1
|
Chen S, Liang P, Cai Y, Zhou L, Wang S. Substrate-directed divergent annulations of sulfur ylides: synthesis of functionalized bispirocyclopentane and bispirocyclopropane derivatives. Org Biomol Chem 2024; 22:2197-2202. [PMID: 38411569 DOI: 10.1039/d4ob00146j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Herein, an efficient, substrate-directed divergent [2 + 3]/[2 + 1] annulation of tetra-substituted oxa-dienes and allylic sulfur ylides has been successfully developed. Under precise annulation regulation, a series of functionalized bispirocyclopentane and bispirocyclopropane derivatives were synthesized in a highly stereoselective and economical manner (up to 95% yield, >20 : 1 dr or >20 : 1 E/Z). This protocol offers the advantages of mild conditions, high chemo-, regio- and diastereoselectivity and broad substrate compatibility. In addition, the synthetic practicality of this protocol was evaluated through a scale-up preparation and a series of three-component reactions utilizing in situ generated sulfur ylides.
Collapse
Affiliation(s)
- Siyi Chen
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
| | - Peiyao Liang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
| | - Yilin Cai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Shoulei Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
| |
Collapse
|
2
|
Manna A, Rohilla S, Singh VK. Enantioselective Synthesis of Thiazolopyran Derivatives via a Direct Vinylogous Michael- oxa-Michael Sequence. Org Lett 2024; 26:280-285. [PMID: 38127653 DOI: 10.1021/acs.orglett.3c03971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
An efficient diastereo- and enantioselective direct vinylogous Michael-oxa-Michael sequence between 5-alkenyl thiazolones and isopropylidene oxindoles has been developed. The reaction is catalyzed by a bifunctional squaramide catalyst that allows to access a wide range of densely substituted thiazolopyran derivatives containing a quaternary stereocenter. This protocol is flexible toward different sterically and electronically tuned substrates and is amenable to gram-scale synthesis and several synthetic transformations.
Collapse
Affiliation(s)
- Abhijit Manna
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Shweta Rohilla
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
3
|
Liu Q, Liu X, Li Y, Zhou Y, Zhao L, Liang X, Liu H. Construction of Diversified Penta-Spiro-Heterocyclic and Fused-Heterocyclic Frameworks with Potent Antitumor Activity. Chemistry 2023; 29:e202301553. [PMID: 37370192 DOI: 10.1002/chem.202301553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
Multiple-spiro/fused-heterocyclic frameworks containing indazolone are structurally unique and represent a class of potentially dominant skeletons. In this work, we successfully fulfilled Rh(III)-catalyst mediated substrate- and pH- controlled strategies to construct four novel types of complicated penta-spiro/fused-heterocyclic frameworks via C-H activation/[4+1] and [4+2] annulation cascades. This method had mild reaction conditions, a broad scope of substrates, moderate to good yields, and valuable applications, which could realize for the first time the generation of the novel di-spiro-heterocyclic and multiple fused-heterocyclic products with unique structures. More importantly, novel spiro[cyclohexane-indazolo[1,2-a]indazole] scaffold constructed by this method exhibited potent antitumor activity against a variety of refractory solid tumors and hematological malignancies in vitro. Overall, our work provided new insights into the construction of complex and diverse multiple spiro/fused-heterocyclic systems and offered novel valuable lead compounds for the discovery of antitumor drugs.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xuyi Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yazhou Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yu Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Linxiang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xuewu Liang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Hong Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| |
Collapse
|
4
|
Stockhammer L, Craik R, Monkowius U, Cordes DB, Smith AD, Waser M. Isothiourea-Catalyzed Enantioselective Functionalisation of Glycine Schiff Base Aryl Esters via 1,6- and 1,4-Additions. CHEMISTRYEUROPE 2023; 1:e202300015. [PMID: 38882579 PMCID: PMC7616101 DOI: 10.1002/ceur.202300015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 06/18/2024]
Abstract
The enantioselective α-functionalisation of glycine Schiff base aryl esters through isothiourea catalysis is successfully demonstrated for 1,6-additions to para-quinone methides (21 examples, up to 95:5 dr and 96:4 er) and 1,4-additions to methylene substituted dicarbonyl or disulfonyl Michael acceptors (17 examples, up to 98:2 er). This nucleophilic organocatalysis approach gives access to a range of α-functionalised α-amino acid derivatives and further transformations of the activated aryl ester group provide a straightforward entry to advanced amino acid-based esters, amides or thioesters.
