal-mediated C–H activation reactions. On the other hand, due to its high abundance and high Lewis acidity, cobalt is garnering widespread interest as a useful catalyst for C–H activation. Here, we summarize cobalt-catalyzed C–H activations involving allenes as coupling partners and then describe our studies on Co(III)-catalyzed C-8 dienylation of quinoline N-oxides with allenes bearing a leaving group at the α-position for realizing a dienylation protocol.
Collapse
|
21
|
Direct synthesis of benzoxazinones via Cp*Co(III)-catalyzed C–H activation and annulation of sulfoxonium ylides with dioxazolones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Kumar P, Nagtilak PJ, Kapur M. Transition metal-catalyzed C–H functionalizations of indoles. NEW J CHEM 2021. [DOI: 10.1039/d1nj01696b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarises a wide range of transformations on the indole skeleton, including arylation, alkenylation, alkynylation, acylation, nitration, borylation, and amidation, using transition-metal catalyzed C–H functionalization as the key step.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Prajyot Jayadev Nagtilak
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
23
|
Blieck R, Taillefer M, Monnier F. Metal-Catalyzed Intermolecular Hydrofunctionalization of Allenes: Easy Access to Allylic Structures via the Selective Formation of C–N, C–C, and C–O Bonds. Chem Rev 2020; 120:13545-13598. [DOI: 10.1021/acs.chemrev.0c00803] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rémi Blieck
- Institut Charles Gerhardt Montpellier UMR 5253, Université Montpellier, CNRS, ENSCM, 8 rue de l’Ecole Normale, Montpellier 34296, Cedex 5, France
| | - Marc Taillefer
- Institut Charles Gerhardt Montpellier UMR 5253, Université Montpellier, CNRS, ENSCM, 8 rue de l’Ecole Normale, Montpellier 34296, Cedex 5, France
| | - Florian Monnier
- Institut Charles Gerhardt Montpellier UMR 5253, Université Montpellier, CNRS, ENSCM, 8 rue de l’Ecole Normale, Montpellier 34296, Cedex 5, France
- Institut Universitaire de France, IUF, 1 rue Descartes, 75231 Paris, cedex 5, France
| |
Collapse
|
24
|
Chandra D, Dhiman AK, Parmar D, Sharma U. Alkylation, alkenylation, and alkynylation of heterocyclic compounds through group 9 (Co, Rh, Ir) metal-catalyzed C-H activation. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1839849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| | - Ankit Kumar Dhiman
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| | - Diksha Parmar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| |
Collapse
|
25
|
Abstract
The mechanism of nickel-catalyzed hydroarylation of styrenes has been explored with density functional theory. Instead of the stepwise pathway via a Ni(II)-H species, computational results unveil that the concerted RO-H oxidative addition/olefin insertion takes place kinetically favorable to generate the alkylnickel(II) species, which further undergoes transmetalation and reductive elimination to yield the hydroarylated product. The origins of regio- and stereoselectivity were revealed via analyzing the electronic and steric effects of the key transition states.
Collapse
Affiliation(s)
- Qi Cheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| |
Collapse
|
26
|
Wu X, Lu Y, Qiao J, Dai W, Jia X, Ni H, Zhang X, Liu H, Zhao F. Rhodium(III)-Catalyzed C–H Alkenylation/Directing Group Migration for the Regio- and Stereoselective Synthesis of Tetrasubstituted Alkenes. Org Lett 2020; 22:9163-9168. [DOI: 10.1021/acs.orglett.0c03077] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaowei Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University , Chengdu 610052, China
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Yangbin Lu
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua 321007, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jin Qiao
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua 321007, China
| | - Wenhao Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiuwen Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University , Chengdu 610052, China
| | - Hangcheng Ni
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua 321007, China
| | - Xiaoning Zhang
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua 321007, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University , Chengdu 610052, China
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua 321007, China
| |
Collapse
|
27
|
Affiliation(s)
- José M. Alonso
- Departamento de Química Orgánica Universidad Complutense de Madrid Avda. Complutense s/n 28040 Madrid Spain
| | - María Paz Muñoz
- School of Chemistry University of East Anglia Earlham Road 4 7TJ Norwich, NR UK
| |
Collapse
|
28
|
Abed Ali Abdine R, Pagès L, Taillefer M, Monnier F. Hydroarylation of
N
‐Allenyl Derivatives Catalyzed by Copper**. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Racha Abed Ali Abdine
- Ecole Nationale Supérieure de Chimie de Montpellier Institut Charles Gerhardt Montpellier UMR 5253 Univ. Montpellier, CNRS, ENSCM 8 rue de l'Ecole Normale 34296 Cedex 5 Montpellier France
| | - Lucas Pagès
- Ecole Nationale Supérieure de Chimie de Montpellier Institut Charles Gerhardt Montpellier UMR 5253 Univ. Montpellier, CNRS, ENSCM 8 rue de l'Ecole Normale 34296 Cedex 5 Montpellier France
| | - Marc Taillefer
- Ecole Nationale Supérieure de Chimie de Montpellier Institut Charles Gerhardt Montpellier UMR 5253 Univ. Montpellier, CNRS, ENSCM 8 rue de l'Ecole Normale 34296 Cedex 5 Montpellier France
| | - Florian Monnier
- Ecole Nationale Supérieure de Chimie de Montpellier Institut Charles Gerhardt Montpellier UMR 5253 Univ. Montpellier, CNRS, ENSCM 8 rue de l'Ecole Normale 34296 Cedex 5 Montpellier France
- Institut Universitaire de France, IUF 1 rue Descartes 75231 Cedex 5 Paris France
| |
Collapse
|
29
|
Theoretical investigation on the mechanism of rhodium-catalyzed C-H dienylation of acetanilide with aryl allene. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Wang F, Meng Q. Theoretical Insight into Ni(0)-Catalyzed Hydroarylation of Alkenes and Arylboronic Acids. J Org Chem 2020; 85:13264-13271. [PMID: 32960062 DOI: 10.1021/acs.joc.0c01629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The density functional theory (ωB97XD functional) is employed to clarify nickel(0)/PtBu3-catalyzed hydroarylation of alkenes and arylboronic acids with methanol. The computational results reveal that this reaction goes primarily through the ligand-to-ligand H transfer from the O-H bond to the alkene coordinated with nickel, complexation of arylboronic acid to the nickel-alkyl-methoxyl intermediate, attack of methoxyl on boron, transmetalation, and reductive elimination. The formation of the branched 1,1-diarylalkane, linear 1,1-diarylalkane, and alkene-dimer is also discussed in this work.
Collapse
Affiliation(s)
- Fen Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.,College of Chemistry and Chemical Engineering, Taishan University, Taian, Shandong 271021, People's Republic of China
| | - Qingxi Meng
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| |
Collapse
|
31
|
Dodangeh M, Ramazani A, Maghsoodlou MT, Zarei A, Rezayati S. Application of Readily Available Metals for C-H Activation. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200616114037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Catalytic C-H activation is a powerful method for organic synthesis. In recent
years, scientists have made great progress by developing transitional metals for catalyzing CH
functionalization reaction. In this review, we summarized and highlighted recent progress
in C-H activation with copper, cobalt, iron, manganese, and nickel as catalysts.