Collapse
Affiliation(s)
- Lotte Stockhammer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria)
| | - Rebecca Craik
- EaStCHEM, School of Chemistry, University of St Andrews, KY16 9ST St Andrews, Fife, (UK)
| | - Uwe Monkowius
- School of Education, Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria)
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, KY16 9ST St Andrews, Fife, (UK)
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, KY16 9ST St Andrews, Fife, (UK)
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria)
| |
Collapse
|
5
|
Liu Q, Teng K. Facile Approach for the Oxidative Enolate Activation of Aliphatic Aldehydes. J Org Chem 2023; 88:2404-2414. [PMID: 36745778 DOI: 10.1021/acs.joc.2c02821] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A proline/N-heterocyclic carbene relay catalytic strategy is developed for the oxidative enolate activation of aliphatic aldehydes. A broad scope of electrophiles including oxindole-derived pyrazolones, oxindole-derived α,β-unsaturated esters, and α,β-unsaturated imines are effective as the reactants in the asymmetric [2 + 4] cycloaddition reaction with the alkyl aldehydes bearing different substitution patterns. Structural complex multicyclic chiral products can be afforded in generally excellent yields and enantio- and diastereoselectivities through this approach under similar reaction conditions. Several of the optical pure products afforded from this protocol exhibit excellent antibacterial activities against plant pathogens and are promising in the development of novel pesticides for plant protection.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Kunpeng Teng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
6
|
Reddy YP, Anwar S. Synthesis of fully functionalised spiropyran pyrazolone skeletons via a formal [4 + 2] cascade process using β-nitro-styrene-derived MBH-alcohols. RSC Adv 2022; 12:34634-34638. [PMID: 36545601 PMCID: PMC9717676 DOI: 10.1039/d2ra06076k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/12/2022] [Indexed: 12/03/2022] Open
Abstract
An efficient protocol was established to construct spiro pyrazolone tetrahydropyran scaffolds at ambient temperature under metal-free conditions. The reaction proceeded via formal [4 + 2] cyclisation of trans-β-nitro-styrene-derived Morita-Baylis-Hillman (MBH) alcohol with α-arylidene pyrazolone. The reaction followed an oxa-Michael/Michael cascade pathway, resulting in the formation of new C-C and C-O bonds. Organocatalytic synthesis of spiropyrazolones using quinine-derived catalyst resulted in 94% enantiomeric excess (ee) and excellent (>20 : 1) diastereoselectivity.
Collapse
Affiliation(s)
- Yeruva Pavankumar Reddy
- Department of Chemistry, School of Applied Sciences and Humanities, Vignan's Foundation for Science Technology and Research-VFSTR (Deemed to be University)Vadlamudi-522213GunturAndhra PradeshIndiahttp://www.vignan.ac.in/bshanwar.php+91-8632344700
| | - Shaik Anwar
- Department of Chemistry, School of Applied Sciences and Humanities, Vignan's Foundation for Science Technology and Research-VFSTR (Deemed to be University)Vadlamudi-522213GunturAndhra PradeshIndiahttp://www.vignan.ac.in/bshanwar.php+91-8632344700
| |
Collapse
|
7
|
Wang Y, Young CM, Liu H, Hartley WC, Wienhold M, Cordes DB, Slawin AMZ, Smith AD. A Desilylative Approach to Alkyl Substituted C(1)-Ammonium Enolates: Application in Enantioselective [2+2] Cycloadditions. Angew Chem Int Ed Engl 2022; 61:e202208800. [PMID: 35833471 PMCID: PMC9543305 DOI: 10.1002/anie.202208800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/22/2022]
Abstract
The catalytic generation of C(1)-ammonium enolates from the corresponding α-silyl-α-alkyl substituted carboxylic acids using the isothiourea HyperBTM is reported. This desilylative approach grants access to α-unsubstituted and α-alkyl substituted C(1)-ammonium enolates, which are typically difficult to access through traditional methods reliant upon deprotonation. The scope and limitations of this process is established in enantioselective [2+2]-cycloaddition processes with perfluoroalkylketones (31 examples, up to 96 % yield and >99 : 1 er), as well as selective [2+2]-cycloaddition with trifluoromethyl enones (4 examples, up to 75 % yield and >99 : 1 er). Preliminary mechanistic studies indicate this process proceeds through an initial kinetic resolution of an in situ prepared (±)-α-silyl-α-alkyl substituted anhydride, while the reaction process exhibits overall pseudo zero-order kinetics.
Collapse
Affiliation(s)
- Yihong Wang
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFife KY16 9STUK
| | - Claire M. Young
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFife KY16 9STUK
| | - Honglei Liu
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFife KY16 9STUK
| | - Will C. Hartley
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFife KY16 9STUK
| | - Max Wienhold
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFife KY16 9STUK
| | - David. B. Cordes
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFife KY16 9STUK
| | | | - Andrew D. Smith
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFife KY16 9STUK
| |
Collapse
|
8
|
Yang X, Sun J, Huang X, Jin Z. Asymmetric Synthesis of Structurally Sophisticated Spirocyclic Pyrano[2,3- c]pyrazole Derivatives Bearing a Chiral Quaternary Carbon Center. Org Lett 2022; 24:5474-5479. [PMID: 35857420 DOI: 10.1021/acs.orglett.2c02211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A carbene-catalyzed enantio- and diastereoselective [2 + 4] cycloaddition reaction is developed for quick and efficient access to structurally complex multicyclic pyrano[2,3-c]pyrazole molecules. The reaction tolerates a broad scope of substrates bearing various substitution patterns, with the multicyclic pyrano[2,3-c]pyrazole products afforded in generally good to excellent yields and optical purities. The chiral molecules obtained from this approach has found promising applications in the development of novel bacteriacides for plant protection.
Collapse
Affiliation(s)
- Xiaoqun Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jun Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xuan Huang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhichao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
9
|
Smith AD, Wang Y, Young CM, Liu H, Hartley WC, Wienhold M, Cordes DB, Slawin AMZ. A Desilylative Approach to Alkyl Substituted C(1)‐Ammonium Enolates: Application in Enantioselective [2+2] Cycloadditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrew David Smith
- University of St Andrews School of Chemistry North Haugh FIFE, KY10 3TH St. Andrews UNITED KINGDOM
| | - Yihong Wang
- University of St Andrews School of Chemistry UNITED KINGDOM
| | | | - Honglei Liu
- University of St Andrews School of Chemistry UNITED KINGDOM
| | | | - Max Wienhold
- University of St Andrews School of Chemistry UNITED KINGDOM
| | | | | |
Collapse
|
10
|
Yang XX, Zhao XL, ouyang Q, Du W, Chen YC. Palladium-catalysed diastereodivergent inverse-electron-demand oxa-Diels-Alder reactions of in situ formed cyclopentadienones via ligand-control. Org Chem Front 2022. [DOI: 10.1039/d1qo01876k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report Pd(0)-catalysed asymmetric inverse-electron-demand oxa-Diels-Alder reactions between the carbonates of 4-hydroxy-2-cyclopentenones and α-cyano chalcones, by in situ generating η2-Pd(0)-cyclopentadienone complexes as HOMO-raised dienophiles, and diastereodivergent synthesis could be...