Collapse
Affiliation(s)
- Mohammad Dodangeh
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Malek-Taher Maghsoodlou
- Department of Chemistry, The University of Sistan and Baluchestan, P.O. Box 98135-674, Zahedan, Iran
| | - Armin Zarei
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Sobhan Rezayati
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| |
Collapse
|
32
|
Chen W, Li H, Lu W, Wu Y. Ruthenium(II)‐catalyzed Monohydroalkylation of α,β‐Unsaturated Ketones with
N
‐Acyl Pyrroles using a C−H Activation Strategy. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weiqiang Chen
- School of Marine Science and Technology Harbin Institute of Technology 2 Wenhuaxi Road Weihai 264209 P.R. China
| | - Hui‐Jing Li
- School of Marine Science and Technology Harbin Institute of Technology 2 Wenhuaxi Road Weihai 264209 P.R. China
- Weihai Huiankang Biotechnology Co. Ltd Weihai 264200 P. R. China
| | - Wen‐Yu Lu
- School of Marine Science and Technology Harbin Institute of Technology 2 Wenhuaxi Road Weihai 264209 P.R. China
| | - Yan‐Chao Wu
- School of Marine Science and Technology Harbin Institute of Technology 2 Wenhuaxi Road Weihai 264209 P.R. China
| |
Collapse
|
33
|
Shukla RK, Nair AM, Khan S, Volla CMR. Cobalt-Catalyzed C8-Dienylation of Quinoline-N-Oxides. Angew Chem Int Ed Engl 2020; 59:17042-17048. [PMID: 32558084 DOI: 10.1002/anie.202003216] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/25/2020] [Indexed: 12/19/2022]
Abstract
An efficient Cp*CoIII -catalyzed C8-dienylation of quinoline-N-oxides was achieved by employing allenes bearing leaving groups at the α-position as the dienylating agents. The reaction proceeds by CoIII -catalyzed C-H activation of quinoline-N-oxides and regioselective migratory insertion of the allene followed by a β-oxy elimination, leading to overall dienylation. Site-selective C-H activation was achieved with excellent selectivity under mild reaction conditions, and 30 mol % of a NaF additive was found to be crucial for the efficient dienylation. The methodology features high stereoselectivity, mild reaction conditions, and good functional-group tolerance. C8-alkenylation of quinoline-N-oxides was achieved in the case of allenes devoid of leaving groups as coupling partners. Furthermore, gram-scale preparation and preliminary mechanistic experiments were carried out to gain insights into the reaction mechanism.
Collapse
Affiliation(s)
- Rahul K Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Salman Khan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
34
|
Shukla RK, Nair AM, Khan S, Volla CMR. Cobalt‐Catalyzed C8‐Dienylation of Quinoline‐
N
‐Oxides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Rahul K. Shukla
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| | - Akshay M. Nair
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| | - Salman Khan
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| | - Chandra M. R. Volla
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| |
Collapse
|
35
|
Messinis AM, Finger LH, Hu L, Ackermann L. Allenes for Versatile Iron-Catalyzed C-H Activation by Weak O-Coordination: Mechanistic Insights by Kinetics, Intermediate Isolation, and Computation. J Am Chem Soc 2020; 142:13102-13111. [PMID: 32536163 DOI: 10.1021/jacs.0c04837] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The iron-catalyzed hydroarylation of allenes was accomplished by weak phenone assistance. The C-H activation proceeded with excellent efficacy and high ortho-regioselectivity in proximity to the weakly coordinating carbonyl group for a range of substituted phenones and allenes. Detailed mechanistic studies, including the isolation of key intermediates, the structural characterization of an iron-metallacycle, and kinetic analysis, allowed the sound elucidation of a plausible catalytic working mode. This mechanistic rationale is supported by detailed computational density functional theory studies, which fully address multi-spin-state reactivity. Furthermore, in operando nuclear magnetic resonance monitoring of the catalytic reaction provided detailed insights into the mode of action of the iron-catalyzed C-H alkylation with allenes.
Collapse
Affiliation(s)
- Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| | - Lars H Finger
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| | - Lianrui Hu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany.,WISCh (Wöhler-Research Institute for Sustainable Chemistry), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| |
Collapse
|
36
|
Wu F, Deraedt C, Cornaton Y, Contreras-Garcia J, Boucher M, Karmazin L, Bailly C, Djukic JP. Making Base-Assisted C–H Bond Activation by Cp*Co(III) Effective: A Noncovalent Interaction-Inclusive Theoretical Insight and Experimental Validation. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fule Wu
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Christophe Deraedt
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Yann Cornaton
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Julia Contreras-Garcia
- Laboratoire de Chimie Théorique UMR 7616 CNRS, Sorbonne Université, Site Jussieu, 4 place Jussieu, 75052 Paris cedex, France
| | - Mélanie Boucher
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Lydia Karmazin
- Service de Radiocristallographie, Fédération de Chimie Le Bel FR 2010, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Corinne Bailly
- Service de Radiocristallographie, Fédération de Chimie Le Bel FR 2010, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Jean-Pierre Djukic
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
37
|
Gandeepan P, Finger LH, Meyer TH, Ackermann L. 3d metallaelectrocatalysis for resource economical syntheses. Chem Soc Rev 2020; 49:4254-4272. [PMID: 32458919 DOI: 10.1039/d0cs00149j] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Resource economy constitutes one of the key challenges for researchers and practitioners in academia and industries, in terms of rising demand for sustainable and green synthetic methodology. To achieve ideal levels of resource economy in molecular syntheses, novel avenues are required, which include, but are not limited to the use of naturally abundant, renewable feedstocks, solvents, metal catalysts, energy, and redox reagents. In this context, electrosyntheses create the unique possibility to replace stoichiometric amounts of oxidizing or reducing reagents as well as electron transfer events by electric current. Particularly, the merger of Earth-abundant 3d metal catalysis and electrooxidation has recently been recognized as an increasingly viable strategy to forge challenging C-C and C-heteroatom bonds for complex organic molecules in a sustainable fashion under mild reaction conditions. In this review, we highlight the key developments in 3d metallaelectrocatalysis in the context of resource economy in molecular syntheses until February 2020.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany. and Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| | - Lars H Finger
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany.
| | - Tjark H Meyer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany. and Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany and Department of Chemistry, University of Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|
38
|
Pannilawithana N, Yi CS. Catalytic Carbon–Carbon Bond Activation of Saturated and Unsaturated Carbonyl Compounds via Chelate-Assisted Coupling Reaction with Indoles. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nuwan Pannilawithana
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233 United States
| | - Chae S. Yi
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233 United States
| |
Collapse
|
39
|
Zhu C, Kuniyil R, Jei BB, Ackermann L. Domino C–H Activation/Directing Group Migration/Alkyne Annulation: Unique Selectivity by d6-Cobalt(III) Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05413] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cuiju Zhu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Becky B. Jei
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
40
|
NO reduction by CO over CoOx/CeO2 catalysts: Effect of support calcination temperature on activity. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Chen W, Li HJ, Li QY, Wu YC. Direct oxidative coupling of N-acyl pyrroles with alkenes by ruthenium(ii)-catalyzed regioselective C2-alkenylation. Org Biomol Chem 2020; 18:500-513. [PMID: 31850444 DOI: 10.1039/c9ob02421b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ruthenium(ii)-catalyzed oxidative coupling by C2-alkenylation of N-acyl pyrroles with alkenes has been described. The acyl unit was found to be an effective chelating group for the activation of aryl C-H bonds ortho to the directing group. The alkenylation reaction of benzoyl pyrroles occurred regioselectively at the C2-position of the pyrrole ring, without touching the benzene ring. The reaction provides exclusively monosubstituted pyrroles under the optimized conditions. Disubstituted pyrroles could be obtained using higher loadings of the ruthenium(ii)-catalyst and the additives.
Collapse
Affiliation(s)
- Weiqiang Chen
- School of Marine Science and Technology, Harbin Institute of Technology, 2 Weihai Road, Weihai 264209, P. R. China.
| | | | | | | |
Collapse
|
42
|
Mei R, Fang X, He L, Sun J, Zou L, Ma W, Ackermann L. Cobaltaelectro-catalyzed oxidative allene annulation by electro-removable hydrazides. Chem Commun (Camb) 2020; 56:1393-1396. [PMID: 31912810 DOI: 10.1039/c9cc09076b] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient C-H/N-H functionalization with allenes was enabled via versatile electro-oxidative cobalt catalysis. Thus, electrochemical C-H activations were accomplished with high levels of chemoselectivity and regioselectivity in an operationally simple undivided cell setup. The user-friendly nature of this protocol was highlighted by excellent functional group tolerance, an electro-reductive removable hydrazide directing group and easy scalability. Experimental mechanistic studies were indicative of a facile BIES C-H cobaltation event.
Collapse
Affiliation(s)
- Ruhuai Mei
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China. and Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Liang He
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.
| | - Junmei Sun
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.
| | - Liang Zou
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, P. R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Lutz Ackermann
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany.
| |
Collapse
|
43
|
Tan H, Khan R, Xu D, Zhou Y, Zhang X, Shi G, Fan B. Cobalt-catalyzed ring-opening addition of azabenzonorbornadienes via C(sp3)–H bond activation of 8-methylquinoline. Chem Commun (Camb) 2020; 56:12570-12573. [DOI: 10.1039/d0cc05374k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The first ring-opening addition of a benzylic C(sp3)–H bond to azabenzonorbornadienes is demonstrated.