Collapse
|
11
|
He S, Wang J, Zheng J, Luo QQ, Leng H, Zheng S, Peng C, Han B, Zhan G. Organocatalytic (5+1) benzannulation of Morita–Baylis–Hillman carbonates: synthesis of multisubstituted 4-benzylidene pyrazolones. NEW J CHEM 2022. [DOI: 10.1039/d2nj01949c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DABCO-catalyzed (5+1) cycloaddition of MBH carbonate undergoes an α-double deprotonation pathway to de novo assemble the benzene ring.
Collapse
Affiliation(s)
- Shurong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jinfeng Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qing-Qing Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Haijun Leng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Sixiang Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
12
|
Guo Y, Wang WD, Li S, Zhu Y, Wang X, Liu X, Zhang Y. A TEMPO-Functionalized Ordered Mesoporous Polymer as a Highly Active and Reusable Organocatalyst. Chem Asian J 2021; 16:3689-3694. [PMID: 34519415 DOI: 10.1002/asia.202100854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/12/2021] [Indexed: 11/12/2022]
Abstract
The properties of high stability, periodic porosity, and tunable nature of ordered mesoporous polymers make these materials ideal catalytic nanoreactors. However, their application in organocatalysis has been rarely explored. We report herein for the first time the incorporation of a versatile organocatalyst, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), into the pores of an FDU-type mesoporous polymer via a pore surface engineering strategy. The resulting FDU-15-TEMPO possesses a highly ordered mesoporous organic framework and enhanced stability, and shows excellent catalytic activity in the selective oxidation of alcohols and aerobic oxidative synthesis of 2-substituted benzoxazoles, benzimidazoles and benzothiazoles. Moreover, the catalyst can be easily recovered and reused for up to 7 consecutive cycles.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Shengyu Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yin Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xiao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
13
|
Torán R, Miguélez R, Sanz‐Marco A, Vila C, Pedro JR, Blay G. Asymmetric Addition and Cycloaddition Reactions with Ylidene‐Five‐Membered Heterocycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ricardo Torán
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - Rubén Miguélez
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - Amparo Sanz‐Marco
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - Carlos Vila
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - José R. Pedro
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| | - Gonzalo Blay
- Departament de Química Orgànica Universitat de València C/Dr. Moliner 50 46100- Burjassot (València) Spain
| |
Collapse
|
14
|
Mei MS, Wang YJ, Zhang GS, Tang JY, Tian P, Wang YH. Catalyst-Controlled Diastereoselectivity Switch in the Asymmetric [3 + 2] Annulation of Isatin-Derived MBH Carbonates and 5-Alkenylthiazol-4(5 H)-ones. Org Lett 2021; 23:7336-7341. [PMID: 34523943 DOI: 10.1021/acs.orglett.1c02421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exploration of the diastereodivergent synthesis of spirocyclic oxindoles has been challenging. Herein we report asymmetric [3 + 2] annulations of isatin-derived Morita-Baylis-Hillman (MBH) carbonates and 5-alkenylthiazol-4(5H)-ones. Interestingly, two different chiral catalysts, amide-phosphine and 4-dimethylaminopyridine (DMAP)-thiourea, could lead to two kinds of diastereomeric dispiro oxindoles with three contiguous stereogenic centers. The hexafluoroisopropanol (HFIP) additive plays a vital role in accelerating the reaction and tuning the diastereoselectivity. Moreover, both annulation adducts could be further converted to structurally diverse spirooxindoles.
Collapse
Affiliation(s)
- Ming-Shun Mei
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.,Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ya-Jie Wang
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Gui-Shan Zhang
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jing-Yi Tang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ping Tian
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yu-Hui Wang
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
15
|
McLaughlin C, Bitai J, Barber LJ, Slawin AMZ, Smith AD. Catalytic enantioselective synthesis of 1,4-dihydropyridines via the addition of C(1)-ammonium enolates to pyridinium salts. Chem Sci 2021; 12:12001-12011. [PMID: 34667566 PMCID: PMC8457386 DOI: 10.1039/d1sc03860e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022] Open
Abstract
The regio- and stereoselective addition of C(1)-ammonium enolates - generated in situ from aryl esters and the isothiourea catalyst (R)-BTM - to pyridinium salts bearing an electron withdrawing substituent in the 3-position allows the synthesis of a range of enantioenriched 1,4-dihydropyridines. This represents the first organocatalytic approach to pyridine dearomatisation using pronucleophiles at the carboxylic acid oxidation level. Optimisation studies revealed a significant solvent dependency upon product enantioselectivity, with only toluene providing significant asymmetric induction. Using DABCO as a base also proved beneficial for product enantioselectivity, while investigations into the nature of the counterion showed that co-ordinating bromide or chloride substrates led to higher product er than the corresponding tetrafluoroborate or hexafluorophosphate. The scope and limitations of this process are developed, with enantioselective addition to 3-cyano- or 3-sulfonylpyridinium salts giving the corresponding 1,4-dihydropyridines (15 examples, up to 95 : 5 dr and 98 : 2 er).