Collapse
Affiliation(s)
- Heng Tan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- Yunnan Minzu University
- Yuehua Street
- Kunming
- China
| | - Ruhima Khan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- Yunnan Minzu University
- Yuehua Street
- Kunming
- China
| | - Dandan Xu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- Yunnan Minzu University
- Yuehua Street
- Kunming
- China
| | - Yongyun Zhou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- Yunnan Minzu University
- Yuehua Street
- Kunming
- China
| | - Xuexin Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- Yunnan Minzu University
- Yuehua Street
- Kunming
- China
| | - Guangrui Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- Yunnan Minzu University
- Yuehua Street
- Kunming
- China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources
- Yunnan Minzu University
- Yuehua Street
- Kunming
- China
| |
Collapse
|
44
|
Liu Y, Wang K, Ling B, Chen G, Li Y, Liu L, Bi S. Theoretical elucidation of the multi-functional synthetic methodology for switchable Ni(0)-catalyzed C–H allylations, alkenylations and dienylations with allenes. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00965b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanisms and origins of switchable Ni(0)-catalyzed C–H allylations, alkenylations and dienylations with allenes are theoretically elucidated.
Collapse
Affiliation(s)
- Yuxia Liu
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
| | - Kaifeng Wang
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Baoping Ling
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Guang Chen
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Yulin Li
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources
- Northwest Institute of Plateau Biology
- Chinese Academy of Science
- Xining 810001
- P. R. China
| | - Lingjun Liu
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| |
Collapse
|
45
|
Jagtap RA, Punji B. C−H Functionalization of Indoles by 3d Transition‐Metal Catalysis. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900554] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rahul A. Jagtap
- Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL)Academy of Scientific and Innovative Research (AcSIR) Dr. Homi Bhabha Road Pune 411 008 India
| | - Benudhar Punji
- Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL)Academy of Scientific and Innovative Research (AcSIR) Dr. Homi Bhabha Road Pune 411 008 India
| |
Collapse
|
46
|
Han XL, Lin PP, Li Q. Recent advances of allenes in the first-row transition metals catalyzed C H activation reactions. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.04.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Lozovskiy SV, Ivanov AY, Vasilyev AV. Different reactivity of phosphorylallenes under the action of Brønsted or Lewis acids: a crucial role of involvement of the P=O group in intra- or intermolecular interactions at the formation of cationic intermediates. Beilstein J Org Chem 2019; 15:1491-1504. [PMID: 31354867 PMCID: PMC6633813 DOI: 10.3762/bjoc.15.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/28/2019] [Indexed: 11/23/2022] Open
Abstract
3-Methylbuta-1,2-dien-1-ylphosphonic acid derivatives (phosphorylallenes) [X2(O=)P–CR=C=CMe2, X = Cl, OMe, NR2, or SAr] undergo intramolecular cyclization into the corresponding 1,2-oxaphospholium ions in the Brønsted superacid TfOH. These cations have been thoroughly studied by means of NMR spectroscopy. The hydrolysis of superacidic solutions of these species afforded cyclic phosphonic acids and other phosphorus-containing compounds. Contrary to Brønsted acids, 3-methylbuta-1,2-dien-1-ylphosphonic dichloride [Cl2(O=)P–HC=C=CMe2] reacted with the Lewis acid AlCl3 in an intermolecular way forming noncyclic intermediates, which were investigated by NMR spectroscopy and DFT calculations. Hydrolysis of these species resulted in the formation of phosphoryl-substituted allyl alcohols and 1,3-butadienes. A strong coordination of the oxygen of the P=O group with AlCl3 prevented the formation of cyclic 1,2-oxaphospholium ions and played a crucial role in the different reactivity of such phosphorylallenes under the action of Brønsted or Lewis acids. Apart from that, the reaction of dichlorophosphorylallenes with arenes and AlCl3 led to products of hydroarylation of the allene system, phosphoryl-substituted alkenes and/or indanes. This is the first example of a Lewis acid-promoted intermolecular hydroarylation of allenes bearing electron-withdrawing substituents. Plausible reaction mechanisms have been proposed on the basis of the investigated reactions, and NMR analysis and DFT studies of the intermediate cationic species.