Collapse
Affiliation(s)
- Calum McLaughlin
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Jacqueline Bitai
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Lydia J Barber
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Alexandra M Z Slawin
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
16
|
Brønsted Base‐Catalyzed Tandem [2+4] Annulation/Tautomerization/Aromatization Reaction of α‐Alkylidene Succinimides with 5‐Alkenyl Thiazolones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Brandolese A, Greenhalgh MD, Desrues T, Liu X, Qu S, Bressy C, Smith AD. Horeau amplification in the sequential acylative kinetic resolution of (±)-1,2-diols and (±)-1,3-diols in flow. Org Biomol Chem 2021; 19:3620-3627. [PMID: 33908571 DOI: 10.1039/d1ob00304f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The sequential acylative kinetic resolution (KR) of C2-symmetric (±)-1,2-syn and (±)-1,3-anti-diols using a packed bed microreactor loaded with the polystyrene-supported isothiourea, HyperBTM, is demonstrated in flow. The sequential KRs of C2-symmetric (±)-1,2-syn and (±)-1,3-anti-diols exploits Horeau amplification, with each composed of two successive KR processes, with each substrate class significantly differing in the relative rate constants for each KR process. Optimisation of the continuous flow set-up for both C2-symmetric (±)-1,2-syn and (±)-1,3-anti-diol substrate classes allowed isolation of reaction products in both high enantiopurity and yield. In addition to the successful KR of C2-symmetric (±)-1,2-syn and (±)-1,3-anti-diols, the application of this process to the more conceptually-complex scenario involving the sequential KR of C1-symmetric (±)-1,3-anti-diols was demonstrated, which involves eight independent rate constants.
Collapse
Affiliation(s)
- Arianna Brandolese
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK. and Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Mark D Greenhalgh
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK. and Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Titouan Desrues
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille, France.
| | - Xueyang Liu
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille, France.
| | - Shen Qu
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK.
| | - Cyril Bressy
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille, France.
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK.
| |
Collapse
|
18
|
McLaughlin C, Smith AD. Generation and Reactivity of C(1)-Ammonium Enolates by Using Isothiourea Catalysis. Chemistry 2021; 27:1533-1555. [PMID: 32557875 PMCID: PMC7894297 DOI: 10.1002/chem.202002059] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 12/17/2022]
Abstract
C(1)-Ammonium enolates are powerful, catalytically generated synthetic intermediates applied in the enantioselective α-functionalisation of carboxylic acid derivatives. This minireview describes the recent developments in the generation and application of C(1)-ammonium enolates from various precursors (carboxylic acids, anhydrides, acyl imidazoles, aryl esters, α-diazoketones, alkyl halides) using isothiourea Lewis base organocatalysts. Their synthetic utility in intra- and intermolecular enantioselective C-C and C-X bond forming processes on reaction with various electrophiles will be showcased utilising two distinct catalyst turnover approaches.
Collapse
Affiliation(s)
- Calum McLaughlin
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughFifeKY16 9STScotland
| | - Andrew D. Smith
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughFifeKY16 9STScotland
| |
Collapse
|
19
|
Guo JM, Fan XZ, Wu HH, Tang Z, Bi XF, Zhang H, Cai LY, Zhao HW, Zhong QD. Asymmetric Synthesis of Spiropyrazolones via Chiral Pd(0)/Ligand Complex-Catalyzed Formal [4+2] Cycloaddition of Vinyl Benzoxazinanones with Alkylidene Pyrazolones. J Org Chem 2021; 86:1712-1720. [PMID: 33378188 DOI: 10.1021/acs.joc.0c02524] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the presence of the chiral Pd(0)/ligand complex, vinyl benzoxazinanones underwent the [4+2] cycloaddition with alkylidene pyrazolones smoothly and delivered spiropyrazolones in reasonable yields, diastereoselectivities, and eneantioselectivities (up to >99% yield, >99:1 dr and 99% ee). The absolute configuration of the obtained spiropyrazolones was unambiguously characterized with the use of X-ray single-crystal structure analysis. Moreover, the reaction mechanism was assumed to interpret the formation of the target compounds.
Collapse
Affiliation(s)
- Jia-Ming Guo
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xiao-Zu Fan
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Hui-Hui Wu
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Zhe Tang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xiao-Fan Bi
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Heng Zhang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Lu-Yu Cai
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Hong-Wu Zhao
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Qi-Di Zhong
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| |
Collapse
|
20
|
Di H, Liu Y, Ma Y, Yang X, Jin H, Zhang L. Recent Advances in Organocatalytic Asymmetric Synthesis of 3,4-Dihydropyran-2-ones and 3,4-Dihydropyridin-2-ones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Qi T, Fu S, Zhang X, Liu TH, Li QZ, Gou C, Li JL. Theoretical insight into the origins of chemo- and diastereo-selectivity in the palladium-catalysed (3 + 2) cyclisation of 5-alkenyl thiazolones. Org Chem Front 2021. [DOI: 10.1039/d1qo01071a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanism of the palladium-catalysed (3 + 2) cyclisation of 5-alkenyl thiazolones and VECs has been investigated from a computational perspective, and the origins of unique chemoselectivity and excellent diastereoselectivity have been disclosed.
Collapse
Affiliation(s)
- Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Shuai Fu
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Ting-Hao Liu
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Chuan Gou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, 610106, China
| |
Collapse
|
22
|
Yuan YC, Abd El Sater M, Mellah M, Jaber N, David ORP, Schulz E. Enantiopure isothiourea@carbon-based support: stacking interactions for recycling a lewis base in asymmetric catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo00646k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An enantiopure isothiourea (hyperBTM) was functionalized by a pyrene moiety via click chemistry; immobilized on reduced Graphene Oxide, this recyclable chiral organocatalyst promotes formal [3+2] cycloaddition of ammonium enolates with oxaziridines.
Collapse
Affiliation(s)
- Yu-Chao Yuan
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
- Institut Lavoisier, UMR 8180, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris Saclay, 45 avenue des Etats-Unis, 78035 Versailles, France
| | - Mariam Abd El Sater
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
- Laboratoire de Chimie Médicinale et des Produits Naturels, Université Libanaise, Faculté des Sciences (I) and PRASE-EDST, Hadath, Beyrouth, Lebanon
| | - Mohamed Mellah
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
| | - Nada Jaber
- Laboratoire de Chimie Médicinale et des Produits Naturels, Université Libanaise, Faculté des Sciences (I) and PRASE-EDST, Hadath, Beyrouth, Lebanon
| | - Olivier R. P. David
- Institut Lavoisier, UMR 8180, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris Saclay, 45 avenue des Etats-Unis, 78035 Versailles, France
| | - Emmanuelle Schulz
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
| |
Collapse
|
23
|
Origin of diastereoselectivity and catalytic efficiency on Isothiourea-mediated cyclization of carboxylic acid with alkenyl ketone. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
García-Lacuna J, Domínguez G, Pérez-Castells J. Flow Chemistry for Cycloaddition Reactions. CHEMSUSCHEM 2020; 13:5138-5163. [PMID: 32662578 DOI: 10.1002/cssc.202001372] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Continuous flow reactors form part of a rapidly growing research area that has changed the way synthetic chemistry is performed not only in academia but also at the industrial level. This Review highlights the most recent advances in cycloaddition reactions performed in flow systems. Cycloadditions are atom-efficient transformations for the synthesis of carbo- and heterocycles, involved in the construction of challenging skeletons of complex molecules. The main advantages of translating these processes into flow include using intensified conditions, safer handling of hazardous reagents and gases, easy tuning of reaction conditions, and straightforward scaling up. These benefits are especially important in cycloadditions such as the copper(I)-catalyzed azide alkyne cycloaddition (CuAAC), Diels-Alder reaction, ozonolysis and [2+2] photocycloadditions. Some of these transformations are key reactions in the industrial synthesis of pharmaceuticals.
Collapse
Affiliation(s)
- Jorge García-Lacuna
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Gema Domínguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Javier Pérez-Castells
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
25
|
Biswas A, Mondal H, Maji MS. Synthesis of Heterocycles by isothiourea organocatalysis. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anup Biswas
- Department of Chemistry Hooghly Women's College Hooghly India
| | - Haripriyo Mondal
- Department of Chemistry Indian Institute of Technology Kharagpur India
| | - Modhu S. Maji
- Department of Chemistry Indian Institute of Technology Kharagpur India
| |
Collapse
|
26
|
Zhang S, Hartley WC, Greenhalgh MD, Ng S, Slawin AMZ, Smith AD. Isothiourea‐Catalyzed Synthesis of Pyrrole‐ and Indole‐Functionalized Tetrasubstituted Pyridines. ChemCatChem 2020. [DOI: 10.1002/cctc.202000882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shuyue Zhang
- EaStCHEM, School of Chemistry University of St Andrews North Haugh St Andrews Fife, KY16 9ST UK
| | - Will C. Hartley
- EaStCHEM, School of Chemistry University of St Andrews North Haugh St Andrews Fife, KY16 9ST UK
| | - Mark D. Greenhalgh
- EaStCHEM, School of Chemistry University of St Andrews North Haugh St Andrews Fife, KY16 9ST UK
| | - Sean Ng
- Syngenta Jealott's Hill International Research Centre Bracknell Berkshire, RG42 6EY UK
| | - Alexandra M. Z. Slawin
- EaStCHEM, School of Chemistry University of St Andrews North Haugh St Andrews Fife, KY16 9ST UK
| | - Andrew D. Smith
- EaStCHEM, School of Chemistry University of St Andrews North Haugh St Andrews Fife, KY16 9ST UK
| |
Collapse
|
27
|
Song YX, Du DM. Recent advances in the catalytic asymmetric reactions of thiazolone derivatives. Org Biomol Chem 2020; 18:6018-6041. [PMID: 32705096 DOI: 10.1039/d0ob01261k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thiazolones as a class of five-membered heterocyclic compounds containing both nitrogen and sulfur, have been proved to possess important biological activities. Because thiazolone molecules have many reaction sites, they can carry out a series of modification reactions, which makes them good reaction substrates for various molecular syntheses. In recent years, research on the use of asymmetric organocatalysis to construct thiazolone derivatives has attracted a lot of attention. Among these, some breakthrough results have been achieved in the asymmetric synthesis of thiazolone derivatives. This review highlights recent developments in thiazolone derivatives in asymmetric reactions, including Michael additions, Mannich reactions as well as various cascade reactions.