Collapse
Affiliation(s)
- Stanislav V Lozovskiy
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russia
| | - Alexander Yu Ivanov
- Center for Magnetic Resonance, Research Park, St. Petersburg State University, Universitetskiy pr., 26, Saint Petersburg, Petrodvoretz, 198504, Russia
| | - Aleksander V Vasilyev
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russia.,Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg, 194021, Russia
| |
Collapse
|
48
|
Ding W, Ho YKT, Okuda Y, Wijaya CK, Tan ZH, Yoshikai N. Cobalt-Catalyzed Hydroacylative Dimerization of Allenes Leading to Skipped Dienes. Org Lett 2019; 21:6173-6178. [PMID: 31334661 DOI: 10.1021/acs.orglett.9b02465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A cobalt-diphosphine catalyst has been found to promote a selective 1:2 coupling reaction between aldehydes and allenes to form β,δ-dialkylidene ketones, featuring skipped diene moieties, with high regioselectivities and stereoselectivities. The reaction is distinct from previously reported, rhodium-catalyzed aldehyde-allene 1:2 coupling to afford β,γ-dialkylidene ketones bearing 1,3-diene moieties. The present hydroacylative dimerization involves a unique allene/allene oxidative cyclization mode to form a C1-C2 linkage between the allene molecules.
Collapse
Affiliation(s)
- Wei Ding
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Yan King Terence Ho
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Yasuhiro Okuda
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore.,Department of Applied Chemistry and Biotechnology, Faculty of Engineering , Okayama University of Science , 1-1 Ridai-cho , Kita-ku , Okayama 700-0005 , Japan
| | - Christopher Kevin Wijaya
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Zheng Hao Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| |
Collapse
|
49
|
Cai H, Thombal RS, Li X, Lee YR. Rhodium(III)‐Catalyzed Regioselective C−H Activation/Annulation for the Diverse Pyrazole‐Core Substituted Furans. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900498] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hongyun Cai
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Raju S. Thombal
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Xin Li
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China
| | - Yong Rok Lee
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
50
|
Alharis RA, McMullin CL, Davies DL, Singh K, Macgregor SA. The Importance of Kinetic and Thermodynamic Control when Assessing Mechanisms of Carboxylate-Assisted C-H Activation. J Am Chem Soc 2019; 141:8896-8906. [PMID: 31083891 DOI: 10.1021/jacs.9b02073] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The reactions of substituted 1-phenylpyrazoles (phpyz-H) at [MCl2Cp*]2 dimers (M = Rh, Ir; Cp* = C5Me5) in the presence of NaOAc to form cyclometalated Cp*M(phpyz)Cl were studied experimentally and with density functional theory (DFT) calculations. At room temperature, time-course and H/D exchange experiments indicate that product formation can be reversible or irreversible depending on the metal, the substituents, and the reaction conditions. Competition experiments with both para- and meta-substituted ligands show that the kinetic selectivity favors electron-donating substituents and correlates well with the Hammett parameter giving a negative slope consistent with a cationic transition state. However, surprisingly, the thermodynamic selectivity is completely opposite, with substrates with electron-withdrawing groups being favored. These trends are reproduced with DFT calculations that show C-H activation proceeds by an AMLA/CMD mechanism. H/D exchange experiments with the meta-substituted ligands show ortho-C-H activation to be surprising facile, although (with the exception of F substituents) this does not generally lead to ortho-cyclometalated products. Calculations suggest that this can be attributed to the difficulty of HOAc loss after the C-H activation step due to steric effects in the 16e intermediate that would be formed. Our study highlights that the use of substituent effects to assign the mechanism of C-H activation in either stoichiometric or catalytic reactions may be misleading, unless the energetics of the C-H cleavage step and any subsequent reactions are properly taken into account. The broader implications of our study for the assignment of C-H activation mechanisms are discussed.
Collapse
Affiliation(s)
- Raed A Alharis
- Department of Chemistry , University of Leicester , Leicester , United Kingdom
| | - Claire L McMullin
- Institute of Chemical Sciences , Heriot-Watt University , Edinburgh EH14 4AS , United Kingdom
| | - David L Davies
- Department of Chemistry , University of Leicester , Leicester , United Kingdom
| | - Kuldip Singh
- Department of Chemistry , University of Leicester , Leicester , United Kingdom
| | - Stuart A Macgregor
- Institute of Chemical Sciences , Heriot-Watt University , Edinburgh EH14 4AS , United Kingdom
| |
Collapse
|