Collapse
Affiliation(s)
- Yong-Xing Song
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | | |
Collapse
|
28
|
Huang A, Guo X, Li P, Li W. Recent Advances in Catalytic Asymmetric Reactions of Thiazolones, Rhodanines and Their Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anqi Huang
- Department of Medicinal ChemistrySchool of PharmacyQingdao University 38 Dengzhou Road Qingdao Shandong 266021 People's Republic of China
| | - Xing Guo
- Department of ChemistryCollege of ScienceSouthern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 People's Republic of China
| | - Pengfei Li
- Department of ChemistryCollege of ScienceSouthern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 People's Republic of China
- Shenzhen Key Laboratory of Marine Archaea Geo-OmicsSouthern University of Science and Technology
| | - Wenjun Li
- Department of Medicinal ChemistrySchool of PharmacyQingdao University 38 Dengzhou Road Qingdao Shandong 266021 People's Republic of China
| |
Collapse
|
29
|
Wang YF, Jiang ZH, Chu MM, Qi SS, Yin H, Han HT, Xu DQ. Asymmetric copper-catalyzed fluorination of cyclic β-keto esters in a continuous-flow microreactor. Org Biomol Chem 2020; 18:4927-4931. [PMID: 32573633 DOI: 10.1039/d0ob00588f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective homogeneous fluorination of cyclic β-keto esters catalyzed by diphenylamine linked bis(oxazoline)-Cu(OTf)2 complexes has been established in a continuous flow microreactor. The microreactor allowed an efficient transformation with reaction times ranging from 0.5 to 20 min, and the desired products were afforded in high yields (up to 99%) with excellent enantioselectivities (up to 99% ee) at a low catalyst loading of 1 mol%.
Collapse
Affiliation(s)
- Yi-Feng Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Hui Jiang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Ming-Ming Chu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Suo-Suo Qi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hao Yin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hong-Te Han
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
30
|
Li X, Ren B, Xie X, Tian Z, Chen FY, Gamble AB, Han B. Regiodivergent synthesis of aza-quaternary carbon derivatives from pyrazolinone ketimines and 1,2-dihydroquinolines. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
SCMNPs@Uridine/Zn: An efficient and reusable heterogeneous nanocatalyst for the rapid one-pot synthesis of tricyclic fused pyrazolopyranopyrimidine and 3-methyl carboxylate substituted pyrano[2,3-c]pyrazole derivatives under solvent-free conditions. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2020. [DOI: 10.2478/pjct-2020-0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
SCMNPs@Uridine/Zn is utilized as an environmental-friendly and efficient heterogeneous nanocatalyst for two one-pot four-component condensation reactions, containing hydrazine hydrate, arylaldehyde, ethyl acetoacetate, and barbituric acid to yield tricyclic fused pyrazolopyranopyrimidine derivatives (5a-q), and hydrazine hydrate, arylaldehyde, malononitrile, and dimethyl acetylenedicarboxylate/diethyl acetylenedicarboxylate to yield 3-methyl carboxylate substituted pyrano[2,3-c]pyrazole derivatives (8a-y) under solvent-free conditions with high to excellent yields. The main advantages of this process are easy work-up, short reaction times, no chromatographic purifications, and recyclability of the catalyst for a minimum of six runs without any significant decrease in yields of the products. Also, the prepared catalyst SCMNPs@Uridine/Zn was synthesized and fully characterized by various techniques including Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Raman spectroscopy.
Collapse
|
32
|
Du J, Wu J, Zhu L, Ren X, Jiang C, Wang T. Bifunctional Phosphonium Salt‐catalyzed Enantioselective [4+2] Annulation of Isoindigos with Allenes: Access to Complex Heterocycles with Centerpiece of 4
H
‐Pyrans. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Juan Du
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jia‐Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Lixiang Zhu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Chunhui Jiang
- School of Environmental and Chemical EngineeringJiangsu University of Science and Technology 2 Mengxi Road Zhenjiang 212003 People's Republic of China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| |
Collapse
|
33
|
Wu W, Sun Z, Wang X, Lu X, Dai D. Construction of Thiazole-Fused Dihydropyrans via Formal [4 + 2] Cycloaddition Reaction on DNA. Org Lett 2020; 22:3239-3244. [PMID: 32243186 DOI: 10.1021/acs.orglett.0c01016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and facile formal [4 + 2] cycloaddition reaction was developed to synthesize diverse thiazole-fused dihydropyrans (TFDP) on DNA. Mild reaction conditions, broad substrate scope, and compatibility with subsequent enzymatic ligation demonstrated the utility of this methodology in DNA-encoded library synthesis.
Collapse
Affiliation(s)
- Wenting Wu
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Zhen Sun
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Xuan Wang
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Dongcheng Dai
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China
| |
Collapse
|
34
|
Lai J, Neyyappadath RM, Smith AD, Pericàs MA. Continuous Flow Preparation of Enantiomerically Pure BINOL(s) by Acylative Kinetic Resolution. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901420] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junshan Lai
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili 43007 Tarragona Spain
| | | | - Andrew D. Smith
- EaStCHEM, School of ChemistryUniversity of St Andrews, North Haugh St Andrews KY16 9ST U.K
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Inorgànica i OrgànicaUniversitat de Barcelona (UB) 08028 Barcelona Spain
| |
Collapse
|
35
|
Zhang S, Greenhalgh MD, Slawin AMZ, Smith AD. Tandem sequential catalytic enantioselective synthesis of highly-functionalised tetrahydroindolizine derivatives. Chem Sci 2020; 11:3885-3892. [PMID: 34122857 PMCID: PMC8152628 DOI: 10.1039/d0sc00432d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
An isothiourea-catalysed enantioselective synthesis of novel tetrahydroindolizine derivatives is reported through a one-pot tandem sequential process. The application of 2-(pyrrol-1-yl)acetic acid in combination with either a trifluoromethyl enone or an α-keto-β,γ-unsaturated ester in an enantioselective Michael addition–lactonisation process, followed by in situ ring-opening and cyclisation, led to a range of 24 tetrahydroindolizine derivatives containing three stereocentres in up to >95 : 5 dr and >99 : 1 er. The isothiourea-catalysed enantioselective synthesis of tetrahydroindolizine derivatives containing three stereocentres is reported through a one-pot tandem sequential process.![]()
Collapse
Affiliation(s)
- Shuyue Zhang
- EaStCHEM, School of Chemistry, University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Mark D Greenhalgh
- EaStCHEM, School of Chemistry, University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Alexandra M Z Slawin
- EaStCHEM, School of Chemistry, University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews North Haugh St Andrews KY16 9ST UK
| |
Collapse
|
36
|
Yu T, Ding Z, Nie W, Jiao J, Zhang H, Zhang Q, Xue C, Duan X, Yamada YMA, Li P. Recent Advances in Continuous-Flow Enantioselective Catalysis. Chemistry 2020; 26:5729-5747. [PMID: 31916323 DOI: 10.1002/chem.201905151] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Indexed: 11/05/2022]
Abstract
The increased demand for more efficient, safe, and green production in fine chemical and pharmaceutical industry calls for the development of continuous-flow manufacturing, and for chiral chemicals in particular, enantioselective catalytic processes. In recent years, this emerging direction has received considerable attention and has seen rapid progress. In most cases, catalytic enantioselective flow processes using homogeneous, heterogeneous, or enzymatic catalysts have shown significant advantages over the conventional batch mode, such as shortened reaction times, lower catalysts loadings, and higher selectivities in addition to the normal merits of non-enantioselective flow operations. In this Minireview, the advancements, key strategies, methods, and technologies developed the last six years as well as remaining challenges are summarized.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhengwei Ding
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenzheng Nie
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jiao Jiao
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hailong Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Chao Xue
- State Key Laboratory for Efficient Development and, Utilization of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| | - Xinhua Duan
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yoichi M A Yamada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 3510198, Japan
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
37
|
Wang C, Li SJ, Zhang QC, Wei D, Ding L. Insights into isothiourea-catalyzed asymmetric [3 + 3] annulation of α,β-unsaturated aryl esters with 2-acylbenzazoles: mechanism, origin of stereoselectivity and switchable chemoselectivity. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00295j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The switchable chemoselectivity of isothiourea-catalyzed asymmetric [3 + 3] annulation of α,β-unsaturated aryl esters with 2-acylbenzazoles has been predicted successfully.
Collapse
Affiliation(s)
- Congcong Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University)
- Ministry of Education of China
- Key Laboratory of Henan Province for Drug Quality and Evaluation
- School of Pharmaceutical Sciences
| | - Shi-Jun Li
- College of Chemistry, and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Qiao-Chu Zhang
- College of Chemistry, and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Donghui Wei
- College of Chemistry, and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Lina Ding
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University)
- Ministry of Education of China
- Key Laboratory of Henan Province for Drug Quality and Evaluation
- School of Pharmaceutical Sciences
| |
Collapse
|
38
|
Deng Q, Mu F, Qiao Y, Wei D. A theoretical review for novel Lewis base amine/imine-catalyzed reactions. Org Biomol Chem 2020; 18:6781-6800. [DOI: 10.1039/d0ob01378a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances in computational investigations of Lewis base amine/imine-catalyzed reactions have been systematically summarized and reviewed for the first time.
Collapse
Affiliation(s)
- Qianqian Deng
- College of Chemistry
- and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou
- China
| | - Fangjing Mu
- College of Chemistry
- and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou
- China
| | - Yan Qiao
- Department of Pathophysiology
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou
- China
| | - Donghui Wei
- College of Chemistry
- and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou
- China
| |
Collapse
|
39
|
Wei S, Bao X, Wang W, Nawaz S, Dai Q, Qu J, Wang B. Enantioselective construction of dispirotriheterocycles featuring a 4-aminopyrazolone motif through a cascade Michael/cyclization process. Chem Commun (Camb) 2020; 56:10690-10693. [DOI: 10.1039/d0cc04215c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A highly asymmetric approach to multicyclic dispiro [pyrazolone-pyrrolidinethione-oxindole] core structures bearing three contiguous stereogenic centers through a cascade Michael addition/cyclization reaction of 4-isothiocyanato pyrazolones with 3-ylideneoxindoles was developed.
Collapse
Affiliation(s)
- Shiqiang Wei
- State Key Laboratory of Fine Chemicals
- Department of Pharmaceutical Sciences
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Xiaoze Bao
- State Key Laboratory of Fine Chemicals
- Department of Pharmaceutical Sciences
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Wenyao Wang
- State Key Laboratory of Fine Chemicals
- Department of Pharmaceutical Sciences
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Shah Nawaz
- State Key Laboratory of Fine Chemicals
- Department of Pharmaceutical Sciences
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Qimin Dai
- Nenter (Shishou) & Co., Inc
- Jingzhou 434000
- People's Republic of China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals
- Department of Pharmaceutical Sciences
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals
- Department of Pharmaceutical Sciences
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
40
|
Tan J, Zhang H, Jiang Z, Chen Y, Ren X, Jiang C, Wang T. Enantioselective Construction of Spiro[chroman‐thiazolones]: Bifunctional Phosphonium Salt‐Catalyzed [2+4] Annulation between 5‐Alkenyl Thiazolones and
ortho
‐Hydroxyphenyl‐Substituted
para‐
Quinone Methides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901413] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian‐Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Zhiyu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Chunhui Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
- School of Environmental and Chemical EngineeringJiangsu University of Science and Technology 2 Mengxi Road Zhenjiang 212003 People's Republic of China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| |
Collapse
|
41
|
Song YX, Du DM. Asymmetric synthesis of spirooxindole-fused spirothiazolones via squaramide-catalysed reaction of 3-chlorooxindoles with 5-alkenyl thiazolones. Org Biomol Chem 2019; 17:5375-5380. [PMID: 31106322 DOI: 10.1039/c9ob00998a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An efficient and practical organocatalyzed asymmetric formal [2 + 1] cycloaddition of 3-chlorooxindoles with 5-alkenyl thiazolones by using hydroquinine-derived squaramide as the catalyst has been developed. Under mild conditions, a broad range of spirooxindole-fused spirothiazolones bearing three adjacent stereogenic centers including two vicinal spiro quaternary chiral centers were obtained in high yields (up to 99% yield) with excellent diastereoselectivities (up to >99 : 1 dr) and enantioselectivities (up to 99% ee).
Collapse
Affiliation(s)
- Yong-Xing Song
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. China.
| | | |
Collapse
|
42
|
Tan CY, Lu H, Zhang JL, Liu JY, Xu PF. Asymmetric Organocatalytic [4 + 1] Annulations Involving a Polarity Reversal Process: A Tandem Catalytic Approach to Highly Functionalized Spiropyrazolone Derivatives. J Org Chem 2019; 85:594-602. [DOI: 10.1021/acs.joc.9b02684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Chang-Yin Tan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
| | - Jia-Lu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jin-Yu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
43
|
Affiliation(s)
- Chenxi Yang
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Xia Sheng
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Ling Zhang
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Jiang Yu
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Dayun Huang
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| |
Collapse
|
44
|
Song Y, Du D. Bifunctional Squaramide‐Catalysed Asymmetric Michael/Hemiketalization/Retro‐Aldol Reaction of Unsaturated Thiazolones with α‐Nitroketones: Synthesis of Chiral 4‐Acyloxythiazole Derivatives. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yong‐Xing Song
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 People's Republic of China
| | - Da‐Ming Du
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 People's Republic of China
| |
Collapse
|
45
|
McLaughlin C, Slawin AMZ, Smith AD. Base‐free Enantioselective C(1)‐Ammonium Enolate Catalysis Exploiting Aryloxides: A Synthetic and Mechanistic Study. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Calum McLaughlin
- EaStCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland KY16 9ST UK
| | - Alexandra M. Z. Slawin
- EaStCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland KY16 9ST UK
| | - Andrew D. Smith
- EaStCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland KY16 9ST UK
| |
Collapse
|
46
|
McLaughlin C, Slawin AMZ, Smith AD. Base-free Enantioselective C(1)-Ammonium Enolate Catalysis Exploiting Aryloxides: A Synthetic and Mechanistic Study. Angew Chem Int Ed Engl 2019; 58:15111-15119. [PMID: 31436380 DOI: 10.1002/anie.201908627] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 12/21/2022]
Abstract
An isothiourea-catalyzed enantioselective Michael addition of aryl ester pronucleophiles to vinyl bis-sulfones via C(1)-ammonium enolate intermediates has been developed. This operationally simple method allows the base-free functionalization of aryl esters to form α-functionalized products containing two contiguous tertiary stereogenic centres in excellent yield and stereoselectivity (all ≥99:1 er). Key to the success of this methodology is the multifunctional role of the aryloxide, which operates as a leaving group, Brønsted base, Brønsted acid and Lewis base within the catalytic cycle. Comprehensive mechanistic studies, including variable time normalization analysis (VTNA) and isotopologue competition experiments, have been carried out. These studies have identified (i) orders of all reactants; (ii) a turnover-limiting Michael addition step, (iii) product inhibition, (iv) the catalyst resting state and (v) catalyst deactivation through protonation.
Collapse
Affiliation(s)
- Calum McLaughlin
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, UK
| | - Alexandra M Z Slawin
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, UK
| |
Collapse
|
47
|
Liu Y, Huang QW, Li QZ, Leng HJ, Dai QS, Zeng R, Liu YQ, Zhang X, Han B, Li JL. Highly Chemo- and Diastereoselective Construction of Quaternary Stereocenters through Palladium-Catalyzed [3 + 2] Cyclization of 5-Alkenyl Thiazolones. Org Lett 2019; 21:7478-7483. [DOI: 10.1021/acs.orglett.9b02781] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Qian-Wei Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Hai-Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Qing-Song Dai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Yan-Qing Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Bo Han
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
48
|
Lin Y, Zhao BL, Du DM. Bifunctional Squaramide-Catalyzed Asymmetric [3 + 2] Cyclization of 2-(1-Methyl-2-oxoindolin-3-yl)malononitriles with Unsaturated Pyrazolones To Construct Spirooxindole-Fused Spiropyrazolones. J Org Chem 2019; 84:10209-10220. [DOI: 10.1021/acs.joc.9b01268] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ye Lin
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, People’s Republic of China
| | - Bo-Liang Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, People’s Republic of China
| | - Da-Ming Du
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, People’s Republic of China
| |
Collapse
|
49
|
Li L, Ding D, Song J, Han Z, Gong L. Catalytic Generation of C1 Ammonium Enolates from Halides and CO for Asymmetric Cascade Reactions. Angew Chem Int Ed Engl 2019; 58:7647-7651. [DOI: 10.1002/anie.201901501] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/10/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Lu‐Lu Li
- Hefei National Laboratory for Physical Sciences at Microscale and Department of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Du Ding
- Hefei National Laboratory for Physical Sciences at Microscale and Department of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Jin Song
- Hefei National Laboratory for Physical Sciences at Microscale and Department of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Zhi‐Yong Han
- Hefei National Laboratory for Physical Sciences at Microscale and Department of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of ChemistryUniversity of Science and Technology of China Hefei 230026 China
- Collaborative Innovation Center of Chemical Science, and Engineering Tianjin China
| |
Collapse
|
50
|
|